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Coherent perfect absorption in a weakly coupled atom-cavity system
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We study coherent perfect absorption (CPA) theoretically based on a weakly coupled atom-cavity system
with an optically pumped second-order nonlinear crystal (SOC) embedded in the cavity. Our system does not
require a strong coupling, which is often needed for CPA in previous studies but is challenging to implement
experimentally in some systems. The role of the SOC is to introduce a tunable effective decay rate of the cavity,
which can lead to CPA in the weak-coupling regime. The proposed system exhibits bistable behaviors, with
bistable patterns switchable between conventional and unconventional shapes. By varying the properties of the
SOC, the operation point of CPA can be tuned to be inside or outside the bistable regime. It can also be located
at the upper or the lower stable branch or even the unstable branch of the bistable hysteresis loop. It is however
robust against the parameters of the SOC for any fixed effective decay rate. Our system can potentially be applied
to realize optical devices such as optical switches in the weakly coupled regime.
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I. INTRODUCTION

It is well known that an optical cavity with gain can
produce outgoing optical fields with a definite frequency and
phase relationship, termed lasers [1]. Applying time-reversal
symmetry, a cavity illuminated by two coherent incoming
waves has the gain medium replaced by an absorbing medium.
Once the coherent incoming waves are completely absorbed,
coherent perfect absorption (CPA) [2] occurs. Hence, CPA
can be regarded as the time-reversed process of lasing at the
threshold [2,3]. The underlying physics of CPA is a joint
action of the system disspation and the destructive interfer-
ence between the transmitted and reflected fields [2,4]. Due to
wide potential applications [5–7] in optical communications
and photonic devices such as transducers, modulators, opti-
cal switches, and transistors, CPA has attracted considerable
interest [2–4,8–25].

Previous studies [19–21,26] have shown that strong cou-
pling between light and matter is necessary for realization of
CPA and the conditions under which CPA occurs cannot be
fine-tuned. However, achieving the strong-coupling regime is
still a challenge for relevant quantum systems such as atom- or
spin-cavity systems, and a tunable system is always desirable
in quantum computation and quantum information process-
ing. Motivated by these, we put forward a proposal of a system
exhibiting controllable CPA in the weak-coupling regime.
The proposed system consists of a two-level atom coupled
to a cavity or specifically designed cavity [27] containing a
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second-order nonlinear crystal (SOC). The SOC gives rise to
the tunable effective decay rate of the cavity. This extends the
CPA conditions in Refs. [19–21] to the weak-coupling regime.
In addition, we show that the proposed system under the new
CPA conditions exhibits bistable behaviors. The properties
of bistability have been widely applied in optical switching
[28,29], optical memory [30,31], quantum phase transition
[32,33], ground-state cooling [34], lasers [35], and quantum
circuits [36–39]. The bistable property can be switched from
conventional to unconventional forms via the tuning of system
parameters. Moreover, the location of the CPA point can be
fine-tuned to be inside or outside the bistable region, and it
can be located at an arbitrary branch of the bistable hysteresis
loop. Tuning CPA appearing on different branches can be used
to study nonreciprocal circulators [40]. Surely, CPA appearing
on different bistable branches indicates different input powers
are needed to observe the CPA point. This greatly relaxes
experimental conditions to observe it. We also show that the
location of the CPA point is robust against the parameters of
the SOC for a given effective decay rate.

The paper is organized as follows. In Sec. II, the model
is formulated theoretically and the Hamiltonian is explained.
Then we apply quantum Langevin equations to derive steady-
state properties of the system in Sec. III. In Sec. IV, the CPA
criterion is given and impacts of the system parameters are
discussed. In Sec. V, we give a numerical study on the CPA
behaviors. Finally, a conclusion is given in Sec. VI.

II. MODEL AND HAMILTONIAN

We consider a quantum system consisting of a two-level
atom coupled to an optical cavity containing a SOC. The
cavity is formed by two partially transmitting (reflecting)
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FIG. 1. Schematic diagram of the coupled atom-cavity system.
The cavity containing a pumping SOC is driven by two coherent
fields with Rabi frequencies �l and �r . G is the coefficient of the
SOC and ωs (s = l, r, p) is the frequency of the field.

mirrors. Each mirror is exerted by an external driving field
(see Fig. 1). The system Hamiltonian can be written as (setting
h̄ = 1)

Hsys = H0 + HI + Hnl + Hd . (1)

Here, H0 = ωcc†c + ωTLSσz is the total free energy of the
cavity and the two-level atom, where ωc is the angular fre-
quency of the cavity mode and ωa is the transition frequency
between the ground state |g〉 and the first excited state |e〉 of
the two-level atom. Also, c† (c) is the creation (annihilation)
operator of the cavity field, and σz = 1

2 [σ+, σ−] is the Pauli-z
operator, where σ+ = |e〉〈g| (σ− = |g〉〈e|) is the raising (low-
ering) operator of the atom.

The term HI in Eq. (1) represents the interaction Hamil-
tonian between the cavity and the two-level atom. Under
the rotating-wave approximation (i.e., neglecting the fast-
oscillating terms c†σ+ and cσ−), HI reads

HI = g(c†σ− + cσ+), (2)

where g = d
√

ωc/(2πε0V0) is the coupling strength, with d
being the dipole momentum, ε0 the vacuum permittivity, and
V0 the cavity mode volume.

The Hamiltonian Hnl in Eq. (1) denotes the interaction
between the SOC and the cavity. By pumping an external field
onto the SOC, the nonlinear interaction Hamiltonian Hnl can
be written as

Hnl = i(Gc†2e−iωpt − G∗c2eiωpt ), (3)

where the parameter G is the effective nonlinear coefficient,
proportional to both the original nonlinear coefficient of the
SOC and the amplitude of the pumping field with frequency
ωp, and G∗ is the complex conjugate of G. The Hamiltonian
in Eq. (3) can be used to study the phenomena of squeezing
effects [41–43] and coupling amplification [44–46].

The last term, Hd , in Eq. (1) describes the mirrors of the
cavity driven by two external fields with frequencies ωl and
ωr , respectively (see Fig. 1). The Hamiltonian Hd takes the
form of

Hd = i(�l e
−iωl t + �re−iωr t )c† + H.c., (4)

where �l = √
κl c

(in)
l and �r = √

κrc(in)
r are the Rabi frequen-

cies of the left- and right-driving fields, respectively. Here,
κl (r) = Tl (r)/τ is the decay rate of the left (right) mirror of
the cavity, with Tl (r) being the left (right) mirror transmission
and τ the photon round-trip time inside the cavity. In addition,

c(in)
l and c(in)

r are the amplitudes of the left- and right-driving
fields.

In the rotating frame with respect to the frequency ωr of the
right-driving field, the system Hamiltonian in Eq. (1) becomes

H = U †HsysU − iU †∂tU

= 
cc†c + 
TLSσz + g(c†σ− + cσ+)

+ i(Gc†2 − G∗c2) + i(�dc† − �∗
d c), (5)

where U = exp[−iωr (c†c + σz )t] is a unitary transformation
operator, 
c = ωc − ωr is the frequency detuning of the cav-
ity field from the right-driving field, and 
TLS = ωTLS − ωr

is the frequency detuning of the two-level atom from the
right-driving field. The coupling parameters are given by G =
Ge−i(ωp−2ωr )t and �d = �l e−i(ωl −ωr )t + �r . Here we choose
the right-driving field as the reference field, so for convenience
we set the phase of the reference field to be zero.

Furthermore, we consider the situation that two external
fields are resonant and the frequency of the pumping field on
the SOC is twice that of the right-driving field, i.e., ωl = ωr

and ωp = 2ωr . The latter condition physically means that a
pair of degenerate photons with the frequency ωr can be
obtained when the SOC is illuminated by a field with the fre-
quency ωp. These two conditions directly lead to �d = �l +
�r and G = G, respectively. Therefore, the time-dependent
Hamiltonian in Eq. (5) reduces to

H = 
cc†c + 
TLSσz + g(c†σ− + cσ+)

+ i(Gc†2 − G∗c2) + i(�dc† − �∗
d c), (6)

which is a time-independent Hamiltonian. Note that the above
Hamiltonian can be simulated by a superconducting circuit
coupled to a nitrogen-vacancy center in diamond, where the
coupling between the cavity and the atom can be amplified
exponentially [44].

III. STEADY-STATE INTRACAVITY FIELD

Using the Heisenberg-Langevin approach, the quantum dy-
namics of the considered system as described by the Hamilto-
nian (6) can be governed by the following quantum Langevin
equations:

dc(t )

dt
= − (κ/2 + i
c)c − igσ− + 2Gc† + �d + cin(t ),

(7)
dσ−(t )

dt
= − (γ /2 + i
TLS)σ− + 2igcσz + σ−

in (t ), (8)

dσz(t )

dt
= − γ (σz + 1/2) + ig(c†σ− − cσ+) + σ z

in(t ). (9)

Here, κ = κl + κr is the total decay rate of the cavity mode,
where κl (κr) is the external decay rate of the left (right)
mirror of the cavity, and γ is the decay rate of the two-level
atom. κ and γ are obtained within the Markov approximation,
where the frequency-dependent decay rates κ[ω] and γ [ω]
(or coupling strength g[ω] between system and bath) are
regarded as constants κ and γ . cin(t ), σ−

in (t ), and σ z
in(t ) are

quantum input noises, which depend on the bath operators at
the initial time. Under the Markov approximation, two-time
correlation functions of these input noises are all written as
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delta functions. In the steady-state limit, the average values of
these input noises and the time derivatives of the mean val-
ues of the system operators vanish, i.e., 〈cin(t )〉 = 〈σ−

in (t )〉 =
〈σ z

in(t )〉 = 0 and d〈c(t )〉/dt = d〈σ−(t )〉/dt = d〈σz(t )〉/dt =
0. Then, we have the following coupled equations for 〈c(t )〉,
〈σ−(t )〉, and 〈σz(t )〉:

−(κ/2 + i
c)〈c〉 − ig〈σ−〉 + 2G〈c†〉 + �d = 0, (10)

−(γ /2 + i
TLS)〈σ−〉 + 2ig〈cσz〉 = 0, (11)

−γ (〈σz〉 + 1/2) + ig(〈c†σ−〉 − 〈σ+c〉) = 0. (12)

Using the mean-field approximation, the terms 〈cσz〉, 〈c†σ−〉,
and 〈σ+c〉 in Eqs. (11) and (12) can be written respectively
as 〈cσz〉 = 〈c〉〈σz〉, 〈c†σ−〉 = 〈c†〉〈σ−〉, and 〈σ+c〉 = 〈σ+〉〈c〉.
Then the degrees of freedom of the two-level atom can be
eliminated by solving Eqs. (10) and (11), after applying
conjugation. Thus, Eqs. (10)–(12) can be further reduced to

−(κ0 + i
0)〈c〉 + 2G〈c†〉 + �d =0, (13)

−(κ0 − i
0)〈c†〉 + 2G∗〈c〉 + �∗
d =0, (14)

where

κ0 =κ

2
+ g2γ /2

γ 2/4 + 
2
TLS + 2g2nc

, (15)


0 =
c − g2
TLS

γ 2/4 + 
2
TLS + 2g2nc

. (16)

Here, κ0 and 
0 can be interpreted as atom-induced effective
cavity linewidth and frequency. Obviously, both depend on
the average photon number nc = 〈c†c〉 in the cavity. From
Eqs. (13) and (14), the steady-state solution of the intracavity
field can easily be obtained as

〈c〉 = (κ0 − i
0)�d + 2G�∗
d

κ2
0 + 
2

0 − 4|G|2 . (17)

As the average photon number nc in Eq. (17) depends nonlin-
early on the system parameters, it may exhibit a bistability as
one varies, for example, the amplitudes of the driving fields at
the mirrors.

IV. CPA CRITERION

Below we focus our interest on the dependence of the
steady-state output fields on the driving fields. Using standard
input-output theory [47], the steady-state output fields from
the two mirrors of the cavity can be expressed as〈

c(out)
l

〉 = √
κl〈c〉 − c(in)

l , (18)

〈
c(out)

r

〉 = √
κr〈c〉 − c(in)

r . (19)

When CPA occurs, the input fields are totally absorbed by the
coupled atom-cavity system so that 〈cl

out〉 = 〈cr
out〉 = 0. This

directly leads to

c(in)
l /c(in)

r =
√

κl/κr . (20)

It expresses a constraint that the two input fields and the
two decay rates of mirrors must satisfy before CPA can be

realized. Also, Eq. (20) shows that the two input fields must
be in phase. For simplicity, κl = κr = κ/2 is assumed in the
following. This assumption gives rise to c(in)

l = c(in)
r = c(in)

according to Eq. (20) and thus also �l = �r = �d/2. Without
loss of generality, �d is assumed to be real hereinafter.

Note that the condition in Eq. (20) for CPA is necessary
but not sufficient. To derive the necessary conditions, we
set 〈c(out)

l 〉 = 0 in Eq. (18) [or equivalently 〈c(out)
r 〉 = 0 in

Eq. (19)]. Then √
κ/2〈c〉 = c(in), (21)

i.e.,

κ〈c〉 = �d . (22)

Equation (22) further gives Re[〈c〉] = �d/κ and Im[〈c〉] = 0.
Using Eq. (17), we obtain

κ0 + 2|G| cos φ

κ2
0 + 
2

0 − 4|G|2 = 1

κ
, (23)

2|G| sin φ = 
0. (24)

Then we replace 
0 in Eq. (23) with 2|G| sin φ, and

κ = κ0 − 2|G| cos φ (25)

is given. This equation further gives rise to

κ/2 + 2|G| cos φ

γ
= g2

2
(
γ 2/4 + 
2

TLS + 2g2nc
) . (26)

In addition, Eq. (24) can be specifically written as


′
c


TLS
= g2

γ 2/4 + 
2
TLS + 2g2nc

. (27)

Combining Eqs. (26) and (27), we obtain the following two
equations:

β

γ
= 
′

c

2
TLS
, (28)

nc =1

4

(
γ

β
− γ 2 + 4
2

TLS

2g2

)
, (29)

where 
′
c = 
c − 2|G| sin φ and G = |G|eiφ with φ being

the relative phase of the pumping field with respect to the
reference field, and

β = κ/2 + 2|G| cos φ. (30)

Obviously, the parameter β is tunable via the strength |G| and
the relative phase φ of the pumping field. In addition, con-
ditions in Eqs. (28) and (29) naturally satisfy Eq. (20) since
they are directly deduced from the condition 〈c(out)

l 〉 = 0 (or
〈c(out)

r 〉 = 0). Therefore, a necessary condition of CPA is that
Eqs. (28) and (29) are simultaneously valid. By comparing
conditions in Eqs. (28) and (29) with conditions obtained in
Ref. [19], the effective CPA Hamiltonian of the system with
an effective cavity frequency 
′

c can be written as

Heff = 
′
cc†c + 
TLSσz + g(c†σ− + cσ+). (31)

Equation (29) also gives a constraint on the coupling
strength g between the two-level system and the cavity for any
given value of the detuning 
TLS [see Fig. 2(a)]. Specifically,
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FIG. 2. The boundary of (a) the coupling strength g between the
cavity and the TLS and (b) the frequency detuning 
TLS of the TLS
from the driving field vs the tunable parameter β in units of γ for
prediction of CPA. (a) g/γ = 1. (b) 
TLS/γ = 20.

the mean intracavity photon number is positive, i.e., nc > 0.
Hence one requires that

g > gc(β,
TLS, γ ) ≡
√

1

2
β
(
γ + 4
2

TLS/γ
)
, (32)

where gc(β,
TLS, γ ) is a critical value of g for the occurrence
of CPA. Therefore, the condition in Eq. (32) can be satisfied
by fine-tuning the parameters β and 
TLS for any given γ .
In particular, for 
TLS = 0, i.e., when the two-level atom is
resonant with the input field, Eq. (32) becomes

g > gc(β, γ ) =
√

βγ /2. (33)

This gives a minimum value of the coupling strength g
for CPA to occur. Obviously, the requirement in Eq. (33) is
more flexible than in previous studies [19–21] because of the
introduction of the tunable parameter β. Without the second-
order nonlinearity (G = 0), Eq. (30) reduces to β = κ/2.
According to Eq. (33), g > gc(κ, γ ) = √

κγ /2 is required to
generate CPA, which satisfies g2/κγ > 1 and corresponds to
the strong-coupling regime. Such a strong coupling can be
realized by replacing a single two-level atom with an atomic
ensemble, which has been studied in previous works [19–21].
In sharp contrast, with the second-order nonlinearity (G �= 0),

the parameter β can be tuned to an extremely small value
via appropriate choices of G and φ. For example, the relative
phase φ (or cos φ) can be chosen so that β = 0.01γ for any
given G. This value is much smaller than the decay rate κ of
the cavity for practical atom- or spin-cavity systems since γ <

κ . Then the condition in Eq. (33) becomes g2/κγ > 0.01.
CPA can thus occur over a wide parameter range satisfy-
ing g2/κγ < 1, corresponding to the weak-coupling regime.
This shows that CPA can indeed occur in the weak-coupling
regime for our setup. At present, realizing a strong coupling
between a single two-level system (e.g., a nitrogen-vacancy
center in diamond) and a cavity or a superconducting circuit
[44] is still a challenge [48]. Therefore, exploring optical
phenomena in weakly coupled quantum systems is of great
significance.

Equation (29) not only limits the coupling strength g for
the occurrence of CPA but also gives a constraint on the
detuning 
TLS. For a given g, CPA can only be observed when

|
TLS| <

√
1
2 ( g2γ

β
− γ 2

2 ) ≡ |
c
TLS| [see the light blue region

in Fig. 2(b)]. The dashed blue curve represents the critical
detuning 
c

TLS against the parameter β. From Fig. 2(b), we
see that 
TLS can vary in a broader range than in Ref. [20] for
a fixed κ . This results from the introduction of the controllable
parameter β. As mentioned above, β is allowed to be very
small, so a large 
TLS is needed, leading to a small mean
photon number nc according to Eq. (29). Therefore, weak
input fields are sufficient to achieve CPA with our setup. This
greatly simplifies experimental implementations.

V. NUMERICAL RESULTS

We now numerically study CPA based on our setup in
the weak-coupling regime. We put g = γ , κ = 20γ , and β =
0.02γ , so that g2/κγ < 1, g2/βγ > 1, and 
c

TLS ≈ 4.975γ .
This indicates that CPA can only be observed for |
TLS| ∈
[0, 4.975). As CPA can only occur when both Eqs. (28) and
(29) are simultaneously satisfied, the parameter 
c can be
solved in particular using Eq. (28). Adopting these param-
eters, we numerically solve Eq. (17) to obtain the average
photon number nc, which is then substituted into Eqs. (18)
and (19) to obtain the output intensity |c(out)|2. Figure 3 plots
the output intensity as a function of the input intensity |c(in)|2
for frequency detuning 
TLS = 4.5γ and 1.5γ under various
conditions.

Figure 3(a) shows results for |G| = 9.98γ and φ = 2/3π .
We observe that the output intensity exhibits a bistability with
respect to the input intensity. For Eq. (17), a certain value of
the input field is given, and two simultaneously stable fixed-
point solutions are obtained, which gives the bistability of
the output field according to the input-output theory. Also, by
increasing and decreasing the input field, the hysteresis curve
is obtained. The bistablility is closely related to bifurcation
phenomena [33,49]. The critical points of bistability can be
regarded as two bifurcation points [33]

By varying the parameter 
TLS, the bistable pattern can
be changed from a conventional [inset in Fig. 3(a)] to an
unconventional [dashed blue curve in Fig. 3(a)] shape. When
the average intracavity photon number satisfies Eq. (29),
corresponding to the green dots A1 and A2, CPA is predicted.
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FIG. 3. The output intensity as a function of the input intensity
with 
TLS = 4.5γ and 1.5γ . The relative phase is (a) φ = 2/3π ,
(b) φ = 4/3π , and (c) φ = π .

They are both located at the upper branch of bistable pattern.
Therefore, the CPA conditions are outside the bistable region.

By vary the relative phase φ from 2/3π to 4/3π as shown
in Fig. 3(b), the bistable pattern of the output intensity with
respect to the input intensity becomes robust against variations
of the TLS frequency detuning 
TLS and takes the unconven-
tional shape. Interestly, CPA points (see the green dots B1 and
B2) appear inside the bistable region and are located at the
unstable branches. The different locations of CPA points in

Figs. 3(a) and 3(b) are caused by the different values of 
′
c

from Eq. (28) resulting from the different φ values considered.
However, CPA in Fig. 3(b) cannot be observed experimentally
due to the unstable nature.

We further study the case of φ = π and results are shown
in Fig. 3(c). To ensure β = 0.02γ , we have considered an
decreased amplitude |G| = 4.99γ of the pumping field on the
SOC. The output intensity also exhibits a bistable behavior
with respect to the input intensity with convectional bistable
patterns for both values of 
TLS studied. In addition, the CPA
points are located inside the bistable regime in the stable
branches [see points A1 and B1 in the inset of Fig. 3(c)].

Figure 3 shows that the CPA points are blue-shifted upon
decreasing the frequency detuning of the TLS. Also, their
locations are unaffected by the parameters |G| and φ for fixed

TLS (see solid red and dashed blue curves in Fig. 3). Hence,
the location of the CPA point is robust against the parameters
of the SOC. These results also follow directly from Eq. (29).

We emphasize differences between our system for realizing
CPA and the previously studied ones [19–21,26]. First, CPA
can occur in our case in the weak-coupling regime and the
system exhibits bistable behaviors. Second, we have shown
that the bistable pattern can be changed from the conventional
to the unconventional shape and the CPA point can be tuned
to appear at the upper or lower stable branch or even at the
unstable branch. Third, the location of the CPA point is robust
against the parameters of the SOC when the effective decay
rate β is fixed and it can be either inside or outside the bistable
region.

VI. CONCLUSION AND DISCUSSION

Note that the condition ωp = 2ωr is used to obtain the time-
independent Hamiltonian in Eq. (6). This condition seems a

0.01δ γ=

0.1δ γ=

1.0δ γ=

20

40

60

†c c

(a)

0 10 20 30 40 50
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200
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(o

ut
)
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Time t

(b)
CPA

0 0.1 0.2

10
20

FIG. 4. The mean photon number and the output intensity versus
the evolution time with different frequency detunings δ = ωp −
2ωr = 0.01γ , 0.1γ , and 1.0γ in both panels (a) and (b).
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little strict. Fortunately, it has been achieved in various exper-
iments using degenerate parametric amplification [50,51]. For
a more realistic view, we consider the effect induced by the
fluctuation δ = ωp − 2ωr between ωp and 2ωr on the output
intensity and the mean photon number 〈c†c〉 = nc. In Fig. 4,
we show that nc rapidly increases to a certain value and then
oscillates with evolution time [see Fig. 4(a)], while the output
intensity first decreases to a CPA point and then it grows
rapidly and oscillates with time evolution [see Fig. 4(b)]. It
is not difficult to find that the CPA point is robust against the
fluctuation δ with time evolution for our considered situation.

In summary, we have given a detailed study on CPA in a
two-level atom weakly coupled to a cavity embedded with
a SOC. Under CPA conditions, the system behaves as a
two-level system coupled to a cavity with a tunable effective
bandwidth. The output field intensity exhibits a bistability. By
tuning system parameters such as the frequency detuning of
a two-level atom from the input driving field, the coefficient
of the nonlinearity crystal and its relative phase, the bistable
pattern can be switched from conventional to unconventional

sharps or vice versa. Due to the effect of the SOC on the
effective frequency 
′

c, the operation point of CPA can be
switched between two stable branches. However, the location
of the CPA point is robust against the parameters of the SOC
when the effective decay rate β is fixed. Our study provides
a way to realize future optical devices utilizing CPA in the
weak-coupling regime.
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