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Theory of speckle intensity correlations over object position in a heavily scattering random medium
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We present a general theory for optical imaging of moving objects obscured by heavily scattering random
media. Measurements involve collecting a series of speckle intensity images as a function of the position of a
moving object. A statistical average intensity correlation can be formed with the potential to provide access to
microscopic and macroscopic information about the object. For macroscopic objects and translation distances
that are both large relative to the wavelength, there is a clear method to invert measurements to form an image
of the hidden object. Opportunities exist for super-resolution sensing and imaging, with far-subwavelength
resolution. Importantly, there is no fundamental limit to the thickness of the background randomly scattering
medium, other than the practical requirement of detecting an adequate number of photons and sufficient
background scatter for developed Gaussian field statistics. The approach can be generalized to any wave type
and frequency, under the assumption that there is adequate temporal coherence. Applications include deep tissue
in vivo imaging and sensing in and through various forms of environmental clutter. The theory also provides
another dimension for intensity interferometry and entangled state detection to the case with motion of the
scatterer or emitter.
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I. INTRODUCTION

Electromagnetic waves are of broad consequence in the
natural and engineered world. Notably, photonics is pervasive
in communications, optical sensing, and imaging, providing
capacity by virtue of the carrier frequency and the transmis-
sion media, and information through spectroscopy, leading
to the expanding presence of optical methods in medical
research and medicine. Throughout the application spaces
in science and technology, random scatter generally presents
difficulties. For example, atmospheric scatter has long limited
earth-based astronomy. Tissue scatter of light has made high
resolution coherent imaging in vivo a challenge at depths
beyond a few hundred microns.

The scatter of coherent light from randomly arranged scat-
terers in bulk material or rough surfaces results in speckle, the
granular intensity patterns from the interference between the
wavefronts of the differently scattered fields, and if the scatter-
ers move, the speckle pattern changes accordingly. Therefore,
in principle, information about a scattering medium or the
light impinging on such a medium is available. However,
the challenge is to find a means to extract such information.
Because of the difficulty associated with describing deter-
ministic light propagation in the multiply scattered regime,
a statistical treatment becomes important [1]. Changes in
speckle patterns are used in diffusing wave spectroscopy [2]
and laser speckle contrast imaging [3], where motion reduces
the local granular nature of the speckle pattern during the
image collection window. The local speckle contrast ratio can
thus be an indicator of the velocity of blood flow under thin
skin [4]. Decreasing the temporal coherence (increasing the
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bandwidth of laser light) reduces the speckle contrast ratio
(the ratio of the speckle intensity standard deviation to the
mean), effectively reducing the graininess. There is therefore
a relationship between speckle decorrelation over scanned
frequency and the transport of light through the scattering
medium [5,6]. The ensemble-averaged temporal response of
a random medium, useful in characterizing random media
and imaging, can be obtained using third-order correlations
of speckle patterns over frequency, thereby providing access
to the Fourier phase, when the field is described by circular
complex Gaussian statistics [6]. This implies the detection
of polarized light and allows use of a moment theorem [7].
Control of the temporal coherence of the light source provides
a means to image hidden objects [8]. Practically, fixing the
light source while increasing the scatter also reduces the
contrast ratio. Speckle contrast can be reduced by reducing
spatial coherence using, for example, random lasers, allowing
full-field imaging [9]. Speckle intensity patterns can also be
tailored to have artificial statistics, nonexisting in naturally
occurring speckle, using a spatial light modulator, and this has
been considered for applications [10]. The presence of scatter
can also increase communication capacity because of access
to multiple independent channels [11,12], as well as provide
enhanced security [13,14]. Characterization of the transmis-
sion properties or a random medium also allows access to the
spectral properties of light incident on the scattering medium
[15].

Imaging using coherent light offers high resolution, but
increasing random scatter, such as occurs with biological
tissue, eventually precludes direct observation. Consequently,
coherent imaging of an object through a thick scattering
medium is extremely difficult. The transmission of coherent
light through a scattering medium has been studied intensely
(see, for example, [5,16,17]). The memory effect (where the
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FIG. 1. A moving object in a scattering medium to be imaged,
along with the spatial variables and the optical excitation and detec-
tion concept.

speckle pattern moves with the incident wave vector) [18]
allows imaging through a scattering medium, as long as the
thickness is small [18–22]. Wavefront control using a spatial
light modulator and feedback control (based on a sensing
arrangement at the point of interest) enables focusing through
scatter [23,24], facilitating pointwise imaging. Knowledge
of the field transmission matrix (spatial pointwise for the
incident field) for a point within the scattering medium pro-
vides information that can be used to control the incident
field (such as with a spatial light modulator) to focus at that
point. The transmission matrix can be measured, but this
requires sensing within or on the other side of the scattering
medium or guidestar control of a small volume where the
focus will occur [25–27]. The contrast has been directly re-
lated to the effective number of the contributing transmission
matrix eigenchannels based on random matrix calculations
[28]. While a challenging computational problem, inversion
of measurement data can be presented as an estimation of
the positions of a set of scatterers, and simplified using, for
example, the first Born approximation describing the field
scattered by each scatterer. Having this computational model
for the background scattering medium would allow separation
of measurement data when an object within or on the other
side is to be imaged.

We develop a general statistical treatment that allows sens-
ing and imaging of a moving object hidden inside a heavily
scattering random background in a manner that is limited only
by the number of photons detected. The imaging concept is
presented in Fig. 1. Notably, the random background provides
a structured field that also allows access to far-subwavelength
spatial information, along the lines of a proposal for super-
resolution imaging with motion in prepared structured fields
[29]. In this sense, the random scatter facilitates information
that would otherwise be unavailable at a remote detector. The
mathematical development generalizes earlier work showing
the extraction of the incident field from correlations of in-
tensity speckle patterns over translated field position [30,31],
the imaging of aperture-type objects between scattering slabs
[32], and recent experimental evidence that general objects
can be imaged [33]. The theory provides a means to image
and motivation for a series of experiments to evaluate new
aspects of the information that can be accessed.

We treat the moving object parametrization in the context
of the wave equation in Sec. II. Intensity speckle patterns that
can be measured as a function of object position are expanded

as moments of the detected field in Sec. III. Section IV
develops the relationship between the second-order field
moments and the object(s) to be imaged. The theory has short-
range, subwavelength-scale information, and for macroscopic
objects, information on the length scale commensurate with
the object that can be used as a basis for sensing and imaging.
Section V considers the physical basis of the normalized
field correlation functions. The detector intensity correlation
expression is developed in Sec. VI, where we arrive at a
key relationship that is subsequently studied in Sec. VII in
terms of length scale and the amount of the scatter from the
moving object. The general theory is couched as a sensing
and imaging methodology in Sec. VIII. Section IX presents
a discussion of issues related to the theory, the experimental
studies, and key applications, and Sec. X projects the potential
impact in the form of a conclusion.

II. OBJECT PARAMETRIZATION

We treat the problem of imaging a moving object in a ran-
domly scattering background medium (Fig. 1) as one where
the background field without the object is considered as the
incident field and the scattered field is that due to the object
or objects of interest. This neglects possible displacement
of background scatterers as the object of interest moves.
Assuming a linear and locally time-invariant system during
each measurement, the total field is exactly the superposition
of the incident and scattered field everywhere. For scattering
dielectric problems, it is convenient to use the electric field
representation. The total field is E = Eb + Es, the sum of the
background field (Eb), and the scattered field (Es) due to the
moving object. Our interest here is in extracting information
about the object from Es, but the challenge is that the associ-
ated field is heavily scattered by the background medium. Our
treatment will use a Green’s function for the wave equation
that will remain unknown throughout the development.

The source-free Maxwell curl equations in the temporal
frequency domain (exp(−iωt )) and for nonmagnetic media
are

∇ × H = −iωε0εE, (1)

∇ × E = iωμ0H, (2)

where we have assumed that a complex, isotropic dielectric
constant ε(r) describes the scattering problem, and H is the
magnetic field, μ0 the free space permeability, and ε0 the free
space permittivity. From (1) and (2), the vector wave equation
for E becomes

∇ × ∇ × E − k2
0εE = 0, (3)

with k0 = ω
√

μ0ε0. Let

ε(r) = εb(r) + εs(r), (4)

where εb(r) is the spatially dependent background dielectric
constant that describes the random medium without the mov-
ing object(s) of interest and εs(r) is the contrast due to the
moving scattering object to be imaged, as shown in Fig. 2.
Therefore, with use of (4), (3) becomes

∇ × ∇ × E − k2
0εbE = k2

0εsE. (5)
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FIG. 2. The separation of a randomly scattering background,
described by a spatial variation of the background dielectric con-
stant εb(r) and the moving object’s dielectric constant εs(r) allows
separation of the fields and facilitates the development of (39).

Recognizing that ∇ × ∇ × Eb − k2
0εbEb = 0, (5) can be writ-

ten as

∇ × ∇ × Es − k2
0εbEs = k2

0εsE. (6)

The Green’s function wave equation corresponding to (6)
is

∇ × ∇ × Gp(r, r′) − k2
0εb(r)Gp(r, r′) = −δ(r − r′)p̂, (7)

where the position vectors are now included for clarity, r′ is
the (equivalent) source location, and p̂ is drawn from the set
of orthogonal unit vectors to produce the tensor G. Using (7)
and superposition to write the integral equation corresponding
to (6), and with E = Eb + Es, we have

E(r) = Eb(r) −
∫

k2
0εs(r′)G(r, r′)E(r′)dr′ (8)

as the exact representation for the scattering problem. The
use of a tensor Green’s function in (8) provides for multiple
scattering from the random background medium, including
related depolarization and polarization coupling, in forming
the integral representation of the vector scattered electric field.
Implicit in the ensuing development is the dependence of
measurable intensities on the incident field, and assuming a
laser excitation, on the specifics of the illumination.

The predominant underlying theory in statistical optics
deals with Gaussian fields [1]. In the relevant experiments, this
implies both adequate temporal coherence and the detection of
a single polarization state [31,32]. This is achieved by making
(intensity) measurements through a polarizer. Consequently,
the d̂ component of the electric field is sifted (describing a
specific polarization state), so (8) assumes the scalar form,

E (r) = Eb(r) +
∫

O(r′) d̂ · [G(r, r′)E(r′)]dr′

= Eb(r) + Es(r). (9)

Without loss of generality, we can define a simplified scalar
object function as

O(r′) = −k2
0εs(r′). (10)

The development of the imaging formulation exploits this
simplified scalar picture with the exact interpretation that
the vector field is being sampled at the detector through a
polarizer.

III. DETECTED FIELD MOMENTS

Consider a point detector located at r = rd , as in Fig. 1, and
define the field at this point by E (rd ) ≡ Ed , where the spatial
argument is represented as a subscript for compactness. We
assume measurements that reflect Ed at a sequence of object
positions defined by a reference position r0 and a translation
vector �r. We can thus describe the field at the detector as
Ed (r0) with the object at some reference position and Ed (r0 +
�r) with the object at the displaced position defined by �r.

The background scattering process is treated as random,
and the fields at some rd can be considered as a random
phasor sum with developed statistics so that Ed is zero-mean
circular Gaussian [1]. This also provides access to a moment
theorem made widely known by Reed [7], and with stationary
statistics the special cases of the second and fourth moments
are related in a manner presented earlier by Siegert [34]. We
define the statistical average 〈·〉 as being over background
scatterer configuration. Section VIII considers the practical
aspects of how the average is determined experimentally with
speckle intensity data obtained by a camera.

The intensity is assumed to be measured, and we write the
intensity at the detector as Id = |Ed |2, where a normalized
impedance is assumed. The fourth-order field moment pro-
vides the measured intensity correlation over object position
as [7]

〈Id (r0)Id (r0 + �r)〉
= 〈Ed (r0)E∗

d (r0)Ed (r0 + �r)E∗
d (r0 + �r)〉

= 〈Id (r0)〉〈Id (r0 + �r)〉 + 〈E∗
d (r0)

× Ed (r0 + �r)〉〈E∗
d (r0 + �r)Ed (r0)〉

= 〈Id (r0)〉〈Id (r0 + �r)〉
+ |〈E∗

d (r0)Ed (r0 + �r)〉|2. (11)

Equation (11) will be used throughout our development.
It is convenient to define a normalized field,

Ẽ = E

〈I〉1/2
, (12)

with I = |E |2, and a normalized intensity,

Ĩ = (I − 〈I〉)

〈I〉 . (13)

The normalization for field (giving Ẽ ) in (12) is consistent
with that for intensity (Ĩ) in (13). For a Gaussian field [7],
〈I2〉 = 2〈I〉2, so the intensity variance is

σ 2
I = 〈I2〉 − 〈I〉2

= 〈I〉2. (14)

The contrast ratio is thus σI/〈I〉 = 1 [1].
The second-order field correlation over object position,

measured at the detector, is

G(1)(rd ; r0, r0 + �r) = 〈E∗
d (r0)Ed (r0 + �r)〉

≡ G(1)(r0, r0 + �r), (15)

where we use a common notation for the second-order field
moment (G(1)(·)) and a compact argument to simplify the
form of subsequent expressions, where the implication is a
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measurement at a single detector point (rd ). With the use of
normalizations involving the mean intensity, 〈Ẽ∗

d (r)Ẽd (r +
�r)〉 → 〈Ẽ∗

d (0)Ẽd (�r)〉, and the normalized field (and in-
tensity) correlations become independent of the object ref-
erence position r. The normalized averaged field correlation
measured at the detector point as the object is scanned is
then

g(1)(�r) = 〈Ẽ∗
d (0)Ẽd (�r)〉

= G(1)(r0, r0 + �r)

〈Id (r0)〉1/2〈Id (r0 + �r)〉1/2
. (16)

Use of (12) or (13) and (16) with (11) gives

〈Ĩd (r0)Ĩd (r0 + �r)〉 = 〈Ĩd (0)Ĩd (�r)〉
= |g(1)(�r)|2. (17)

While object information is in principle embedded in (17),
this interpretation of normalized measured data does not
provide for imaging. We present a theory that provides a
clear path to a method to invert measured data and form
an image.

IV. RELATIONSHIP BETWEEN OBJECT AND
DETECTED FIELD MOMENTS

Returning to (9), we write the field at the detector as a
superposition of that due to the background random scatter

(Edb) and that due to the object (defined as the scattered field,
Eds). Expanding the second-order field correlation with this
field superposition, we have

〈E∗
d (r0)Ed (r0 + �r)〉
= 〈E∗

db(r0)Edb(r0 + �r)〉 + 〈E∗
db(r0)Eds(r0 + �r)〉

+ 〈E∗
ds(r0)Edb(r0 + �r)〉 + 〈E∗

ds(r0)Eds(r0 + �r)〉
= 〈Idb〉 + 〈E∗

dbEds(r0 + �r)〉 + 〈E∗
ds(r0)Edb〉

+ 〈E∗
ds(r0)Eds(r0 + �r)〉. (18)

Note that Edb(r0) = Edb(r0 + �r) = Edb, because the back-
ground field is that without the object (the incident field),
so 〈E∗

db(r0)Edb(r0 + �r)〉 = 〈E∗
dbEdb〉 = 〈Idb〉, dictated by the

optical excitation, the scattering medium, and the detector
location, but independent of the moving object.

In (18), referring to (9) and (10), Eds = Es(rd ), so with the
object at the reference position r0,

Eds(r0) =
∫

O(r′; r0) d̂ · [G(rd , r′)E(r′)]dr′, (19)

where O(r′) defines the object through (10). This allows us
to build expressions for each of the three remaining terms in
(18).

First, from (19) and with a shift in object position of �r,

〈E∗
ds(r0)Eds(r0 + �r)〉 =

〈 ∫
O∗(r′; r0)d̂ · [G(rd , r′)E(r′)]∗dr′

∫
O(r′; r0 + �r) d̂ · [G(rd , r′)E(r′)]dr′

〉

=
〈 ∫

dr′
∫

dr′′O∗(r′; r0) d̂ · [G(rd , r′)E(r′)]∗O(r′′; r0 + �r)d̂ · [G(rd , r′′)E(r′′)]
〉

= G(1)
ss (r0, r0 + �r)

= 〈Ids(r0)〉1/2〈Ids(r0 + �r)〉1/2g(1)
ss (�r), (20)

so

g(1)
ss (�r) = 〈Ids(r0)〉−1/2〈Ids(r0 + �r)〉−1/2

〈 ∫
dr′

∫
dr′′O∗(r′; r0) d̂ · [G(rd , r′)E(r′)]∗O(r′′; r0 + �r)d̂ · [G(rd , r′′)E(r′′)]

〉

= 〈Ẽ∗
ds(0)Ẽds(�r)〉 = ass(�r)eiφss (�r). (21)

We note from (21) that the normalization results in |g(1)
ss (0)| = 1, so that ass(0) = 1 and φss(0) = 0. Notice that g(1)

ss in principle
provides access to a measure of the spatial correlation of the object, something we pursue later. The challenge is to relate g(1)

ss to
a measurable quantity, because Ids is not directly available.

Like (20), using (19), we have

〈E∗
db(r0)Eds(r0 + �r)〉 =

〈
E∗

db

∫
O(r′; r0 + �r)d̂ · [G(rd , r′)E(r′)]dr′

〉

= 〈Idb〉1/2〈Ids(r0 + �r)〉1/2g(1)
bs (�r). (22)

Hence,

g(1)
bs (�r) = 〈Ẽ∗

dbẼds(�r)〉 = abs(�r)eiφbs (�r). (23)

The final term in (18) is thus

〈E∗
ds(r0)Edb〉 = 〈Ids(r0)〉1/2〈Idb〉1/2g(1)

sb (0)

≡ 〈Ids(r0)〉1/2〈Idb〉1/2g(1)∗
bs (0), (24)
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where we have

g(1)
sb (0) = 〈Ẽ∗

ds(r0)Ẽdb〉 = asb(0)eiφsb(0)

= eiφsb(0) = e−iφbs (0) ≡ g(1)∗
bs (0). (25)

Collecting the various terms, we can thus write the field
correlation over object position measured at the detector point,
from (18), as

〈E∗
d (r0)Ed (r0 + �r)〉
= 〈E∗

dbEdb〉 + 〈E∗
db(r0)Eds(r0 + �r)〉

+ 〈E∗
ds(r0)Edb(r0 + �r)〉 + 〈E∗

ds(r0)Eds(r0 + �r)〉
= 〈Idb〉 + 〈Idb〉1/2〈Ids(r0 + �r)〉1/2g(1)

bs (�r) + 〈Ids(r0)〉1/2

×〈Idb〉1/2g(1)∗
bs (0)+〈Ids(r0)〉1/2〈Ids(r0+�r)〉1/2g(1)

ss (�r).

(26)

Interpretations of (26) will prove useful in imaging based on
motion in scattering media.

V. PHYSICAL BASIS OF g(1)
ss (�r) AND g(1)

bs (�r)

Experimental evidence indicates that a macroscopic mov-
ing object’s geometrical parameters can be determined from
an average speckle intensity correlation over translated object
position [32,33]. In the special case of an aperture function,
total decorrelation occurs at a distance corresponding to the
aperture width [32]. From (26), this information about the
object is described by |g(1)

ss (�r)|. From (21) and considering
the case of an aperture, this implies that the scattered field
from the object and its translated version survive an averaging
process. This availability of field information despite the
intervening heavily scattering random medium is consistent
with experiments that showed that the incident field on a
random medium can be determined from transmitted speckle
intensity correlations over the scanned field position [31].
Generalizing to results from an experiment with an absorbing
patch [33], the patch diameter was available from a dip in
the speckle correlation. This line of evidence suggests that
the normalized scattered field associated with the moving
object, represented in the field correlation of (26), is retained
through an averaging process involving reconfiguration of the
background randomly located scatterers. Macroscopically,
referring to Fig. 1, this situation occurs when the object and
the translated object share a joint spatial support, and follows
from the concept of correlated incident fields when imaging
based on field translation over the remote side of a randomly
scattering medium [31]. We therefore arrive at the conclusion
that g(1)

ss (�r) has correlated scattered field contributions from
the object and the shifted object when they share a common
spatial support. We will separate g(1)

ss (�r) into short-range and
long-range terms, as shown in Fig. 3. The short-range decorre-
lation has been shown to be sensitive to the microstructure and
subwavelength features and the long range to macroscopic
object information through a joint spatial support picture [32].
We will separately address the role of g(1)

bs .
The autocorrelation of the object function is

�(�r) =
∫

dr′O∗(r′)O(r′ + �r). (27)

D

    g(1)s
ss (Δri) g(1)l

ss (Δri)

FIG. 3. The normalized scattered field correlation is shown to
have a short-range, wavelength-scale regime, as well as a long-
range macroscopic object characteristic that goes to a minimum at
a distance corresponding to the size of the object, D. This depiction
is consistent with a relationship to the object autocorrelation function
and experimental data [32,33].

A comparison of (21) and (27), under conditions of sufficient
random scatter for developed statistics, suggests

g(1)
ss (�r) = γ (�r)

=
∫

dr′Õ∗(r′)Õ(r′ + �r), (28)

where γ is the normalized autocorrelation and Õ is the
normalized object function. With (28), information related to
g(1)

ss (�r) leads to a means to retrieve Õ, as we will describe.
Possibly less obvious is the role of g(1)

bs (�r) and its char-
acter, upon observation of the average field correlation in
(22). It is insightful to consider the Gedankenexperiment of
a detected field correlation without displacement. Based on
(18), the mean intensity at the detector point with the object at
the reference position is

〈Id (r0)〉 = 〈E∗
d (r0)Ed (r0)〉

= 〈Idb〉 + 2Re{〈E∗
dbEds(r0)〉} + 〈Ids(r0)〉

= 〈Idb〉 + 〈Ids(r0)〉+〈Idb〉1/2〈Ids(r0)〉1/22Re
{
g(1)

bs (0)
}
,

(29)

with Re{·} the real part. The only way to describe a decrease in
mean intensity with the introduction of an object is by g(1)

bs (0).
Therefore, in general, g(1)

bs must be retained in the intensity
correlation expressions. Also, clear from (29), g(1)

bs (0) has
negative real part for situations where 〈Idb〉 > 〈Id〉. From (23),
one might anticipate that g(1)

bs (�r) will reduce to zero when
the object translation is large compared to λ. This position
rests on substantial uncorrelated scatter associated with the
moving object in relation to the background random scattering
medium. Note from (22) that g(1)

bs is normalized by 〈Ids〉, which
provides the scattering strength. If 〈Ids〉1/2g(1)

bs (�r) were avail-
able, this could provide object information.

By analogy with field correlations over frequency [35], a
random phasor sum description in the Gaussian field limit
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indicates a pathlength distribution with a differential phase
shift k|�r| < λ, suggesting a decorrelation over |�r| ∼ λ.
Irrespective of the details of the moving object, we therefore
expect a contribution from point scatterer motion on this
length scale, and that this will influence both g(1)

ss and g(1)
bs .

Embedded in this will be nanostructure information about the
object.

VI. DETECTOR INTENSITY CORRELATION

From (11), the intensity correlation at the detector point,
measured over object position, is

〈Id (r0)Id (r0 + �r)〉 = 〈Id (r0)〉〈Id (r0 + �r)〉
+ |〈E∗

d (r0)Ed (r0 + �r)〉|2. (30)

Using (26) and arranging into terms involving orders of g(1)
ss ,

|〈E∗
d (r0)Ed (r0 + �r)〉|2 =

{
〈Idb〉2 + 〈Idb〉3/2

[〈Ids(r0 + �r)〉1/22Re
{
g(1)

bs (�r)
} + 〈Ids(r0)〉1/22Re

{
g(1)

bs (0)
}]

+〈Idb〉〈Ids(r0)〉1/2〈Ids(r0 + �r)〉1/22Re
{
g(1)

bs (0)g(1)
bs (�r)

} + 〈Idb〉〈Ids(r0)〉|g(1)
bs (0)|2

+〈Idb〉〈Ids(r0 + �r)〉|g(1)
bs (�r)|2

}
+

{
〈Idb〉1/2

[〈Ids(r0)〉1/2〈Ids(r0 + �r)〉2Re
{
g(1)

bs (�r)g(1)∗
ss (�r)

}

+〈Ids(r0)〉〈Ids(r0 + �r)〉1/22Re
{
g(1)

bs (0)g(1)
ss (�r)

}] + 〈Idb〉〈Ids(r0)〉1/2〈Ids(r0 + �r)〉1/22Re
{
g(1)

ss (�r)
}}

+〈Ids(r0)〉〈Ids(r0 + �r)〉|g(1)
ss (�r)|2. (31)

It is convenient to convert raw measured speckle intensity data into normalized form (Ĩ) using (13). This step also simplifies
the mathematical representation. In normalized form, (30) becomes

〈Ĩd (r0)Ĩd (r0 + �r)〉 = |〈Ẽ∗
d (r0)Ẽd (r0 + �r)〉|2,

(32)

where

Ẽd (r0) = Ed (r0)

〈Id (r0)〉1/2
, (33)

Ẽd (r0 + �r) = Ed (r0 + �r)

〈Id (r0 + �r)〉1/2
, (34)

and, as before, the normalized fields depend only on the translation �r. Drawing on (31)–(34), we can write

〈Ĩd (r0)Ĩd (r0 + �r)〉 = C0(�r; r0) + C11(�r; r0)2Re
{
g(1)

bs (�r)g(1)∗
ss (�r)

} + C12(�r; r0)2Re
{
g(1)

bs (0)g(1)
ss (�r)

}
+C13(�r; r0)2Re

{
g(1)

ss (�r)
} + C2(�r; r0)|g(1)

ss (�r)|2, (35)

where, referring to (31),

C0(�r; r0) = 〈Id (r0)〉−1〈Id (r0 + �r)〉−1
{
〈Idb〉2 + 〈Idb〉3/2

[
〈Ids(r0 + �r)〉1/22Re

{
g(1)

bs (�r)
} + 〈Ids(r0)〉1/22Re

{
g(1)

bs (0)
}]

+〈Idb〉〈Ids(r0)〉1/2〈Ids(r0 + �r)〉1/22Re
{
g(1)

bs (0)g(1)
bs (�r)

} + 〈Idb〉〈Ids(r0)〉 + 〈Idb〉〈Ids(r0 + �r)〉∣∣g(1)
bs (�r)

∣∣2
}
,

C11(�r; r0) = 〈Id (r0)〉−1〈Id (r0 + �r)〉−1〈Idb〉1/2〈Ids(r0)〉1/2〈Ids(r0 + �r)〉, (36)

C12(�r; r0) = 〈Id (r0)〉−1〈Id (r0 + �r)〉−1〈Idb〉1/2〈Ids(r0)〉〈Ids(r0 + �r)〉1/2,

C13(�r; r0) = 〈Id (r0)〉−1〈Id (r0 + �r)〉−1〈Idb〉〈Ids(r0)〉1/2〈Ids(r0 + �r)〉1/2,

C2(�r; r0) = 〈Id (r0)〉−1〈Id (r0 + �r)〉−1〈Ids(r0)〉〈Ids(r0 + �r)〉.
The normalizations and spatial dependencies in (35) and (36) warrant special note. In (35), 〈Ĩd (r0)Ĩd (r0 + �r)〉 uses 〈Id (r0)〉
and 〈Id (r0 + �r)〉 for scaling, according to (13). This results in 〈Ĩd (r0)2〉 = 1, independent of r0. However, the features in this
correlation as �r is varied can depend on r0, hence the inclusion of this dependency on the left of (35). The normalizations used
for g(1)

bs (�r) and g(1)
ss (�r) that make them independent of r0 are different to those used in forming Ĩd . Consequently, there are

products and ratios of various mean intensity forms in (36) that depend on r0. The r0 dependency on the right-hand side of (35)
is therefore incorporated into the coefficient functions in (36) and through the various mean terms. In special arrangements, the
coefficients in (35) can be written (or approximated) as being independent of r0 (and �r).

We can sift g(1)
ss from (35), with use of (36), by separating the real (Re) and imaginary (Im) parts of the field correlations

associated with C1 j as

〈Ĩd (r0)Ĩd (r0 + �r)〉 = C0(�r; r0) + 2
[
C11(�r; r0)Re

{
g(1)

bs (�r)
} + C12(�r; r0)Re

{
g(1)

bs (0)
} + C13(�r; r0)

]
Re

{
g(1)

ss (�r)
}

+2
[
C11(�r; r0)Im

{
g(1)

bs (�r)
} − C12(�r; r0)Im

{
g(1)

bs (0)
}]

Im
{
g(1)

ss (�r)
} + C2(�r; r0)|g(1)

ss (�r)|2
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≡ C0(�r; r0) + 2C1r (�r; r0)Re
{
g(1)

ss (�r)
} + 2C1i(�r; r0)Im

{
g(1)

ss (�r)
} + C2(�r; r0)|g(1)

ss (�r)|2, (37)

where the C coefficients in general vary with �r and r0 and

C1r (�r; r0) = Re{C1(�r; r0)} = C11(�r; r0)Re
{
g(1)

bs (�r)
} + C12(�r; r0)Re

{
g(1)

bs (0)
} + C13(�r; r0)

C1i(�r; r0) = Im{C1(�r; r0)} = C11(�r; r0)Im
{
g(1)

bs (�r)
} − C12(�r; r0)Im

{
g(1)

bs (0)
}
. (38)

Equation (37) can thus be written as

〈Ĩd (r0)Ĩd (r0+�r)〉=C0(�r; r0)+2Re
{
C∗

1 (�r; r0)g(1)
ss (�r)

}
+C2(�r; r0)

∣∣g(1)
ss (�r)

∣∣2
. (39)

Equation (39) is our key result, and this will be used to
consider various object and scatter regimes. The arrangement
is in terms of orders of g(1)

ss , the complex normalized field
correlation in (21) that we have written in terms of the object
autocorrelation function (28). Figure 3 shows the character
expected for g(1)

ss based on earlier experiments [32]. The co-
efficients C0, C1, and C2 depend on the relative position of the
object and allow for nonstationary statistics through position-
dependent means. With sufficient scatter it may suffice to
treat these as constants [33]. Both C0 and C1 are nonzero
only when there is a background field at the detector, defined
as the field without the moving object. With an aperture in
an opaque screen, absence of the object corresponds to a
closed aperture and hence there is no background field at
the detector, resulting in a contribution from only the third
term in (39). Contained within C0 and C1 are correlations
between the background field and the field scattered by the
object, g(1)

bs . Our experiments with absorbing patches [33]
indicate that C1/C0 is small and possibly negligible, that it
diminishes with increasing levels of background scatter, and
that it increases with reducing object scatter (〈Ids〉). With
nonzero C0, the ratio C2/C0 decreases with an increase in
background scatter. These coefficients thus become a measure
of the character of the background scattering medium in which
the object is moving. While (39) is a compact expression
relating measured intensity correlations to g(1)

ss and hence the
object through (28), Ids and g(1)

bs are not directly obtained
from any measurement. Therefore, a tractable path to imaging
requires approximations or assumptions to access the object
function, O.

VII. CORRELATION LENGTH SCALES,
OBJECT SCATTERING REGIMES, AND

EXPERIMENTAL EVIDENCE

There are two important field correlations in (39) that carry
information about the moving object, g(1)

bs (�r) [that appears
in C0(�r) and C1(�r) = C1r (�r) + iC1i(�r)] and g(1)

ss (�r)
(see Fig. 3). At this point, we expect g(1)

bs (�r) to reduce
from unit magnitude to zero as �r increases from zero to
the length scale of about λ. From (20), there will also be
a wavelength-scale decorrelation in g(1)

ss (�r), an observation
that is supported by experimental data [32]. There is also a
long-range correlation where the light interacts with the object
and a translated version at shared points, as Fig. 1 shows,
and this forms a representation for macroscopic imaging.

Therefore, we write

g(1)
ss (�r) = g(1)s

ss (�r) + g(1)l
ss (�r), (40)

where g(1)s
ss is the short-range correlation, with |�r| ∼ λ, and

g(1)l
ss is the long-range correlation (assuming D > λ, referring

to Fig. 3) that exists because the deterministic moving object
modifies the background field at each point in space within
the joint spatial support of the scatterer and the translated
scatterer (see Fig. 1). We have experimental evidence that both
g(1)s

ss (�r) and g(1)l
ss (�r) can be observed with heavily scattered

light [32].
We consider now forms of (39) in the large and small

translation distance regimes, relative to λ, and in the weak
and strong scatter contrast domains. This set of delineations
relates to various application domains for the theory.

A. |�r| � λ

With |�r| 
 λ, and from (22), we assume that g(1)
bs (�r) =

0 and g(1)s
ss (�r) = 0. Normalization yields g(1)

ss (0) = 1 but
g(1)l

ss (0) �= 1. In this situation of large object translation rela-
tive to λ, we have from (39)

〈Ĩd (r0)Ĩd (r0+�r)=Cl
0(�r; r0)+2Re

{
Cl∗

1 (�r; r0)g(1)l
ss (�r)

}
+C2(�r; r0)|g(1)l

ss (�r)|2, (41)

with

Cl
0(�r; r0) = 〈Id (r0)〉−1〈Id (r0 + �r)〉−1

×
{
〈Idb〉2 + 〈Idb〉3/2〈Ids(r0)〉1/22Re

{
g(1)

bs (0)
}

+〈Idb〉〈Ids(r0)〉
}

(42)

Cl
1r (�r; r0) = C12(�r; r0)Re

{
g(1)

bs (0)
} + C13(�r; r0)

Cl
1i(�r; r0) = −C12(�r; r0)Im

{
g(1)

bs (0)
}
, (43)

and with C12(�r; r0) and C13(�r; r0) from (36).

B. |�r| < λ

Given a sufficiently small scan distance, we assume
that stationarity holds, leading to 〈Id (r0)〉 ≈ 〈Id (r0 + �r)〉
and 〈Ids(r0)〉 ≈ 〈Ids(r0 + �r)〉. This approximation also
holds with larger scan distance and sufficient back-
ground random scatter. Therefore, in conjunction with (39),
we have

C0(�r; r0) = 〈Id (r0)〉−2
{〈Idb〉2 + 2〈Idb〉3/2〈Ids(r0)〉1/2

×[
Re

{
g(1)

bs (�r)
} + Re

{
g(1)

bs (0)
}]

+〈Idb〉〈Ids(r0)〉2Re
{
g(1)

bs (0)g(1)
bs (�r)

}
+〈Idb〉〈Ids(r0)〉[1 + |g(1)

bs (�r)|2]}
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C1r (�r; r0) = C11(r0)Re
{
g(1)

bs (�r)
} + C12(r0)Re

{
g(1)

bs (0)
}

+C13(r0)

C1i(�r; r0) = C11(r0)Im
{
g(1)

bs (�r)
} − C12(r0)Im

{
g(1)

bs (0)
}

C2(r0) = 〈Id (r0)〉−2〈Ids(r0)〉2, (44)

where C11, C12, C13, and C2, defined in (36), are now assumed
independent of scan distance over the scale of one wavelength.
Consequently,

C11(r0) = C12(r0)

= 〈Id (r0)〉−2〈Idb〉1/2〈Ids(r0)〉3/2

C13(r0) = 〈Id (r0)〉−2〈Idb〉〈Ids(r0)〉 (45)

We note that it is of significance that measurements in this
regime with heavy background random scatter could result in
far-subwavelength information. This could be obtained from
g(1)

bs (�r), which varies with the object function. It is also
available from g(1)s

ss and from (39).

C. 〈Idb〉 � 〈Ids〉
If the scattering object, large or small, is weakly scattering

so that 〈Ids〉  〈Idb〉, we can approximate (39) as

〈Ĩd (r0)Ĩd (r0 + �r)〉 = C0(�r; r0)

+ 2Re
{
C∗

1 (�r; r0)g(1)
ss (�r)

}
, (46)

with

C0(�r; r0) = 1 +
[〈Ids(r0 + �r)〉1/22Re

{
g(1)

bs (�r)
} + 〈Ids(r0)〉1/22Re

{
g(1)

bs (0)
}]

〈Idb〉1/2
. (47)

D. 〈Idb〉 � 〈Ids〉
With 〈Idb〉  〈Ids〉 and (39), we have the approximation

〈Ĩd (0)Ĩd (�r)〉 = ∣∣g(1)
ss (�r)

∣∣2
. (48)

VIII. SENSING AND IMAGING METHODOLOGY

A. Formation of averages (〈·〉) with experimental data

The averaging process in our theory 〈·〉 is mathematically
an average over background scatterer reconfiguration. This
means in forming 〈Ĩd (r0)Ĩd (r0 + �r)〉 that the intensity is
measured at the detector point (rd ) with the object at r0 [giving
the pth measurement as Id p(r0)] and at r0 + �r [resulting
in Id p(r0 + �r)]. Upon rearranging the background scatters
according to a relevant density function, a set of random
samples is obtained. Thus, the average with P measurements
is formed as 〈Ĩd (0)Ĩd (�r)〉 = 1

P

∑P
p=1 Ĩd p(0)Ĩd p(�r), with P

suitably large. It is not practical to form averages involving
rearrangement of the background scatterers experimentally,
because the object of interest would need to be in two lo-
cations for each measurement with the background scatterer
configuration being identical.

Experimentally, one can estimate 〈·〉 using a camera image
of the speckle intensity where the image domain is small
enough for stationary statistics to hold [6,31–33]. In this case,
each speckle spot needs to be adequately resolved, there needs
to be a sufficient number of spots, and the regions imaged onto
the camera should be small enough for the mean to be inde-
pendent of position within a given image (but not necessarily
as �r is varied). Thus, the average is formed over the pixels
of a camera. The requirement for independent samples can be
met with a sufficient number of speckle spots. The sampling
can be enhanced by using multiple reference positions (rp)
and equivalent offsets (�r) [33]; this has also been done to
form an average over frequency [6]. The normalized intensity
images associated with each measurement can thus be formed.

B. 〈Idb〉 = 0: Aperture in a screen

The simplest case corresponds to an aperture in a screen,
where, with the object absent, there is no field on the detector
side for a transmission measurement. In this situation, (48) is
exact. This has been the basis of imaging results presented
using experimental data [32].

C. 〈Idb〉 �= 0: General object

We consider the heavy scatter regime and �r 
 λ, allow-
ing us to write (41) as

〈Ĩd (r0)Ĩd (r0 + �r)〉 = Cl
0(r0) + 2Re

{
Cl∗

1 (r0)g(1)l
ss (�r)

}
+C2(r0)|g(1)l

ss (�r)|2, (49)

where within a scan distance corresponding to the joint sup-
port of the object and its translated self, it has been found that
Cl

0, Cl∗
1 , and C2 can be treated approximately as constants [33].

The measured intensity data as a function of object position
is then related to four real numbers and g(1)l

ss , the object
autocorrelation function. In principle, (49) can be solved and
g(1)l

ss (�r) obtained. Then, through a Gerchberg-Saxton [36]
phase reconstruction process (see [37,38], for example), the
object function Õ can be retrieved from g(1)l

ss (�r) based on
(28) [32,33].

Experiments with a translated millimeter-scale absorbing
patch (formed with black tape) in a heavily scattering back-
ground have found C1 to be small [33]. Consequently, in such
situations, where the second term in (49) is small, Cl

0 can be
extracted from measured data, and (49) can be renormalized
so that |g(1)l

ss (0)| = 1. These steps provide direct access to
the normalized object autocorrelation function from (28). In
a general situation where the second term in (49) cannot be
neglected, optimization-based fitting can provide the three
constants and hence access to the object autocorrelation.

IX. APPLICATIONS AND PERSPECTIVES

Our compact, central result in (39) provides a new and
fundamental description of intensity correlations over (mov-
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ing object) space that persist over infinite length scales. In
practice, the distances and levels of scatter become limited by
the laser source energy and detector noise. Previous investiga-
tions into second-order intensity correlations (see Refs. [5,39–
42] for a review) have identified contributors to the measured
intensity correlation of CI (�x) = 〈I (x0)I (x0 + �x)〉, where
�x represents the change in the correlation variable (e.g.,
frequency or wave-vector direction) and the brackets 〈· · · 〉
represent the ensemble average. CI (�x) has been decomposed
into three terms, short-range correlations C1(�x), long-range
correlations C2(�x), and infinite-range correlations C3(�x)
[17] (where we preserve the notation in the cited reference, but
note that the definitions of C1 and C2 are not the same as in the
development given in this work). Each of these correlations
may contribute to the measured correlation, and they have
been weighted by the dimensionless quantity g (dimensionless
conductance) according to CI (�x) = C1(�x) + g−1C2(�x) +
g−2C3(�x). For most optical experiments involving a slab ge-
ometry, g 
 1 is typical, thus making the contribution of the
long- and infinite-range correlations negligible [43]. Our work
with correlations over object position provides another infinite
range correlation for situations that pertain to a randomly
scattering slab where the thickness can in principle approach
infinity.

A number of fundamental assumptions were made in the
development of our theory that impact applications: We as-
sume that the statistics from a set of camera images will be
a good indicator of an average formed from rearrangements
of the environmental scatterers; there is natural or controlled
motion of the object of interest; the background scattering
environment is assumed to be static within the acquisition of
speckle images; and, most importantly, we have stipulated that
the statistics of the detected speckle field to exhibit a circular
Gaussian distribution, required for use of Reed’s moment
theorem [7]. We address each of these requirements.

In an experiment, averages would be formed with cam-
era speckle images that access random intensity information
over space (or angle). The statistics from the camera im-
age are expected to be a good representation provided each
speckle is spatially resolved and there are enough independent
samples. Our experience with reasonably heavily scattering
media is that a spot of about 1 mm in diamater can have
approximately a constant mean intensity, thereby providing
stationary statistics in the camera image [6,8,30–32,44,45].
A 4-F lens system with an aperture in the Fourier domain
provides separate control of the speckle size. There is a
trade-off between speckle size and number of speckle spots,
where the camera pixel size should be small relative to the
speckle (autocorrelation function full width half maximum)
and there should be a sufficient number (of independent
samples) within an image where the statistics are stationary
(so the mean is constant). Measurements are made through
a polarizer. Negative exponential intensity statistics indicate
that the speckle images are satisfactory and that the fields are
zero-mean-circular Gaussian. Laser light with adequate coher-
ence is also required (to achieve satisfactory statistics), and
this requirement is a function of the amount of background
scatter.

Various physical situations involve object motion. One
example is in vivo blood vessel constituents. In other ap-

plications, motion could be induced using a translational
stage. This may be appropriate in material inspection, for
instance. Regardless, prior information on the motion of the
object during the acquisition of speckle images is needed to
apply this approach which means the positional or velocity
information of the unknown moving object needs to be in-
ferred through some complementary method, such as tem-
poral decorrelation or the Doppler shift [46], or localization
based on a photon diffusion model [47]. The dimensionality
of any sensing and imaging result is commensurate with that
of the object motion. For motion other than linear translation,
we foresee that a similar type of theory may be possible.
Given enough prior information about the motion of the
object, the experimentally measured correlation could poten-
tially be separated to different types of object motion, such
as translation and rotation, and analyzed for useful sensing
and imaging.

The need for stationary (static) background scatterer posi-
tions is perhaps the most severe restriction. Natural settings
may involve motion of the scatterers, such as with aerosols.
It is assumed that displacement of background scatterers
with the motion of the object of interest can be neglected.
Generally, the stationary background scatterer requirement
implies that this motion is negligible during the measurement
period over which the object is moving. Alternatively, the
implication is that intensity decorrelation due to the motion of
the randomly located background scatterers can be accounted
for in a calibration and hence known from prior information.
This constraint also relates to object size or speed, which has
a detector signal-to-noise ratio implication.

An amount of scatter producing developed Gaussian field
statistics is assumed. This assumption can be met with a
random medium having a thickness of one transport length,
the distance for photon momentum randomization, or more.
Heavier scatter, such that the mean intensity does not vary ap-
preciably with object position over the measurement, provides
a simplification, and can lead to approximating C0, C1, and
C2 as constant for �r about the moving object’s size in our
development in Sec. VIII.

We have been able to reconstruct images of macroscopic
(mm-scale) objects, both apertures of rather complex shapes
and also black patches by obtaining speckle images as a
function of translated object position and applying the theory
of Sec. VIII [33]. This was achieved by assuming that C0, and
C2 are constants that can be determined by fitting the mea-
sured data and assuming C1 = 0 [33]. This provided access to
g(1)l

ss and hence the object autocorrelation, from which phase
retrieval allowed imaging of the object to quite high precision.
The principle is that correlations exist within the joint support
and the wavelength-scale correlation g(1)s

ss is neglected. In
the general situation where these coefficients are spatially
dependent, inversion becomes ill-posed. Consequently, prior
information would be needed or constraints imposed. Re-
cently, we have also obtained experimental results that support
using the ratio between Cl

0 and Cl
2 in (49) to qualitatively

compare the relative scattering strengths of the moving object
and the scattering environment. This suggests that various
measures based on our general result in (39) could be of
practical importance. While the resolution could in principle
approach wavelength scale in this macroscopic regime, in
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practice it is limited by scanning precision and other practical
aspects of making such measurements.

The experimental evidence for super-resolution sensitivity
in a speckled field is compelling [32]. This subwavelength
length-scale information is contained within g(1)

ss , specifically
g(1)s

ss (�r), and likely g(1)
bs (�r) [although there is currently

no experimental information relevant to the character of
g(1)

bs (�r)]. A combined numerical field study and the pur-
suit of experiments with nanoparticles could shed light on
these functions and may provide a means to extract object
parameters of relevance, hence providing sensing and per-
haps even imaging on this length scale. The achievement
of far-subwavelength object information with motion in a
speckled field is analogous to an earlier proposal for motion
in structured illumination achieved by two interfering beams
[29]. The distinction in the case of the speckled field is that
the field is generally unknown and hence a forward model
and conventional computational imaging approaches cannot
be applied.

More generally, our method could allow communication
in a cluttered environment. Consider a moving transmitter
that sends an identical set of signals from a series of spatial
positions. This information could in principle be extracted in
a manner similar to how imaging is accomplished. Again, the
principle is correlated information that survives the averaging
process with multiply scattered light. In this case, temporal
or multiple frequency data would be extracted. There are of
course details to be investigated as to how a protocol for this
communication arrangement would be implemented, but the
principle we have described should be applicable. This may
also carry over to quantum key distribution in the presence of
clutter [48].

Ghost imaging involves entangled or correlated photons
[49]. Speckle can occur [50] and achieving high contrast-to-
noise control is important [51,52]. It may be possible to utilize
object motion to enhance the robustness of ghost imaging
in a scattering environment. In fact, moving objects have
been considered in ghost imaging [53] and this could be
extended to heavily scattering media with our approach. With
regard to energy-time entangled photons in scattering media,
correlated detection (in the Hanbury Brown and Twiss sense)
or detection with a nonlinear crystal [54] provides temporal
gating that could be useful in scattering media. With a moving
entangled photon source in a scattering medium, information
can be added by position control that could be interesting in
applications.

Finally, fluorescence (or Förster) resonance energy transfer
(FRET) is a nonradiative energy transfer process between
donor and acceptor molecules spatially separated by a dis-
tance usually between 1 and 10 nm that results in a decrease
in the lifetime and quantum yield of the donor in the presence
of the acceptor [55]. Measurement of FRET through lifetime
modification has become important in molecular biology [56]
and has been shown possible for in vivo applications [57,58].
With suitable labeling, FRET can provide key information

about protein folding, relevant for many major diseases.
Generally, the change of lifetime is represented as a donor-
acceptor distance using classical dipole-dipole coupling the-
ory [55]. It may be possible to use a coherent method based
on absorption and motion along the lines we have described
to separately determine the distance (which is typically several
nanometers).

X. CONCLUSION

We have presented a rigorous theory for imaging based on
speckle pattern correlations over object position. This leads
to various sensing and imaging opportunities using coherent
light in scattering media. It may be possible to exploit natural
motion in environmental sensing situations where multiple
scatter occurs. If the motion of the object of interest were
fast relative to the background scattering medium, then the
situation would conform to the theory described. It may also
be possible to calibrate for decorrelation due to the back-
ground, provided there is adequate sensitivity to the moving
object to be imaged. An important application domain is
in vivo imaging without contrast agents, such as of blood
cells in capillaries. In this case, the local velocity may be
constant over the micron length scales required. While the cor-
responding translation is one dimension, three-dimensional
(3D) imaging may be possible with constraints. Accessing
far-subwavelength information is an intriguing direction. This
is relevant in finding defects in semiconductor device pro-
cessing using optical inspection. The wafer can be precisely
positioned but traditional methods are diffraction limited and
hindered by speckle produced due to surface roughness and
complicated 3D structures. It is possible that the presence
of defects may be determined by using speckle intensity
correlation over the wafer position. In weakly scattering sit-
uations, such as in microscopy where super-resolution would
be value, the speckle could be created by a diffusing screen
and the object of interest (cells for example) translated in this
structured field, allowing intensity images to be captured as a
function of object position.
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