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Spectral collapse in the two-photon quantum Rabi model
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Spectral collapse, the transition from a discrete to a continuous spectrum, is a characteristic in quantum
Rabi models. We explore this phenomenon in the two-photon quantum Rabi model using optical phase space, and
we find that, in the so-called degenerate qubit regime, the collapse is similar to the transition from a harmonic
to an inverted oscillator with the free-particle potential as a critical transition point. In the degenerate qubit
regime, we construct Dirac-normalizable eigenfunctions with well-defined parity for the model. In the general
model, we use parity to diagonalize the system in the qubit basis and numerically find that the qubit frequency
does not change the critical point where spectral collapse occurs. We numerically confirm the existence of an
exceptional state at the critical coupling, and we argue its analytic provenance from both a Born-Oppenheimer
and a variational approximation.
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I. INTRODUCTION

The quantum Rabi model [1] describes the minimal cou-
pling between a two-level system and a boson field. Experi-
mental realizations of the model exist in a range of quantum
platforms [2–4]. Experimentalists can tailor their quantum
systems to explore extensions of the model [5] that has fueled
theoretical extensions as well [6–11]. We are interested in the
process of two-photon exchange reported with atoms [12] and
solid-state devices [13]. In this so-called two-photon quantum
Rabi model,

H = ω0

2
σ̂z + ωa†â + g2(â†2 + â2)σ̂x, (1)

the qubit and boson field are described by the
two-level energy gap related to the frequency ω0 and
the frequency ω. The coupling between these is given by the
parameter g2. The qubit is described by Pauli matrices σ̂i

and the field by annihilation (creation) operators â (â†). In
the two-photon quantum Rabi model, qubit flop accompanies
the creation or destruction of two photons. This process
resembles parametric up (down) conversion. The latter has
varied theoretical and experimental applications [14–20],
which might point to the importance of a better understanding
of the former.

An interesting characteristic of the single-photon quantum
Rabi model is the spectral collapse that occurs in the so-called
relativistic regime [21]. There, we can follow the transition
from a discrete spectrum in the so-called degenerate qubit
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regime, where the model is equivalent to a driven cavity, and
the so-called relativistic regime, where the model is equivalent
to the Dirac equation in (1 + 1)D with a continuous spectrum.
The eigenstates of the model interpolating between these two
regimes transition from the superposition of even and odd
displaced number states to that of infinitely squeezed coherent
states, respectively. Here, we want to show that the spectral
collapse in the two-photon quantum Rabi model, existing at a
critical coupling and providing a spectrum with a discrete and
a continuous part [22], has a different nature from the one in
the single-photon quantum Rabi model.

In the following, we discuss the spectral collapse mecha-
nism in the two-photon quantum Rabi model. Our approach is
twofold.

First, we rewrite the Hamiltonian for the model using
optical phase space. In this representation, we show that the
mechanism behind the spectral collapse in the degenerate
qubit regime is equivalent to the transition from a harmonic to
an inverted oscillator. The discrete spectrum of the harmonic
oscillator becomes continuous at the critical point where
the potential becomes null and the effective Hamiltonian is
equivalent to that of a free particle. Our result matches the
critical points found in the literature with the addition of a
physical understanding of the mechanism behind the spectral
collapse. In the degenerate qubit regime, we construct the
analytic eigenfunctions of the system in terms of the confluent
hypergeometric functions that yield both discrete and contin-
uous solutions. These solutions show well-defined parity.

Second, we provide a diagonalization of the model in the
qubit basis that allows us to study the spectral collapse in
the general model using numerical methods. We conduct a
numerical survey in both the full two-photon quantum Rabi
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Hamiltonian and its diagonalization in the qubit basis to
confirm the null effect of the qubit frequency on the criti-
cal coupling. We present results for on-resonance and off-
resonance surveys that confirm the existence of an exceptional
state with a finite norm at the critical coupling of every
parameter set. To explore this exceptional eigenstate, we use
semiclassical methods in the form of Born-Oppenheimer and
variational approaches. Finally, we close with a conclusion.

II. OPTICAL PHASE-SPACE MODEL

We are interested in the mechanism behind spectral col-
lapse reported in the two-photon quantum Rabi model [22,23].
For reasons that will become clear in the following, we move
into optical phase space [24],

q̂ = 1√
2

(â† + â), p̂ = i√
2

(â† − â), (2)

and we perform a π/2 rotation around the axis defined by σ̂y

such that we arrive at the Hamiltonian, up to a constant factor,

Ĥy = 1
2 [ω + 2g2σ̂z] p̂2 + 1

2 [ω − 2g2σ̂z]q̂
2 + 1

2ω0σ̂x. (3)

Moving into a frame defined by a unitary rotation in terms of
a Fourier-like rotation,

Û (θ ) = [R̂(θ )]−
1
2 (σ̂z−1), R̂(θ ) = e− iθ

2 ( p̂2+q̂2 ), (4)

and choosing a rotation angle θ = π/2, we recover a rotated
two-photon quantum Rabi model Hamiltonian,

ĤR = 1
2 (α+ p̂2 + α−q̂2)σ̂0 + 1

2ω0[R̂ π
4
σ̂+ + R̂†

π
4
σ̂−], (5)

where we define the dimensionless auxiliary parameters α± =
ω ± 2g2 and use the shorthand notation σ̂0 for the identity
matrix and R̂θ ≡ R̂(θ ). This analogy immediately brings to
our mind the idea of spectral collapse as the diagonal element
of this Hamiltonian transitions from harmonic to free-particle
form when the auxiliary parameter takes the value α− = 0
at the critical coupling gc = ω/2. For values larger than the
critical coupling, the diagonal element takes the form of an
inverted oscillator, α− < 0.

In the past, we showed that a competition between Hamil-
tonians with components showing a discrete and a continuous
spectrum produces the spectral collapse in the single-photon
quantum Rabi model [21]. There, the collapse occurs from
the transition from driven-cavity-like in the degenerate-qubit
regime, into a relativistic (1 + 1)D Dirac-like Hamiltonian
in the relativistic regime. We have a different mechanism
in the two-photon quantum Rabi model. Here, the diagonal
term shows spectral collapse in the degenerate-qubit regime
equivalent to a transition from harmonic oscillator to free-
particle and then to inverted harmonic oscillator.

III. DEGENERATE QUBIT REGIME

Let us focus on the boson component attached to the
identity element in the qubit basis, an analogy to the so-called
degenerate qubit regime where ω0 → 0,

Ĥ0 = 1
2 (α+ p̂2 + α−q̂2). (6)

We can think of the second term on the right-hand side as
a potential V (q̂) = α−q̂2 that takes the form of a harmonic

oscillator showing a discrete spectrum for α− > 0 with ω >

2g2, Fig. 1(a), and two regimes with a continuous spectrum in
the form of a free particle for α− = 0 with ω = 2g2, Fig. 1(b),
or an inverted oscillator for α− < 0 with ω < 2g2, Fig. 1(c).
Thus, the spectral collapse in the degenerate-qubit regime
is related to the transition from harmonic to free-particle
potential.

Suppose that the vector |λ0〉 is an eigenvector of the diag-
onal element Ĥ0 with eigenvalue λ0. We can use a quadrature
representation to find linearly independent solutions to the
diagonal element,

〈q|λ0〉 = c1 e− 1
4 αq2

1F1

(
−ν − 1

4
;

1

2
;

1

2
αq2

)

+ c2 q e− 1
4 αq2

1F1

(
−ν + 1

4
;

3

2
;

1

2
αq2

)
, (7)

in terms of the confluent hypergeometric function
1F1(a; b; z) [25]. We introduce the auxiliary parameters

α2 = (ω − 2g2)/(ω + 2g2) and 	 =
√

ω2 − 4g2
2, modal

amplitudes c1 and c2 that include normalization constants,
and the scaled eigenvalue

ν = ω

	
λ − 1

2
, (8)

that is real for parameters ω > 2g2, diverges for ω = 2g2,
and becomes complex for ω < 2g2. In the first case, ω >

2g2, we recover the discrete, equidistant, harmonic oscillator
spectrum,

λ(I )
n = 	

ω

(
n + 1

2

)
, n = 0, 1, 2, . . . (9)

with corresponding Hermite-Gauss eigenfunctions,

〈q|λ(I )
n 〉 = 1√

2nn!

(α

π

) 1
4
e− 1

2 αq2
Hn(αq). (10)

Then, for the free-particle-like case, ω = 2g2, the spectrum
collapses and becomes continuous with Dirac-δ normalizable
forward- and backward-propagating monochromatic plane-
wave eigenfunctions,

〈q| ± λ(II )〉 = 1√
2π

e±i
√

λ(II )q, (11)

with real positive eigenvalues λ(II ) ∈ [0,∞). In the inverted
oscillator case, ω < 2g2, the spectrum remains continuous and
the eigenfunctions are Dirac-δ normalizable [26],

〈q|λ(III )〉 = e−i π
4 (η+1)�(−η)

2
3
4 π

Dη

(
±

∣∣∣∣ω − 2g2

ω + 2g2

∣∣∣∣
1
4

e3i π
4

√
2q

)
,

(12)

with real eigenvalue λ(III ) ∈ R, where we define the auxiliary
real parameter η = iλ(III )	−1 − 1/2, and we use the parabolic
cylinder function Dη(x) [25]. We want to stress that both
Dirac-normalizable solutions with continuous spectra allow
the construction of states with well-defined parity.
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(a) (b) (c)

FIG. 1. Effective pseudopotential V (q̂) = (ω − 2g2)q̂2 in the diagonal terms of the rotated two-photon quantum Rabi model with (a) ω −
2g2 = 1, (b) ω − 2g2 = 0, and (c) ω − 2g2 = −1.

IV. GENERAL MODEL

Now, let us try to address the process behind the
spectral collapse in the general model by considering its
symmetries [22]. For starters, we can partition the boson
Hilbert space into even and odd sectors and rewrite the rotated
two-photon quantum Rabi Hamiltonian, up to a constant,

Hq = ω0

2
σ̂x + 2ωK̂z − 2g2(K̂+ + K̂−)σ̂z, (13)

in terms of the elements of the su(1, 1) algebra: K− = a2/2,
K+ = a†/2, and Kz = (a†a + aa†)/4 such that [K̂z, K̂±] =
±K̂± and [K̂+, K̂−] = −2K̂z. The parameter q is known as
the Bargmann index and takes the value of q = 1/4 (q =
3/4) in the even (odd) boson subspace defined as H1/4 =
{|1/4; m〉} (H3/4 = {|3/4; m〉}). Each subspace has a parity
operator 
̂q = eiπ (K̂z−q), and the action of these operators in
the subspaces can be found in [27,28]. We use a Fulton-
Gouterman (FG) transformation [6] to diagonalize the rotated
two-photon quantum Rabi Hamiltonian in the qubit basis,

ĤFG = Ĥq,+|+〉〈+| + Ĥq,−|−〉〈−|. (14)

We use the parity 
̂q as an auxiliary operator for this. The four
Hamiltonians, one for each boson sector and up to a constant,

Ĥq,± = ±ω0

2

̂q + 2ωK̂z − 2g2(K̂+ + K̂−), (15)

have a form in which the first two terms on the right-hand
side have a discrete spectrum and the last term has a contin-
uous spectrum. The competition between these terms defines

the spectral collapse in the full rotated two-photon quantum
Rabi model.

We can numerically explore this transition in each boson
subspace, but we will focus on the even excited subspace
H1/4,+ for the sake of brevity. Figure 2 shows the first
25 eigenvalues for this subspace associated with the upper
diagonal term Ĥ1/4,+ using a truncated boson Hilbert subspace
of 213. We can compare these results with those from the full
rotated two-photon quantum Rabi model using a truncated
space of 212 photons to good agreement. In both cases, we
accept an eigenvalue and eigenfunction pair if the norm of the
last 20% components of the boson sector of the eigenvector
is less than 10−6. Once we reach the critical value for the
coupling constant gc = 2ω, there is but a single converged
eigenfunction as the spectrum becomes continuous and the
truncation method is no longer viable to solve the eigenvalue
problem. Analytic and numeric results are in good agreement.
A key characteristic arises in these results, in that there is
always an exceptional solution at the critical coupling gc =
ω/2 in each boson subspace as reported in Ref. [22].

We explore different parameter space to numerically verify
the dependence of the critical coupling on just the field fre-
quency. In particular, we surveyed two off-resonance models.
For the sake of simplicity, frequencies are given in units
of ω̃, one with fixed qubit frequency ω0 = ω̃ and the other
with variable boson frequency ω ∈ [0.45, 0.5]ω̃. Figure 3(a)
shows a result of this survey for ω = 0.45ω̃ that yields a
critical coupling of gc = 0.225ω̃, and another with qubit fre-
quency ω0 ∈ [0.95, 1.05]ω̃ with boson frequency ω = 0.5ω̃

that yields gc = 0.25ω̃. Figure 3(b) shows a result of this

(a) (b)

FIG. 2. Spectral collapse in the boson sector Ĥ1/4,+ of the rotated two-photon quantum Rabi model diagonalized in the qubit basis in (a) the
degenerate qubit regime ω0 = 0, ω = 0.45ω̃, and g2c = 0.225ω̃; (b) on-resonance ω0 = ω̃, ω = 0.5ω̃, and g2c = 0.25ω̃.
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(a) (b)

FIG. 3. Spectral collapse in the boson sector Ĥ1/4,+ of the rotated two-photon quantum Rabi model diagonalized in the qubit basis in the
off-resonance case with (a) ω0 = ω̃, ω = 0.45ω̃, and g2c = 0.225ω̃; (b) ω0 = 0.95ω̃, ω = 0.5ω̃, and g2c = 0.25ω̃.

survey for ω0 = 0.95ω̃. The surveys explored homogeneous
20-step distributions in the variable frequencies and 200 steps
in the coupling parameter. Finer combs in the coupling pa-
rameter were implemented centered on the critical coupling
g2 ∈ [0.98, 1.02]gc and covering 200 steps to verify the re-
sults. It seems that the addition of the parity has no effect
on the critical coupling nor on the exceptional solution at the
critical coupling.

V. EXCEPTIONAL STATE

Our focus is on the origin of the spectral collapse related
to the transition from a harmonic to an inverted oscillator
potential in optical phase-space variables for the degenerate
qubit regime. However, our numerical simulations confirm
the existence of an exceptional solution [23,29], a converged
numerical eigenstate, at the transition point given by the
critical coupling strength g2c = ω/2. In the degenerate qubit
regime, the energy of this exceptional state seems to tend
toward an asymptotic limit. To obtain some information about

this state, we use the Born-Oppenheimer approximation [30]
to decouple the fast frequency modes of the total system
and approximate its energy. We treat the optical phase-space
variables q and p as a commuting object. This facilitates the
diagonalization of the approximated Hamiltonian in Eq. (3)
yielding proper energies,

E±(p, q) = 1

2

[
ω(p2 + q2) ±

√
ω2

0 + 4g2
2(p2 − q2)

]
,

(16)

in terms of the system parameter set {ω,ω0, g2}. Each pa-
rameter set provides a different energy landscape. In the
uncoupled case, Fig. 4(a), the energy landscape for high and
low energies is a parabola. The lowest-energy state is the qubit
in the ground and the boson field in the vacuum state. As
the coupling increases, moving from left to right in Fig. 4,
the lowest Born-Oppenheimer energy landscape becomes un-
stable but shows a valley related to the exceptional state in
the numerics, Fig. 4(d). The second row in Fig. 4 shows the

FIG. 4. The upper row shows the lowest-energy E−(p, q) landscape in optical phase space under the Born-Oppenheimer approximation.
The lower row shows the Fock state distribution |cn|2 = |〈n|ψ〉|2 of the corresponding exact numerical eigenstate for on-resonance frequency
values ω0 = ω̃, ω = 0.5 ω̃, and variable coupling strength g2 = {0.0, 0.1, 0.24, 0.25} ω̃, left to right columns.
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TABLE I. Exceptional state eigenvalue comparison between variational ε
(var)
0 and numerical ε

(num)
0 approaches for the even, positive parity

state.

Model parameters Variational parameters Ground energies

g2

ω̃

ω

ω̃

ω0

ω̃
α ζ

ε
(var)
0

h̄ω̃

ε
(num)
0

h̄ω̃

0.240 0.480 1 −0.00000003114 0.316478 −0.327647 −0.335529
0.245 0.490 1 −0.00013949500 0.321824 −0.325006 −0.333182
0.245 0.499 1 −0.00000004176 0.315722 −0.319561 −0.331095
0.250 0.500 1 −0.00000003683 0.327155 −0.322394 −0.330865

photon number distribution of the corresponding exceptional
state from the numerical diagonalization of Eq. (15). The
Born-Oppenheimer approximation provides us with informa-
tion about the origin of the exceptional state and its energy,
but it does not facilitate calculating the form of the state. To
figure out the latter, we use a variational approach ansatz to
compare with the numerical data. Our previous result for the
standard quantum Rabi model spectrum points to eigenstates
related to squeezed displaced entangled states [21]. Thus, we
make an educated guess for the exceptional state in the form
of a squeezed coherent cat state,

|ζ , α, π〉 = 1√
Nπ

S(ζ )(|α〉 + π | − α〉), (17)

where the squeezing and coherent parameters ζ and α must
minimize the energy of the Hamiltonian in Eq. (15). We
introduce a normalization constant Nπ for even (odd) states
with π = 1 (π = −1). The corresponding energy for this state
is given by the following expression:

〈ζ , α, π |H±|ζ , α, π〉

= ∓ω0π
e−α2(1+tanh 2ζ )

(1 + πe−2α2 )
√

cosh 2ζ
fπ (χ )

+ 2ω

{[
1

4
+ α2

2
gπ (α2)

]
cosh 2ζ + α2

2
sinh 2ζ

}

− 2g2

{
α2 cosh 2ζ + 2

[
1

4
+ α2

2
gπ (α2)

]
sinh 2ζ

}
,

(18)

where we use the shorthand notation χ = α2/ cosh 2ζ and
define the auxiliary functions

fπ (x) =
{

cos x if π = 1,

sin x if π = −1 (19)

and

gπ (x) =
{

tanh x if π = 1,

coth x if π = −1.
(20)

There exists a nontrivial dependence of the functional in
terms of the parameter set and parity. Thus, we numerically
minimize the functional in Eq. (18) and compare it with the
value obtained from the numerical diagonalization of Eq. (15).
Table I shows a summary for some values sampling off-
resonance and resonance parameter sets that may point to an
exceptional state similar to our educated guess.

VI. CONCLUSIONS

We propose that the mechanism behind spectral collapse,
the transition from a discrete to a continuous spectrum, in the
two-photon quantum Rabi model is analogous to a transition
from a harmonic to an inverted oscillator, with the critical
point being analogous to a free particle at a critical coupling
parameter of half the boson field frequency. It is straightfor-
ward to show this mechanism in the degenerate qubit regime
using an optical phase-space representation. We provide an
analytic form for the eigenstates of the two-photon quantum
Rabi model in this regime. In addition, we show that it is pos-
sible to diagonalize the model in the qubit basis by dividing
the Hilbert space in four subspaces with well-defined parity. In
this representation, the spectral collapse mechanism seems to
remains unchanged for the whole model outside the degener-
ate qubit regime. Our numerical experiments show no change
in the critical coupling for surveys that explore variations in
both the photon and qubit frequencies, and they confirm the
existence of an exceptional solution at the critical coupling
that aligns with the ground state of the boson subspaces in
the regions with discrete spectra. We adopt a semiclassical
and a variational approach to provide a better understanding
of the exceptional state. The semiclassical Born-Oppenheimer
approximation shows that at the critical point, the effective po-
tential structure may support the exceptional state. A squeezed
coherent cat state ansatz for the variational approach provides
an energy that is within 2% of those obtained by numerical
diagonalization.

In summary, our results confirm the critical parameter
set found in the literature and propose a visualization of
the mechanism behind the spectral collapse, assuming a
transition from a harmonic to an inverted oscillator might
be useful in predicting the behavior in quantum simu-
lators. For example, in neutral atoms within optical lat-
tices, where second-order coupling may be implemented
by means of an external field [31,32], exploring the spec-
tral collapse could mean losing the atoms as the trapping
potential disappears. Each quantum simulation platform—
superconducting systems or ion traps—might require its
own analysis to discover the implications of the spectral
collapse.
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