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After reviewing the pioneering work by Zel’Dovich in which radiation is amplified perpendicular to the
axis of a rotating conductor, we consider an alternative scattering arrangement. We demonstrate superradiant
amplification of electromagnetic waves with orbital angular momentum directed axially towards a rotating
conductor. Taking into account recent advances in optics and condensed-matter systems, our approach presents
new possibilities for rotational superradiance experiments. We discuss remaining challenges that must be faced
before a laboratory observation of the Zel’Dovich effect can be considered feasible.
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I. INTRODUCTION

Rotational superradiance was first demonstrated theoreti-
cally in the seminal work of Zel’Dovich [1,2], where it was
found that rotating, conducting cylinders can superradiate. A
crucial requirement of the conducting cylinder is that it not
be a perfect conductor but have a finite conductivity to absorb
radiation entering the cylinder. Zel’Dovich’s formulation in-
volved sending an electromagnetic wave perpendicular to the
rotation axis of the spinning conductor, and subsequent work
on superradiance has utilized the same configuration.

Since conception, observing the Zel’Dovich effect in the
laboratory has been considered an unlikely prospect at best.
The difficulty stems largely from the superradiance condition
(given explicitly in the following section), which requires
either the use of very rapid rotation rates or very long wave-
lengths. Due to the small size of the wave amplification [1,2],
and the practical difficulty with how Zel’Dovich’s reflected
waves scatter from the conducting cylinder in all radial direc-
tions, both the rapid rotation and the long-wavelength regime
required have hindered experimental efforts to observe the
amplification.

To combat such difficulties, people have turned to ana-
log systems that can also exhibit superradiance but have
much lower wave speeds and more convenient dispersion
relations. In particular, the first experimental observation of
rotational superradiance was recently achieved using surface
water waves on a vortex flow [3].

Alternatively, in this work we consider a reformulation of
the original Zel’Dovich effect. As we have previously shown
[4], there exists a previously unexplored direction for superra-
diant amplification that offers promising simplifications to the
usual scattering arrangement. Our approach involves sending
the wave parallel to the conducting cylinder’s rotation axis
and reflecting off the flat ends of the cylinder. This align-
ment reduces the effective dimensionality of the scattering

system, simplifying both the theoretical description and the
corresponding experimental setup.

Using the formalism of relativistic electrodynamics, we
demonstrate that classical amplification, and therefore stim-
ulated emission, can indeed occur in our proposed scattering
configuration. The electromagnetic modes shown to be ampli-
fied carry orbital angular momentum (OAM) and are directed
along the rotation axis. Since Einstein showed over a century
ago that stimulated emission implies spontaneous emission
[5], our findings also imply that rotating conductors will spon-
taneously emit OAM-carrying photons along the rotation axis.

We then discuss how our proposal could be implemented
experimentally by shining an OAM-carrying laser at a rapidly
rotating conductor. As we describe in detail, such an imple-
mentation is difficult due to the large rotation rate required
to satisfy the superradiance condition. Nonetheless, recent
advancements in optics and condensed matter have led to
unprecedented rotation rates. At the microscale, dumbbell
rotators have achieved gigahertz rotations [6,7]. Such high
rotation rates indicate that these microscale rotators might be
used to observe superradiance.

Even at microscales, the rotators are large enough to be-
have essentially as classical objects. Still, in analogy with
superradiance of modes from a test field scattered from a
rotating black hole [8], such rotators could potentially allow
quantum aspects of rotational superradiance to be observed,
provided coherence can be maintained in the laser field. Our
proposal therefore offers a complementary approach to the
study of both classical and quantum superradiance.

II. RELATIVISTIC ELECTRODYNAMICS

We work within the formalism of relativistic electrody-
namics in curvilinear coordinates, following the approach
(and basis conventions) of Bekenstein and Schiffer [9]. The
rotating conductor is modeled as a conducting dielectric with
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spatially uniform permittivity ε(ω) and permeability μ(ω),
which we will take to both be real.

The main quantity of interest will be the electromagnetic
field tensor Fμν , whose space-time, and space-space
components give the electric field E and magnetic
induction B, respectively. We will also be interested in the
electromagnetic displacement tensor Hμν , whose space-time,
and space-space components give the electric field E and
magnetic induction B, respectively the electric displacement
D = εE and the magnetic field H = μ−1B. Along with
Ohm’s law j = σE (with σ being the conductance), these
relations can be written in tensorial form as

Hαβuβ = εFαβuβ , (1)

∗ Fαβuβ = μ ∗ Hαβuβ , (2)

jα = σFαβuβ + ρuα, (3)

where ρ is the proper charge density and uα is the 4-velocity
of the material. The ∗ symbol is the Hodge star operator,
defined such that ∗ Fαβ ≡ 1

2εαβγ δFγ δ , with εαβγ δ denoting
components of the Levi-Civita tensor (sign convention:
ε0123 = +1). The electric and magnetic fields are defined
with respect to the instantaneous rest frame of the material,
and the frequency-dependent quantities ε(ω) and μ(ω) are
defined with respect to this frame as well.

We use a cylindrical coordinate system {xμ} = {t, r, φ, z},
in which case the Minkowski metric takes the form

ds2 = −dt2 + dr2 + r2dφ2 + dz2. (4)

Inside the conductor, the corotating 4-velocity has compo-
nents

uα = γ (−1, 0,r2, 0), (5)

with the Lorentz factor γ = 1/
√

1 − 2r2. The relations (1)–
(3) imply

ε−1H02 = F 02 ≡ r−1Eφ , (6)

μH31 = F 31 ≡ Bφ , (7)

ε−1(H01 + r2H12) = F 01 + r2F 12 ≡ γ −1Er , (8)

μ(H23 − H03) = F 23 − F 03 ≡ (rγ )−1Br , (9)

ε−1(H03 − r2H23) = F 03 − r2F 23 ≡ γ −1Ez , (10)

μ(H12 + H01) = F 12 + F 01 ≡ (rγ )−1Bz. (11)

Maxwell’s equations are given by

F[αβ,γ ] = 0 , (12)

(Hαβ ),β = 4π jα. (13)

For electromagnetic field modes with temporal dependence
e−iωt and azimuthal dependence eimφ with respect to the
laboratory frame, the homogeneous equation (12) implies

iωr2F 12 − ∂r (F 02r2) + imF 01 = 0, (14)

∂r (F 23r2) + imF 31 + r2∂zF
12 = 0, (15)

iωF 31 + ∂rF 03 − ∂zF
01 = 0, (16)

iωr2F 23 − imF 03 + r2∂zF
02 = 0, (17)

while the inhomogeneous equation (13) implies

∂r (H01r) + imrH02 + r∂zH
03 = 4πrγ (σrEφ + ρ), (18)

iωH01 + imH12 + ∂zH
13 = 4πσEr, (19)

iωrH02 − ∂r (H12r) + r∂zH
23 = 4πγ (σEφ + rρ), (20)

iωrH03 + ∂r (H31r) − imrH23 = 4πσ rEz. (21)

These equations are corrected from the forms given by Beken-
stein and Schiffer in [9]; the differences include a minus sign
on the third term on the left-hand side of (19) and a factor
of r on the right-hand side of (21). Note also that we are not
scaling the charge density by 4π , as was done in [9].

We will approximate the electromagnetic field modes as
transverse, such that Bz = Ez = 0. In practice, laser modes
with orbital angular momentum will have longitudinal com-
ponents, but these components are small and will be ne-
glected in this work. (We point out how these longitudinal
components can become significant in the Discussion.) The
constitutive relations (10) and (11) then imply F 23 = μH23 =
γ Br/r, μH03 = F 03 = rγ Br , ε−1H01 = F 01 = γ Er , and
F 12 = ε−1H12 = −γ Er . Using these relations, the homoge-
neous Maxwell’s equations allow for the determination of F 01

and F 03, in terms of F 02:

F 01 = i∂r (F 02r2)

(ωr2 − m)
, (22)

F 03 = ir2∂zF 02

(ω − m)
. (23)

From F 01 and F 03, Er and Br are determined, respectively.
The homogeneous Maxwell’s equations also allow F 31 (and
therefore Bφ) to be solved for in terms of F 02:

F 31 = [γ 2(ωr2 − m)(ω − m)]−1∂z∂r (F 02r2). (24)

The only remaining degree of freedom is F 02 (equivalently,
Eφ), upon which all other field components depend. Combin-
ing the inhomogeneous Maxwell’s equations judiciously, we
obtain

∂2
z F 02 + (V + i�)F 02 = 0, (25)

with the definitions

V = μεγ 2(ω − m)2 and � = μγ 4πσ (ω − m). (26)

One can also show that F 01 obeys the same isolated dynamical
equation as F 02 does, in a manner analogous to the derivation
of (25),

∂2
z F 01 + (V + i�)F 01 = 0, (27)

with the same V and � as in (25).
Next we demonstrate that the system can superradiate.

We will show that if the transverse electromagnetic field is
incident on the top (z = z0) of the rotating conductor, there
will be a net positive longitudinal energy flux coming from
the top of the conductor, provided the superradiance condition
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ω − m < 0 is satisfied. Energy flow is characterized by the
Poynting vector, S = (E × H )/4π ; we will specifically be
interested in the z component, which we can express as

Sz = 1

4π
(E × H )z = 1

4π
(F 01H31 − F 02H23). (28)

In terms of complex field amplitudes, the time average of
the Poynting vector is S̄ = Re[(E × H∗)z/8π ]. Using the con-
stitutive relations and the homogeneous Maxwell equations,
we can then write the axially directed energy flow (28) within
the conductor in time-averaged form as

S̄z = 1

8πμ(ω − m)
· Re

[
1

γ 2
iF 01∂z(F 01)∗ + iF 02∂z(F 02)∗

]
.

(29)

Outside of the conductor, in the z > z0 region, we have

S̄z(z > z0) = 1

16πω
[iW1(z) + iW2(z)], (30)

with the definition

Wj (z) = F 0 j∂z(F 0 j )∗ − (F 0 j )∗∂zF
0 j, (31)

for j ∈ {1, 2}. The expression (31) gives the Wronskians of
Eqs. (25) and (27) outside of the cylinder. In this region the
Wronskians have vanishing z derivatives, so we can find the
longitudinal energy flow far from the conductor by evaluating
W1 and W2 in (30) at z0 (approaching z0 from above).

Inside the conductor, the quantities defined by (31) are still
Wronskian-like [10] and satisfy

∂

∂z
[iWj (z)] = −2�|F 0 j |2. (32)

We assume that the field does not penetrate the back of the
disk; hence, there will be a negligible field in the z < 0 region.
This assumption requires either a disk thickness sufficiently
larger than the decay length within the conductor, or a disk
backing with sufficiently high reflectance. Upon integration
of (32) from z = 0 to z = z0, we then find

iWj (z0) = −2
∫ z0

0
dz �|F 0 j |2. (33)

By exploiting the continuity of the Poynting vector at z = z0,
we now have

S̄z(z > z0) = −σμ(ω − m)rγ

2ω

∫ z0

0
dz (|F 01|2 + |F 02|2).

(34)

The entire energy flux out of the cylinder in the z direction
can be obtained by integrating (34) over the circular cross
section. Since the second law of thermodynamics implies
that the conductivity is greater than or equal to zero [9],
we can conclude from expression (34) that there will be a
positive net longitudinal energy flux far from the conductor
whenever ω − m < 0; in other words, the system exhibits
superradiance.

III. DISCUSSION

We have demonstrated that an OAM-carrying electromag-
netic wave directed axially at a rapidly rotating conductor can

superradiate. This offers an alternative scattering arrangement
to observe rotational superradiance in an electromagnetic
system, which complements the original formulation first
suggested by Zel’Dovich [1,2].

The scattering arrangement considered here provides a
number of benefits compared to the usual scheme. In par-
ticular, due to the axial nature of our scattering setup, the
dimensionality of the system is effectively reduced by 1:
directed beams reflect off the face of a rotating conductor back
towards their source instead of scattering off the sides in all
directions (perpendicular to the rotation axis). This makes the
experimental setup simpler and ideal for implementation with
lasers or masers.

Several technical challenges must be faced before the
theoretical effect demonstrated here could be observed ex-
perimentally. As mentioned in the Introduction, the main
constraint comes from satisfying the superradiance condition,
ω − m < 0. The beam frequency is restricted by the size of
the associated wavelength, since this also sets the scale for the
spatial extent of the conductor; consequently, the minimum
beam frequency for a reasonable experimental setup would
be roughly a gigahertz. Generating an OAM beam in that
frequency range can be accomplished in a variety of ways
[11–16]. It then follows that the product of m and /2π

would need to be of the order 109 Hz (or larger) to be in the
superradiant regime.

We would therefore need to rotate the conductor as fast
as possible. Observations of frequency shifts in scattered
laser light due to a rotating body, referred to as the “rota-
tional Doppler effect,” have typically involved objects much
larger than microscale and rotation rates less than a kilohertz
[17–22]. One could, in principle, attain significantly higher
rotation rates. However, for larger than microscale conductors,
the rotation rate could not exceed 105 Hz; such rapid rotation
rates have been achieved by dentist drills, for instance, which
small conductors can be mounted on. This would in turn
require a topological charge for the incident beam of m =
104. Topological charges of 104 have been generated [23], so
our proposal could be experimentally feasible at this scale,
provided there is sufficient coupling between the OAM beam
and the conductor [24].

Another difficulty that arises comes from how the radial
intensity profile of typical OAM beams changes with increas-
ing OAM. One usually finds that the intensity of an OAM
beam is negligible along the propagation axis and is localized
for the most part at some finite radius. The superradiance
demonstration presented above assumes the disk has a radius
at least as large as the radial extent of the incident OAM
beam; however, since increasing the OAM of a beam typ-
ically increases the radius of maximum intensity [25], for
a rotator with finite disk radius, increasing OAM can lead
to an appreciable reduction of overlap between the incident
beam and the rotator. In fact, an argument given by Wald
and Mackewicz (private communication) indicates that this
overlap will be small whenever the following are all met: (i)
the mode is propagating, (ii) the mode satisfies the paraxial
condition, (iii) the tangential velocity of the disk at r = R
is less than the speed of light, and (iv) the superradiance
condition is satisfied. To prove this, we note that the paraxial
approximation requires the beam to be highly collimated, such
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that (m/ω2w2
0 ) � 1. Now, the maximum intensity radius for

a propagating Laguerre-Gaussian paraxial mode in the focal
plane is

√
m/2w0, where w0 is the beam waist for the m = 0

mode. Hence, for maximal overlap with the disk, one must
have

√
m/2w0 < R. For the tangential velocity at r = R to be

less than the speed of light (recall c = 1, here), we impose
R < 1. Then, applying these constraints successively,

1 � m

ω2w2
0

>
m2

2ω2R2
>

m22

2ω2
>

1

2
, (35)

where the superradiance condition ω − m < 0 was used to
yield the rightmost inequality.

One can conclude from (35) that if conditions (i)–(iv) are
met, adding the additional requirement of

√
m/2w0 < R leads

to a contradiction. This argument is related to the argument
given in [4] for acoustic systems, which shows that one can
either amplify propagating incident modes and have the outer
edge of the rotating absorber travel faster than the sound
speed, or amplify evanescent modes and keep the rotator
motion below the sound speed. In the current electromagnetic
context, we are left in a similar position: we can either amplify
evanescent OAM modes (using a waveguide, for instance), or
we can amplify nonparaxial propagating modes. For the latter
possibility, large OAM beams would still have to be signifi-
cantly focused to interact with a small spinning conductor.

Such strong focusing has a large effect on the structure
of the electromagnetic field, producing in particular a non-
negligible field in the direction of propagation [26]. Compli-
cations associated with the strong focusing could be avoided
altogether by working with the nonparaxial modes known
as perfect optical vortices: OAM beams with diameters that
are independent of the OAM [27–32]. The independence of
the beam diameter with respect to OAM allows higher OAM
modes to be used for the same size rotators, without changing
the setup. However, it is not yet clear if these perfect optical
vortices can be prepared with small enough beam diameters
to be applied to nanoscale or even microscale rotators.

The microscale dumbbell rotators mentioned in the In-
troduction [6,7] operate in the gigahertz rotation range and
could thus be used in conjunction with lasers or masers with
significantly lower topological charges. This would alleviate
the experimental burden of involving beams with such high
OAM. Since the dumbbells are not rotated about their sym-
metry axis, our assumption of cylindrical symmetry, strictly
speaking, is not satisfied. Similarly, our analysis also ignores
edge effects that can arise due to the finite size of the rotators
(this is especially relevant if the wavelength is sufficiently
larger than the size of the object). Nonetheless, scattering

cross sections for asymmetric scattering centers are often
estimated by calculations assuming azimuthal symmetry; like-
wise, edge effects are often neglected at the lowest order of
approximation and corrected for perturbatively. Hence, we
expect such differences to affect only the characteristics of
how they superradiate and not prevent superradiance from
occurring altogether.

Once it becomes possible to observe superradiant amplifi-
cation of electromagnetic signals from a rotating conductor at
the classical level, one can begin working towards observing
quantum aspects of the effect. Current optomechanical ex-
periments can demonstrate entanglement between the OAM
in laser modes and the ground-state angular oscillations of
torsion pendula [24,33–36]. At the nanoscale, rotators have
been prepared showing rotational coherence in the terahertz
rotation range [37,38]. Preliminary steps have also been taken
to entangle the OAM of photons carrying more than 104 angu-
lar momentum quanta with the polarization of partner photons
[23], paving the way for further developments in coupling
individual high-OAM photons to mechanical oscillators.

Amplifying electromagnetic signals via rotational super-
radiance has long been dismissed as a practically unobserv-
able theoretical curiosity. However, despite the experimen-
tal challenges involved in implementing our proposal, the
approach described here is geometrically simpler than the
original Zel’Dovich setup and represents another avenue for
theoretical and experimental superradiance research.

ACKNOWLEDGMENTS

The authors thank Bob Wald and Kris Mackewicz for
pointing out the difficulty with amplifying propagating parax-
ial modes. The research of W.G.U. is supported by NSERC
(Natural Science and Engineering Research Council) of
Canada, and also by CIfAR. W.G.U. also thanks the Hagler
IAS, Texas A&M, the Alexander von Humbolt Foundation,
and the Helmholtz Institute (HZDR) for partial support dur-
ing this work. S.W. acknowledges financial support provided
under a Paper Enhancement Grant at the University of Not-
tingham, a Royal Society University Research Fellowship
(UF120112), the Nottingham Advanced Research Fellow-
ship (A2RHS2), Royal Society Project (RG130377) grants,
a Royal Society Enhancement Grant (RGF/EA/180286), and
an EPSRC Project Grant (EP/P00637X/1). S.W. acknowl-
edges partial support from STFC Consolidated Grant No.
ST/P000703/. The fellowship held by C.G. while this research
was conducted was funded by NSERC through WGU, with
partial support provided by S.W.

[1] Y. B. Zel’Dovich, Generation of waves by a rotating body,
Zh. Eksp. Teor. Fiz. 14, 270 (1971) [JETP Lett. 14, 180
(1971)].

[2] Y. B. Zel’Dovich, Amplification of cylindrical electromagnetic
waves reflected from a rotating body, Zh. Eksp. Teor. Fiz. 62,
2076 (1972) [Sov. Phys. JETP 35, 1085 (1972)].

[3] T. Torres, S. Patrick, A. Coutant, M. Richartz, E. W. Tedford,
and S. Weinfurtner, Rotational superradiant scattering in a
vortex flow, Nat. Phys. 13, 833 (2017).

[4] C. Gooding, S. Weinfurtner, and W. G. Unruh, Super-
radiant scattering of orbital angular momentum beams,
arXiv:1809.08235.

[5] A. Einstein, The quantum theory of radiation, Phys. Z. 18, 121
(1917).

[6] J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han,
R.-M. Ma, and T. Li, Optically Levitated Nanodumbbell Tor-
sion Balance and GHz Nanomechanical Rotor, Phys. Rev. Lett.
121, 033603 (2018).

063819-4

https://doi.org/10.1038/nphys4151
https://doi.org/10.1038/nphys4151
https://doi.org/10.1038/nphys4151
https://doi.org/10.1038/nphys4151
http://arxiv.org/abs/arXiv:1809.08235
https://doi.org/10.1103/PhysRevLett.121.033603
https://doi.org/10.1103/PhysRevLett.121.033603
https://doi.org/10.1103/PhysRevLett.121.033603
https://doi.org/10.1103/PhysRevLett.121.033603


REINVENTING THE ZEL’DOVICH WHEEL PHYSICAL REVIEW A 101, 063819 (2020)

[7] R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer,
D. Windey, F. Tebbenjohanns, and L. Novotny, GHz Rotation
of an Optically Trapped Nanoparticle in Vacuum, Phys. Rev.
Lett. 121, 033602 (2018).

[8] W. G. Unruh, Second quantization in the Kerr metric, Phys. Rev.
D 10, 3194 (1974).

[9] J. D. Bekenstein and M. Schiffer, The many faces of superradi-
ance, Phys. Rev. D 58, 064014 (1998).

[10] M. Richartz, S. Weinfurtner, A. J. Penner, and W. G. Unruh,
Generalised superradiant scattering, Phys. Rev. D 80, 124016
(2009).

[11] G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and
M. J. Padgett, The generation of free-space Laguerre-Gaussian
modes at millimetre-wave frequencies by use of a spiral phase-
plate, Opt. Commun. 127, 183 (1996).

[12] A. Sawant, M. S. Choe, M. Thumm, and E. Choi, Orbital angu-
lar momentum (OAM) of rotating modes driven by electrons in
electron cyclotron masers, Sci. Rep. 7, 3372 (2017).

[13] B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D.
Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova,
Utilization of Photon Orbital Angular Momentum in the
Low-Frequency Radio Domain, Phys. Rev. Lett. 99, 087701
(2007).

[14] S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman,
R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B.
Isham, Orbital angular momentum in radio—A system study,
IEEE Trans. Antennas Propag. 58, 565 (2010).

[15] L. Cheng, W. Hong, and Z. C. Hao, Generation of electromag-
netic waves with arbitrary orbital angular momentum modes,
Sci. Rep. 4, 4814 (2014).

[16] J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, and Y.
Zhang, Generation and evolution of the terahertz vortex beam,
Opt. Exp. 21, 20230 (2013).

[17] B. A. Garetz, Angular Doppler effect, J. Opt. Soc. Am. 71, 609
(1981).

[18] Y. Zhai, S. Fu, C. Yin, H. Zhou, and C. Gao, Detection of
angular acceleration based on optical rotational Doppler effect,
Opt. Exp. 27, 15518 (2019).

[19] G. Li, T. Zentgraf, and S. Zhang, Rotational Doppler effect in
nonlinear optics, Nat. Phys. 12, 736 (2016).

[20] M. Michalski, W. Huttner, and H. Schimming, Experimental
Demonstration of the Rotational Frequency Shift in a Molecular
System, Phys. Rev. Lett. 95, 203005 (2005).

[21] J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, and M. J.
Padgett, Rotational Frequency Shift of a Light Beam, Phys. Rev.
Lett. 81, 4828 (1998).

[22] J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, and
M. J. Padgett, Measurement of the Rotational Frequency Shift
Imparted to a Rotating Light Beam Possessing Orbital Angular
Momentum, Phys. Rev. Lett. 80, 3217 (1998).

[23] R. Fickler, G. Campbell, B. Buchler, P. K. Lam, and A.
Zeilinger, Quantum entanglement of angular momentum states
with quantum numbers up to 10010, Proc. Natl. Acad. Sci. USA
113, 13642 (2016).

[24] H. Shi and M. Bhattacharya, Coupling a small torsional oscil-
lator to large optical angular momentum, J. Mod. Opt. 60, 382
(2013).

[25] M. Krenn, N. Tischler, and A. Zeilinger, On small beams with
large topological charge, New J. Phys. 18, 033012 (2016).

[26] M. Krenn and A. Zeilinger, On small beams with large topo-
logical charge: II. Photons, electrons and gravitational waves,
New J. Phys. 20, 063006 (2018).

[27] Y. Chen, Z. X. Fang, Y. X. Ren, L. Gong, and R. D. Lu,
Generation and characterization of a perfect vortex beam with
a large topological charge through a digital micromirror device,
Appl. Opt. 54, 8030 (2015).

[28] A. S. Ostrovsky, C. Rickenstorff-Parrao, and V. Arrizón, Gener-
ation of the ‘perfect’ optical vortex using a liquid-crystal spatial
light modulator, Opt. Lett. 38, 534 (2013).

[29] J. García-García, C. Rickenstorff-Parrao, R. Ramos-García, V.
Arrizón, and A. S. Ostrovsky, Simple technique for generating
the perfect optical vortex, Opt. Lett. 39, 5305 (2014).

[30] N. A. Chaitanya, M. V. Jabir, and G. K. Samanta, Efficient non-
linear generation of high power, high order, ultrafast ‘perfect’
vortices in green, Opt. Lett. 41, 1348 (2016).

[31] A. A. Kovalev, V. V. Kotlyar, and A. P. Porfirev, A highly
efficient element for generating elliptic perfect optical vortices,
Appl. Phys. Lett. 110, 261102 (2017).

[32] Y. Liu, Y. Ke, J. Zhou, Y. Lui, H. Luo, S. Wen, and D.
Fan, Generation of perfect vortex and vector beams based on
Pancharatnam-Berry phase elements, Sci. Rep. 7, 44096 (2017).

[33] M. Bhattacharya, P. L. Giscard, and P. Meystre, Entangling the
rovibrational modes of a macroscopic mirror using radiation
pressure, Phys. Rev. A 77, 030303(R) (2008).

[34] M. Bhattacharya and P. Meystre, Using a Laguerre-Gaussian
Beam to Trap and Cool the Rotational Motion of a Mirror,
Phys. Rev. Lett. 99, 153603 (2007).

[35] M. Bhattacharya, P.-L. Giscard, and P. Meystre, Entanglement
of a Laguerre-Gaussian cavity mode with a rotating mirror,
Phys. Rev. A 77, 013827 (2008).

[36] S. J. M. Habraken and G. Nienhuis, Rotational stabilization and
destabilization of an optical cavity, Phys. Rev. A 79, 011805(R)
(2009).

[37] A. A. Milner, A. Korobenko, J. W. Hepburn, and V. Milner,
Effects of Ultrafast Molecular Rotation on Collisional Deco-
herence, Phys. Rev. Lett. 113, 043005 (2014).

[38] B. A. Stickler, B. Papendell, S. Kuhn, B. Schrinski, J. Millen,
M. Arndt, and K. Hornberger, Probing macroscopic quan-
tum superpositions with nanorotors, New J. Phys. 20, 122001
(2018).

063819-5

https://doi.org/10.1103/PhysRevLett.121.033602
https://doi.org/10.1103/PhysRevLett.121.033602
https://doi.org/10.1103/PhysRevLett.121.033602
https://doi.org/10.1103/PhysRevLett.121.033602
https://doi.org/10.1103/PhysRevD.10.3194
https://doi.org/10.1103/PhysRevD.10.3194
https://doi.org/10.1103/PhysRevD.10.3194
https://doi.org/10.1103/PhysRevD.10.3194
https://doi.org/10.1103/PhysRevD.58.064014
https://doi.org/10.1103/PhysRevD.58.064014
https://doi.org/10.1103/PhysRevD.58.064014
https://doi.org/10.1103/PhysRevD.58.064014
https://doi.org/10.1103/PhysRevD.80.124016
https://doi.org/10.1103/PhysRevD.80.124016
https://doi.org/10.1103/PhysRevD.80.124016
https://doi.org/10.1103/PhysRevD.80.124016
https://doi.org/10.1016/0030-4018(96)00070-3
https://doi.org/10.1016/0030-4018(96)00070-3
https://doi.org/10.1016/0030-4018(96)00070-3
https://doi.org/10.1016/0030-4018(96)00070-3
https://doi.org/10.1038/s41598-017-03533-y
https://doi.org/10.1038/s41598-017-03533-y
https://doi.org/10.1038/s41598-017-03533-y
https://doi.org/10.1038/s41598-017-03533-y
https://doi.org/10.1103/PhysRevLett.99.087701
https://doi.org/10.1103/PhysRevLett.99.087701
https://doi.org/10.1103/PhysRevLett.99.087701
https://doi.org/10.1103/PhysRevLett.99.087701
https://doi.org/10.1109/TAP.2009.2037701
https://doi.org/10.1109/TAP.2009.2037701
https://doi.org/10.1109/TAP.2009.2037701
https://doi.org/10.1109/TAP.2009.2037701
https://doi.org/10.1038/srep04814
https://doi.org/10.1038/srep04814
https://doi.org/10.1038/srep04814
https://doi.org/10.1038/srep04814
https://doi.org/10.1364/OE.21.020230
https://doi.org/10.1364/OE.21.020230
https://doi.org/10.1364/OE.21.020230
https://doi.org/10.1364/OE.21.020230
https://doi.org/10.1364/JOSA.71.000609
https://doi.org/10.1364/JOSA.71.000609
https://doi.org/10.1364/JOSA.71.000609
https://doi.org/10.1364/JOSA.71.000609
https://doi.org/10.1364/OE.27.015518
https://doi.org/10.1364/OE.27.015518
https://doi.org/10.1364/OE.27.015518
https://doi.org/10.1364/OE.27.015518
https://doi.org/10.1038/nphys3699
https://doi.org/10.1038/nphys3699
https://doi.org/10.1038/nphys3699
https://doi.org/10.1038/nphys3699
https://doi.org/10.1103/PhysRevLett.95.203005
https://doi.org/10.1103/PhysRevLett.95.203005
https://doi.org/10.1103/PhysRevLett.95.203005
https://doi.org/10.1103/PhysRevLett.95.203005
https://doi.org/10.1103/PhysRevLett.81.4828
https://doi.org/10.1103/PhysRevLett.81.4828
https://doi.org/10.1103/PhysRevLett.81.4828
https://doi.org/10.1103/PhysRevLett.81.4828
https://doi.org/10.1103/PhysRevLett.80.3217
https://doi.org/10.1103/PhysRevLett.80.3217
https://doi.org/10.1103/PhysRevLett.80.3217
https://doi.org/10.1103/PhysRevLett.80.3217
https://doi.org/10.1073/pnas.1616889113
https://doi.org/10.1073/pnas.1616889113
https://doi.org/10.1073/pnas.1616889113
https://doi.org/10.1073/pnas.1616889113
https://doi.org/10.1080/09500340.2013.778341
https://doi.org/10.1080/09500340.2013.778341
https://doi.org/10.1080/09500340.2013.778341
https://doi.org/10.1080/09500340.2013.778341
https://doi.org/10.1088/1367-2630/18/3/033012
https://doi.org/10.1088/1367-2630/18/3/033012
https://doi.org/10.1088/1367-2630/18/3/033012
https://doi.org/10.1088/1367-2630/18/3/033012
https://doi.org/10.1088/1367-2630/aac7eb
https://doi.org/10.1088/1367-2630/aac7eb
https://doi.org/10.1088/1367-2630/aac7eb
https://doi.org/10.1088/1367-2630/aac7eb
https://doi.org/10.1364/AO.54.008030
https://doi.org/10.1364/AO.54.008030
https://doi.org/10.1364/AO.54.008030
https://doi.org/10.1364/AO.54.008030
https://doi.org/10.1364/OL.38.000534
https://doi.org/10.1364/OL.38.000534
https://doi.org/10.1364/OL.38.000534
https://doi.org/10.1364/OL.38.000534
https://doi.org/10.1364/OL.39.005305
https://doi.org/10.1364/OL.39.005305
https://doi.org/10.1364/OL.39.005305
https://doi.org/10.1364/OL.39.005305
https://doi.org/10.1364/OL.41.001348
https://doi.org/10.1364/OL.41.001348
https://doi.org/10.1364/OL.41.001348
https://doi.org/10.1364/OL.41.001348
https://doi.org/10.1063/1.4990394
https://doi.org/10.1063/1.4990394
https://doi.org/10.1063/1.4990394
https://doi.org/10.1063/1.4990394
https://doi.org/10.1038/srep44096
https://doi.org/10.1038/srep44096
https://doi.org/10.1038/srep44096
https://doi.org/10.1038/srep44096
https://doi.org/10.1103/PhysRevA.77.030303
https://doi.org/10.1103/PhysRevA.77.030303
https://doi.org/10.1103/PhysRevA.77.030303
https://doi.org/10.1103/PhysRevA.77.030303
https://doi.org/10.1103/PhysRevLett.99.153603
https://doi.org/10.1103/PhysRevLett.99.153603
https://doi.org/10.1103/PhysRevLett.99.153603
https://doi.org/10.1103/PhysRevLett.99.153603
https://doi.org/10.1103/PhysRevA.77.013827
https://doi.org/10.1103/PhysRevA.77.013827
https://doi.org/10.1103/PhysRevA.77.013827
https://doi.org/10.1103/PhysRevA.77.013827
https://doi.org/10.1103/PhysRevA.79.011805
https://doi.org/10.1103/PhysRevA.79.011805
https://doi.org/10.1103/PhysRevA.79.011805
https://doi.org/10.1103/PhysRevA.79.011805
https://doi.org/10.1103/PhysRevLett.113.043005
https://doi.org/10.1103/PhysRevLett.113.043005
https://doi.org/10.1103/PhysRevLett.113.043005
https://doi.org/10.1103/PhysRevLett.113.043005
https://doi.org/10.1088/1367-2630/aaece4
https://doi.org/10.1088/1367-2630/aaece4
https://doi.org/10.1088/1367-2630/aaece4
https://doi.org/10.1088/1367-2630/aaece4

