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Universal trapping law induced by an atomic cloud in single-photon cooperative dynamics
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The single-photon cooperative dynamics of an assembly of two-level quantum emitters coupled by a bosonic
bath is investigated. The bosonic bath is general and can be anything as long as the exchange of excitations
between quantum emitters and bath is present. In these systems it is found that the population on the excited
emitter keeps a simple and universal trapping law due to the existence of the system’s dark states. Different from
the trapping regime caused by photon-emitter dressed states, this type of trapping is only associated with the
number of quantum emitters. According to the trapping law, cooperative spontaneous emission at the single-
photon level in this kind of system is universally inhibited when the emitter number is large enough.
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I. INTRODUCTION

Cooperative light-matter interaction plays an important
role in quantum electrodynamics [1,2] and is useful for var-
ious applications of quantum optics such as optical quantum-
state storage [3-5], quantum communication [6,7], and quan-
tum information processing [8]. For a single excitation of
an ensemble of quantum emitters, the rate and direction of
cooperative spontaneous emission can be strongly modified
by different light-field environments. While the size and shape
of the ensemble have been investigated [9—11], an ensemble
of atoms with a single collective excitation also exhibits a dy-
namics characterized by revivals for different atom numbers
in a bosonic bath with a linear dispersion relation [12].

However, almost all the results and conclusions about the
single-photon cooperative dynamics provided in the literature
have been based on the specific light-field environments and
specific coupling coefficient between quantum emitters and
the photon [13-28], such as the cooperative dynamics in a
waveguide environment, the dynamics in a photonic crystal,
the dynamics in vacuum, and the dynamics in a simple cavity.
If the light-field environments and coupling coefficient are
changed, will these results and conclusions change or remain
the same?

Here we focus on the single-photon cooperative dynamics
in a system in which the light-field environment and the cou-
pling coefficient are not specific and we investigate the general
results and conclusions for the physical system. The emitters
are assumed to be placed much closer than the wavelength of
the radiation field and thus the emitters are efficiently coupled
by the radiation field without retardation effects.

In this paper we report that there is a universal trapping
law in the single-photon cooperative dynamics based on an
analytical analysis which is beyond the Wigner-Weisskopf
and Markovian approximations. A direct conclusion from this

N
cpsun@csrc.ac.cn

2469-9926/2020/101(6)/063831(5)

063831-1

law is that the spontaneous emission dynamics in this system
is suppressed if the number of emitters is large enough.

II. SINGLE-PHOTON COOPERATIVE DYNAMICS

We begin with a system that contains N two-level atoms
coupled to the radiation field in an environment with a general
dispersion relation wy. The atoms are characterized by the
ground state |g) and excited state |e). The Hamiltonian of
this system in the rotating-wave approximation takes the form
(with i = 1)

N
H = Za)ka;[ak + Z Qjlej) el
k j=1

+ Y Vijlofa+ o7 al). (1)
ik
where the first term on the right-hand side describes the light
field and a,t (ax) denotes the creation (annihilation) operator
of a photon with momentum k. The second term represents
two-level atoms and 2; is the atom’s transition frequency.
Here we set the ground-state energy of the atoms to be zero
as reference. The last term represents the interaction between
the photon and atoms, where oj+ = le;j) (gl (oj_ =|gj){ejl)is
the raising (lowering) operator acting on the jth atom and V,_;
is the coupling strength.
To investigate the dynamics of atoms when one of them
is excited, we start from the time-dependent Schrédinger
equation

i%llﬂ(ﬂ) =H[y @), 2)

where [{(¢)) is the state of the system at time z.
Since the total excitation number Ny = Zk wra, a +

ZZJYZI lej){e;| is conserved, the state [y (¢)) with Ny, = 1 can

be expanded as |y (1)) = ZjAj(t)Iglgz coeejoe-gy, 0) +
Zk Ci(t)|g182 - - - gn, 1k), where Aj(t) is the probability am-

©2020 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.063831&domain=pdf&date_stamp=2020-06-24
https://doi.org/10.1103/PhysRevA.101.063831

LEI QIAO AND CHANG-PU SUN

PHYSICAL REVIEW A 101, 063831 (2020)

plitude of the state with the jth atom in the excited state
and the other atoms in the ground state and no photon in the
environment, while Ci(¢) represents the probability amplitude
of finding all atoms to be in the ground state and one photon
in the environment. Replacing |4 (¢)) in Eq. (2), one obtains
the equations for A;(t) and Gy (¢),

0A;
) BIt(t) — QA0+ Y Vi, G, )
k
aC
i ;t(’) = G + 3 Ve 0. @

J

The method based on the Wigner-Weisskopf or Markovian
approximation theory is widely used to solve the dynamical
equations (3) and (4) with specific w; and V; ;, which leads
to the result that the excited atomic population reveals expo-
nential decay or the population decay is complete. However,
it has been pointed out that the population trapping in the
decay process will be lost when one of these two kinds of
approximation theories is used [29-31].

To go beyond the Wigner-Weisskopf and Markovian ap-
proximations, we take a Laplace transform of Egs. (3) and (4)
to obtain

i[—A;(0) + sA;(9)] = QA;(s) + Y _Vi;Ce(s),  (5)
k

i[Ce(0) + 5Ci(5)] = axCi(s) + Y _VijAj(s).  (6)
j

Denoting the initial excited atom by j, i.e., the initial ampli-
tudes are A;,(0) =1, A;(0) = 0 (j # jo), and Cx(0) = O, the
expression of A J»(s) can be acquired
is—Q—WION—-1)f(s)
(is — Q)is — L = Nf(s)]’

Aj(s)=i (7N
where f(s) =), sz/(is — wy). Here it has been assumed
that the atoms are identical and thus Q| =Q, =--- =
Qv =Q and V| = Vi =--- = Vi ny = V. The amplitude
Aj,(t) is given by the inverse Laplace transform A (t) =

s [7% &}, (s)e" ds, which leads to

Au(t) = Z s+iQ+i(N — 1)f(s)est

[F(s)) s=xD
B / S+iQ+i(N — l)f(s)e“ds ®
c 27iF (s) ’

where F(s) = (s +iQ)[s +iQ + iNf(s)] and [F (s)]’ means
the derivative of F(s) with respect to s. In addition, x! is
the root of the equation F'(s) = 0 in the complex plane except
the region that ensures that the integrand is a single-valued
function. Further, C is the integration contour based on the
residue theorem. Generally, C is associated with the specific
expression of V; and wy. Different V; and wy, lead to a different
integration contour C. However, a common conclusion that
does not depend on specific V; and wy is that the second term
of Aj,(t) in Eq. (8) goes to zero when time ¢ tends to infinity
due to the factor &% [32].

The physics in Eq. (8) is not obvious. We transform Eq. (8)
into another form, which is the key point for the analysis in
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FIG. 1. Integration contours for the calculation of Aj (¢) in the
coupled-cavity system. The red line is the integration contour C.

the following,

N
Aj (1) =

-1 o e
N ¢ +;N[G(s)]’

_ / G(s) —if(s)
c 2miF(s)
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where G(s) = s +iQ2 +iNf(s) and x? is the root of the
equation G(s) = 0. Here the equation G(—iE) = 0 is nothing
but the system’s eigenenergy equation of the photon-atom
dressed state. In fact, the second term on the right-hand side of
Eq. (9) comes from the system’s photon-atom bound states in
which the populations of field modes are not zero and the third
term comes from the system’s scattering states [29,33]. The
first term is only related to the atom’s transition frequency and
the number of atoms. It comes from the system’s dark state
with energy €2 in which all the excitation number focuses on
the atoms and the populations of field modes are zero [34,35].
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FIG. 2. Time evolution of the population |A; (¢)| on the excited
atom with different atom numbers in the coupled-cavity system: (a)
N=1,(b) N=2,(c) N =4, and (d) N = 8. The coupling strength
go = 0.2/ and the detuning §; = Q — wy = 0.
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FIG. 3. Integration contours for the calculation of Aj (¢) in the
photonic crystal system. The red line is the integration contour C.

This kind of dark state is universal in this kind of system. It
is caused by the collective coherence of atomic clouds. So the
trapping associated with the dark state is universal whether
the role of the second term on the right-hand side of Eq. (9) is
important or not.

When the equation G(s) = 0 has no roots or the system’s
parameters satisfy the condition |1/{N[G(x?)]'}| < 1, the
final result of the amplitude A () att = oo is

1
|Aj(00)| =1— N’ (10)
which is only related to the atom number. This trapping
phenomenon takes place when the number N > 1.

To check this universal trapping, we now present two
examples. One is the system of a one-dimensional coupled-
cavity waveguide, in which the dispersion w; = wy —
2J cos(k) and the coupling coefficient V, = go [36-38].
Here wp is the on-site energy of each cavity and J rep-
resents the hopping energy of the photon between two
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FIG. 4. Time evolution of the population |A;,(¢)| on the excited
atom with different atom numbers in the photonic crystal system:
(@N=1,(b) N =2,(c) N =4, and (d) N = 8. The detuning §, =
Q — w. = 6.58 and B%? = Q*d? /6w €)B>/>.
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FIG. 5. Integration contours for the calculation of Aj (¢) in the
system of the vacuum photonic bath. The red line is the integration
contour C.

neighboring cavities. The other is the system of a three-
dimensional photonic crystal with wy = w. + B(k — Ky)? and
Vi = Qd(2egwi V)~ ?e; - u [29,39-41]. Here d and u are the
magnitude and unit vector of the atomic dipole moment, re-
spectively. In addition, V, the volume, and e; are the two trans-
verse unit vectors of polarization. Both of the systems have
been extensively studied theoretically and experimentally in
recent years. For the coupled-cavity system, the integration
contour C is shown by the red line in Fig. 1. When Q = oy,
the condition |1/{N[G(x*)]'}| < 1 can be easily satisfied.
In Fig. 2 we plot the time evolution of Aj (z) for different
numbers of atoms. We can see that |4, (c0)| meets the value
1 —1/N. For the photonic crystal system, the integration
contour C is plotted with the red line in Fig. 3. The time
evolution of A (¢) is shown in Fig. 4. The trapping law 1 —
1/N is also obeyed when the condition |1/{N [G(xfnz) NH <« 1
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FIG. 6. Time evolution of the population |A;,(¢)| on the excited
atom in the system of the vacuum photonic bath for w., = 202
and () ' =0.1Qand N=1,(b) ' =0.132 and N =2, (¢) I' =
0.0832 and N =3, and (d) ' =0.063Q2 and N =4. Here ' =
Q3d? /3meyc’.
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is satisfied. In Fig. 4(d) we see that |A; (¢)| decays with a
small oscillation. This oscillation is caused by the second
term on the right-hand side of Eq. (9), which comes from the
contribution of the photon-atom bound states of the system.
If the detuning &, (8, = 2 — w.) becomes larger so that the
condition |1/{N[G(x?)]'}| < 1 is better satisfied, the small
oscillation will become less obvious.

For the system of the vacuum photonic bath, the
dispersion wg = c|k| and the coupling coefficient Vi =
Qd(2epwV)~'/?e; - u. In this case, the integration contour C
is shown by the red line in Fig. 5. Here w. is the cutoff of
the photon frequency [42]. In Figs. 6(a)-6(d) we plot the time
evolution of A (t) for atom numbers N =1, 2, 3, 4. It can be
seen that the trapping law 1 — 1/N is satisfied. Further, when
time is long enough, there is no oscillation in the evolution
curves. Here no root is found in the equation G(—iE) = 0, so
the second term on the right-hand side of Eq. (9) is zero and
the trapping law is exactly obeyed when time goes infinity.

III. CONCLUSION

To sum up, we have explored the single-photon cooperative
dynamics in an ensemble of two-level atoms which is coupled

to a general bosonic bath. The size of the ensemble is much
smaller than the wavelength of the radiation field. The bosonic
bath can be a photonic crystal, waveguide, or anything else as
long as the exchange of excitations between the atoms and
bath can take place. It was found that there is a universal
trapping caused by the system’s dark state. This kind of
trapping obeys a simple law that is only related to the number
of atoms. A direct conclusion from this law is that the single-
photon cooperative spontaneous emission is suppressed when
there are enough atoms. In addition, due to the presence of
this trapping, the energy of the radiation field will be less than
the initial total energy Ex = 2. This trapping law is based
on the Hamiltonian (1) with the rotating-wave approximation.
It may fail when the system goes beyond the regime of this
approximation.
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