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High-resolution field localization in three dimensions is one of the main challenges in optics and has immense
importance in fields such as chemistry, biology, and medicine. Time-reversal symmetry of waves has been a
fertile ground for applications such as generating a subwavelength focal spot and coherent-perfect absorption.
However, in order to generate the time-reversed signal of a monochromatic source, discrete sources that are
modulated according to the wave amplitude on a spherical envelope are required, rendering it applicable only
in acoustics. Here we approach these challenges by introducing a spherical layer with a resonant permittivity,
which naturally generates the spatially continuous time-reversed signal of an atomic and molecular multipole
transition at the origin. We start by utilizing a spherical layer with a resonant TM l = 1 permittivity situated in a
uniform medium to generate a free-space-subwavelength focal spot at the origin. We remove the degeneracy of
the eigenfunctions of the composite medium by situating a point current source (or polarization) directed parallel
to the spherical layer, which generates a focal spot at the origin independently of its location. The free-space focal
spot has a FWHM of 0.4λ in the lateral axes and 0.58λ in the axial axis, which is tighter by a factor of

√
2 in

each dimension in excitation-collection mode, overcoming the λ/2 far-field resolution limit in three dimensions.
We then explore two directions to localize electric field with deep-subwavelength resolution in three dimensions
using this setup. Since the imaginary part of the eigenvalue is also realized in the physical parameter and the
setup can be in an exact resonance, it can also open avenues in fields such as cavity QED, entanglement, and
quantum information. In addition, we show that spherical structures exhibit a unique type of degeneracy in which
an infinite number of eigenvalues asymptotically coalesce. This high degeneracy results in a variety of optical
phenomena, such as strong scattering and enhancement of absorption and emission from an atom or molecule
by orders of magnitude compared with a standard resonance.
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I. INTRODUCTION

The focal-spot size that can be achieved by uniformly
illuminating a circular aperture in the scalar approximation is
given by an Airy disk, which is the Fourier transform of a cir-
cular window [1]. The FWHM of this function is 1.02λ/NA,

where λ is the wavelength and NA is the numerical aperture
(NA � 1). This size is associated with the lateral axes, and
in the axial axis the FWHM is 2.5–3 times larger due to
the fact that a smaller range of kzs is involved. For Gaussian
beams, however, the focal spot is larger and depends on the
width of the beam. The optimal lens resolution enables us
to image most biological cells but not viruses, proteins, and
smaller molecules. Techniques such as confocal microscopy,
structured illumination, beam shaping, and hyperlens imaging
have been used to increase the lateral resolution [2–4]. In
a 4π microscope the sample is illuminated from both sides
and better resolution in the axial axis can be achieved [5].
However, in this setup side lobes are generated, and the optical
system needs to be realigned before every measurement in
order for the focal spots to merge. Techniques based on
fluorescence such as stimulated emission depletion (STED)
[6], and photoactivated localization microscopy (PALM) and
Stochastic optical reconstruction microscopy (STORM) [7,8]

enable subwavelength resolution by stimulating emission at
another frequency using an additional toruslike illumination
and by activating subsets of fluorescent molecules, which
enables one to accurately calculate the molecule locations,
respectively. The Maxwell fisheye is a spherical lens with a
radius-dependent refraction index in which all light rays emit-
ted from a point meet at the antipodal point. The possibility of
obtaining subwavelength resolution inside this setup has been
the subject of recent works [9,10]. Time reversal of waves
has also been applied for generating a subwavelength focal
spot [11,12]. Finally, methods based on evanescent waves to
enhance resolution, such as near-field imaging and the use of a
negative-refractive index lens, enable subwavelength focusing
usually for two-dimensional imaging [13]. Here, we utilize a
resonant-spherical layer to localize a far field light in several
settings. We first situate the spherical layer in a uniform
medium and excite it with a point current. This setup generates
a three-dimensional free-space subwavelength focal that has
very minor side lobes. Since it is composed of one “lens,” it
may not need to be aligned. In excitation-collection mode the
effective focal spot is further minimized and there are almost
no side lobes. We then explore two directions to localize a far
field with deep-subwavelength resolution using this setup.
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Time reversal of waves has been utilized for various in-
teresting applications such as wave localization [11,12,14,15]
and coherent-perfect absorption [16]. Recently, it was shown
that the time reversal of a source, in the presence of a near-
perfect absorber, results in a subwavelength focal spot [12].
In order to generate the time reversal of a wave generated
by a source, one would have to let the wave propagate from
the source, “freeze” time, and generate discrete sources on a
spherical envelope modulated according to the wave ampli-
tude. Here we will utilize the resonant-spherical-layer setup
to generate the spatially continuous time-reversal wave of
sources, enabling its use in electrodynamics.

Degeneracies of eigenvalues can arise from a symmetry of
the system or from a special property of the system. While the
first type of degeneracy is widely known (e.g., m degeneracy
in spherical multipoles), the second, called accidental degen-
eracy, is more exotic and includes phenomena such as Landau
levels [17], exceptional points [18–22], and the accumulation
point of the eigenpermittivities of evanescent modes [23].
Degeneracies are associated with a strong response of the
system as several modes are excited. In exceptional points,
for example, the degeneracy is usually second or third order
and can lead to enhancement of emission from a molecule
by two orders of magnitude due to enhancement of the
density of states [24]. In addition, the accumulation point of
the eigenpermittivities of the evanescent modes can enhance
the field (and emission) of a source that is very close to a
metal-dielectric interface. Here we will show analytically and
numerically that a spherical structure with a radius larger than
20λ exhibits infinite asymptotic all-even and all-odd TE and
TM degeneracies of the second type. These degeneracies are
associated with far-field and dielectric spherical structures, in
some cases with gain.

In a homogeneous medium the continuous-wave source-
free solutions of Maxwell’s equation are plane waves, vec-
tor spherical harmonics, and vector cylindrical harmonics. It
was recently shown that similarly to the situation in phased
arrays in which plane currents proportional to a homogeneous
medium source-free solution with a planar geometry generate
the same function, currents proportional to a vector spherical
harmonic (VSH) on a spherical surface generate the same
VSH. Interestingly, a TM l = 1 VSH near the origin has a sub-
wavelength far-field focal spot [25], which is smaller in vol-
ume by a factor of ∼27 compared with the focal spot that can
be achieved by uniformly illuminating a lens. For a medium
with a refractive index larger than 1, the TM l = 1 field will
have even a smaller focal spot. Generating this mode by oscil-
lating currents can be thought of as a continuous-wave time re-
versal of the field of an oscillating dipole at the origin. Impor-
tantly, these VSHs propagating towards the origin are the time
reversal of the atomic and molecular multipole transitions. It
is thus of interest to generate these modes near the origin.
However, the spatial distributions of these VSHs are complex,
and a setup of currents modulated accordingly is infeasible.

In a two-constituent setup eigenfunctions of Maxwell’s
equations are fields which exist without a source for certain
physical parameters that correspond to resonances of the
system [26,27]. To generate a field without a source, usually
gain is required in one of the constituents similarly to a laser.
Here, we utilize resonances in a setup of a spherical layer

with a permittivity ε1 in a host medium with a permittivity
ε2 at a frequency ω to naturally generate the VSHs. This
setup requires only a point source in order to generate these
field patterns. The permittivity value of the spherical layer
ε1 will be close to a resonant TM l = 1 permittivity value
in order to generate this VSH (a resonant permittivity en-
ables the existence of a field without a source). Similarly,
all the other modes can be excited for permittivity values
close to the eigenpermittivities, generating the time reversal
of all the multipole radiation patterns, which correspond to
all the emission and absorption transitions of atoms and
molecules [28]. Alternatively, a frequency which is close to
an eigenfrequency can be used. Using an eigenpermittivity is
advantageous in this context since the resonance can be fully
reached by introducing a gain. While these eigenvalues are
usually associated with a gain that is needed to generate the
field, there are some cases when they are real valued [29] or
have ε near zero [29,30].

II. THEORY

The electromagnetic field expansion for a two-constituent
setup at a given angular frequency ω can be written as follows
[26]:

E = E0 +
∑

n

sn

s − sn

〈Ẽn|E0〉
〈Ẽn|En〉

|En〉, (1)

where sn ≡ ε2/(ε2 − ε1n) is the eigenvalue, ε2 is the
host-medium permittivity, ε1n is an eigenpermittivity, s ≡
ε2/(ε2 − ε1), En and Ẽn are the eigenfunction and its dual,
and E0 is the incoming field. 〈E1|E2〉 = ∫

drθ1(r)E1 · E2,
and θ1(r) is a window function which equals 1 inside the inclu-
sion volume. Thus, when ε1 is close to ε1n, 1/(s − sn) � 1,
and the corresponding eigenfunction has a large contribution
in the electric field expansion (see, for example, Ref. [31],
Fig. 2). Clearly, other modes and the incoming field exist in
the expansion. Fortunately, close to a resonance, the TM l = 1
eigenfunction will have the dominant contribution inside the
spherical volume.

Still, VSHs have a degeneracy in the m index, which
usually results in the generation of all the m modes as a
response to an incoming electric field. We therefore employ
the current formulation of the field expansion and situate an
oscillating point dipole in order to remove this degeneracy.
In this formulation we express the incoming field in terms of
Green’s tensor E0(r) = ∫

dV
←→
G (r, r′) · J(r′) and substitute it

in 〈Ẽn|E0〉. Then, we change the order of integration and use
the definition of the eigenfunction to obtain [29]

〈Ẽn|E0〉 = −4π i

ε2ω

∫
dV ′θ1

(
r′)En(r′) ·

∫
dV

←→
G (r′, r) · J(r)

= −4π i

ε2ω
sn

∫
dV En(r) · Jdip(r) = −4πsn

ε2
p · En(r0),

where Jdip(r) is the current distribution of an oscillating point
electric dipole, p is the dipole moment, and ω is the oscillation
frequency.

Now the expansion of the electric field reads

E = E0 − 4π

ε2

∑
n

s2
n

s − sn

p · Ẽn(r0)

〈Ẽn|En〉
|En〉. (2)
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FIG. 1. A setup composed of a spherical layer (white) and an
oscillating dipole, and |E|2 of a TM l = 1 eigenmode near the origin
calculated analytically. The external ellipse is the focal spot of an
Airy disk (green). The size and thickness of the spherical layer and
the location of the oscillating dipole can vary. The spherical layer
has a permittivity that is close to an eigenpermittivity ε1 ≈ ε1,TM l=1,
and the host-medium permittivity is ε2 = 1. The intensity of the TM
l = 1 mode relative to the intensity of the incident field and the other
modes depends on the proximity to the resonance.

Thus, situating an oscillating dipole may result in the genera-
tion of one TM l = 1 mode (see Fig. 1).

The general form of a TM VSH is [1]

E
(E )

lm ∝ 1

ε(r)
∇ × fl (kr)X lm, X lm = 1√

l (l + 1)
LYlm,

fl (kr) = A
(1)

l h
(1)

l (kr) + A
(2)

l h
(2)

l (kr),

where fl (r) is a linear combination of spherical Hankel func-
tions, hl (r) is a spherical Hankel function, k is the wave vector,
L = 1

i (r × ∇ ), and Ylm is a spherical harmonic.
For a spherical layer in r1 < r < r2, fl (r) that satisfies

boundary conditions is of the form

fl (r) =

⎧⎪⎨
⎪⎩

Clh
(1)

l (k2r) r > r2

B(1)
l h

(1)

l (k1nr) + B
(2)

l h
(2)

l (k1nr) r1 < r < r2

Al jl (k2r) r < r1

,

where jl (r) is a spherical Bessel function and k1n, k2 corre-
spond to ε1n, ε2, respectively. These eigenfunctions are stand-
ing waves for r < r1 and propagating waves for r > r2 at a
given frequency. The eigenpermittivity ε1n in r1 < r < r2 is
calculated using an eigenvalue equation as we now explain.

An eigenpermittivity enables the existence of the field
without a source, and we therefore only need to impose
boundary conditions. From continuity of tangential E and H
we have for a TM eigenfunction assuming ε2 = 1 (see also
Ref. [26])

fl(r
−
1 ) = fl(r

+
1 ), fl(r

−
2 ) = fl(r

+
2 ),

∂ (r fl(r))
∂r

∣∣∣∣
r=r−

1

= 1

ε1n

∂ (r fl(r))
∂r

∣∣∣∣
r=r+

1

,

1

ε1n

∂ (r fl(r))
∂r

∣∣∣∣
r=r−

2

= ∂ (r fl(r))
∂r

∣∣∣∣
r=r+

2

,

from which we obtain an eigenvalue equation and ε1n. Simi-
larly, for a TE eigenfunction we write

E
(M )

lm ∝ fl (kr)X lm,

with the boundary conditions

fl(r
−
1 ) = fl(r

+
1 ), fl(r

−
2 ) = fl(r

+
2 ),

∂ (r fl(r))
∂r

∣∣∣∣
r=r−

1

= ∂ (r fl(r))
∂r

∣∣∣∣
r=r+

1

,

∂ (r fl(r))
∂r

∣∣∣∣
r=r−

2

= ∂ (r fl(r))
∂r

∣∣∣∣
r=r+

2

.

Clearly, the eigenpermittivities of the TE and TM modes
depend on the radius and the thickness of the spherical layer.

The eigenfunctions in the radiation zone (far field) can be
expressed as [1]

ETM
lm → Z0HTM

lm × n,

where n = r/r. Hence, since HTM
lm ∝ ETE

lm is parallel to the
sphere surface [1], ETM

lm is also parallel to the sphere surface.
Thus, due to the inner product in Eq. (2), when an oscillating
dipole is placed in the radiation zone it may excite a mode if
it is oriented parallel to the spherical-layer surface.

For concreteness, we situate an oscillating dipole outside
the spherical layer on the positive x axis. The y, z components
of HTM

lm can be found from [1]

HTM
lm ∝ LYlm, Ly = 1

2i
(L+ − L−), LzYlm = mYlm.

The z components of the TM l = 1 eigenfunctions in the
radiation zone readily follow from the two relations above:

ETM
l=1,m=0 z �= 0, ETM

l=1,m=±1 z = 0.

Thus, by placing an oscillating dipole on the x axis directed
along the z axis we have removed the m degeneracy of the TM
modes. It can be seen that objects at all locations will generate
a focal spot at the origin. In addition, the θ dependency of the
field can be written as ETM l=1(θ ) ∝ sin θ (−x̂ cos θ + ẑ sin θ ),
which equals the θ dependency of the far field of an oscillating
dipole and shows that the mode is indeed its time reversal.
Oscillating dipoles on the xy plane directed along z will
generate fields in the z axis at the focal spot. From symmetry,
situating several current sources will result in a superposition
of the TM l = 1, m = 0 mode according to their locations
and orientations. In addition, other forms of illumination
(which correspond to current distributions), such as a laser
illumination, may also be used to generate a subwavelength
focal spot (the current source may be associated with the
gain medium). For example, a plane wave can be represented
by surface currents [25], and if they are directed in the z
direction and are an even function with respect to the xy plane,
there will be a constructive interference of the image only
in the z direction, leading to a field intensity at the origin
that is identical to that generated by a point-dipole source. In
addition, light impinging on a small dielectric structure will
generate a field that is similar to the field of a point dipole.
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Also, since [1]

l∑
m=−l

|X lm(θ, φ)|2 = 2l + 1

4π
,

combining 2l + 1 spherical structures (e.g., a sphere, a spher-
ical layer), each corresponding to a resonance at a given
frequency, and using oscillating dipoles such that all the m
modes are excited, will result in isotropic radiation.

In order to have a dominant contribution of the TM l = 1
modes, the physical permittivity has to be much closer to the
corresponding eigenpermittivity compared with its distances
from the eigenpermittivities of the other modes. The higher-
order modes have a minor contribution to the expansion, and
we can focus on a certain l range when comparing these
distances [32]. The resonant permittivity usually has an imag-
inary part that corresponds to gain. While incorporating gain
in the spherical layer will bring the system to a resonance, if a
real-valued permittivity will be close enough to a resonance,
a similar effect is expected. The spacing between resonances
and the imaginary part of the permittivity depend on the
thickness of the spherical layer. A thin spherical layer will
result in a large eigenpermittivity gain and widely spaced
resonances. A thick spherical layer will result in a small
imaginary part of the eigenpermittivities and more closely
spaced resonances.

When the system is close to a resonance and there is a
polarizable or absorbing medium at the origin, the dominant
contribution to the electric field can be from the emission
at the origin. From Eq. (2) it can be seen that the source
location near the origin translates into Ẽn(r0) and the source
magnitude is proportional to En(r0). We thus get that when
the field is generated by the medium at the origin (collection-
excitation mode) there is an additional factor of

√
2 in the

effective FWHM in each dimension. This is demonstrated in
the Appendix, Fig. 7.

An additional degeneracy arises when r1, r2 � 10λ, since
at the r � λ limit jl , h(1)

l have the form

jl (r) → 1

r
sin

(
r − lπ

2

)
, h(1)

l (r) → (−i)l+1 eir

r
.

As a result, the even and odd eigenvalues will be almost
identical. A possible way to remove this degeneracy is to
slightly change the structure so that the eigenfunctions and
the eigenvalues will change. For example, the spherical layer
can be capped from above (or in several places), which will
also enable one to easily place objects inside. Alternatively,
this high degeneracy can be utilized for a strong optical
response of the system (e.g., strong scattering, enhancement
of spontaneous emission, etc.). This degeneracy is an asymp-
totic degeneracy and is in addition to the m degeneracy,
so it includes a very large number of modes. In practice,
an excitation at a given frequency can excite all the even
or odd TE or TM modes. Similarly, such a degeneracy is
also expected for a sphere inclusion and possibly cylindrical
structures. Combining spherical structures may result in an
all-mode degeneracy and further enhance the response of the
system. Note that the total radiated power is a sum of the
contributions of all the multipoles [1].

FIG. 2. TM l = 1 eigenmode for a setup of a spherical layer
in vacuum with r1 = 0.7, r2 = 1.4 μm, ε1 = 1.5, and ωl=1/2π =
7.927 81 × 1014 + 7.397 × 107i.

III. NUMERICAL CALCULATIONS

To cross validate our analysis, we calculated for
setups of spherical layers in vacuum the eigenmodes and
|E|2 as a response to an excitation of a dipole and a
current loop using Comsol. In Fig. 2 we present a TM
l = 1 mode for r1 = 0.7, r2 = 1.4 μm, ε1 = 1.5, ε2 = 1,

and ωTM l=1/2π = 7.927 81 × 1014 + 7.397 × 107i, where
ωTM l=1 is an eigenfrequency. It can be seen that the
focal-spot size (normalized by λ) matches that in the
analytical calculation presented in Fig. 1. Eigenmodes
exist without a source, which in the eigenpermittivity
formulation arises from gain in the spherical layer,
similarly to a laser. In addition, ωl=1 is almost real, and
we therefore expect that at ω = Re(ωl=1), ε1l ≈ 1.5
will be almost real. The eigenfrequencies in this case
are closely spaced, which requires high precision in ε1

to obtain a resonance. We then considered a setup of
r1 = 0.7, r2 = 0.9 μm, ε2 = 1, λ = 430 nm, and an
oscillating point dipole directed parallel to the spherical layer.
We calculated εTM l=1 using the TM eigenvalue equation at
around ε1l = 1.5 and substituted the result rounded to two
digits after the decimal point as the physical permittivity ε1 in
a Comsol simulation. In Fig. 3 we present |E|2 and E (arrows)
for ε1 = 1.75 − 0.7i, r0 = 1x̂ μm, p = 1ẑ mA in axial
cross section. It can be seen that the focal-spot-normalized
size matches these in Figs. 1 and 2. Situating the
dipole at any other distance will also result a focal
spot at the origin, unlike imaging using a lens. In
Fig. 4 we present |E|2 for a setup with a current loop
with ε1 = 1.45 − 0.57i, ε2 = 1, r1 = 1.7, r2 = 2 μm, λ =
430 nm, J = 1ẑ A/m2, and r0 = 2.2 μm. Interestingly, the
field intensity is much stronger at the origin compared to that
around the current loop. In addition, the current distribution
is similar to a gain medium distribution in a laser, which
may mean that a laser can also be used to generate this TM
l = 1 mode. In the Appendix we demonstrate focusing using
a capped spherical layer with r2 ≈ 10λ. This structure has
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FIG. 3. |E|2 and E (arrows) for a setup of a spherical
layer in vacuum and an oscillating point dipole with r1 =
0.7, r2 = 0.9 μm, ε1 = 1.75–0.7i, r0 = 1x̂ μm, p = 1ẑ mA, and
λ = 430 nm. The field intensity near the dipole is capped, and the
value on top of the bar is the maximum value in the calculation.

a full azimuthal-angle coverage, unlike focusing light using
two lenses. In all the simulations we used a perfectly matched
layer to account for boundary conditions (external layer).

Now we analyze the TM eigenpermittivities for a sphere
inclusion in vacuum as we increase the sphere radius. Simi-
larly to the spherical-layer setup, all the odd and even eigen-
value equations coalesce when increasing the sphere radius
r1. In Fig. 5 we present ε1l TM as a function of r1 for λ =
430 nm. The eigenpermittivities have a negligible imaginary
part (smaller than 10−8), and we therefore present only the
real part. It can be seen that for r1 > 8 μm all the even
and odd eigenvalues are practically the same. Thus, using
a physical permittivity ε1 that is close to the odd or even
eigenpermittivity will excite all (or most) of these eigenstates,
leading to a very strong response of the system (without

FIG. 4. |E|2 for a setup of a spherical layer in vacuum
with a current loop and ε1 = 1.45–0.57i, r1 = 1.7, r2 = 2 μm, λ =
430 nm, r0 = 2.2 μm.

1 2 3 4 5 6 7 8 9 10

Sphere radius ( m)

2.5

3

3.5

4

4.5

FIG. 5. ε1l TM as a function of the sphere radius for a sphere in
vacuum at λ = 430 nm.

requiring gain in this case). Note that at large-sphere radii the
eigenvalues are more robust to changes in the radius.

IV. ADDITIONAL ANALYSIS

A. Analyzing phenomena associated with the
infinite asymptotic degeneracy

We now evaluate the enhancement of various optical
phenomena due to the infinite-asymptotic degeneracy. We
investigate the enhancement of spontaneous emission [33]
of a dipole in a sphere or spherical-layer setup when
r1, r2, rdipole � λ due to the infinite degeneracy. To that end,
we write the expression for the density of states [34–36],
which is dominant in Fermi-golden-rule calculation [37]:

ρμ = −2ω

π
Im[Gμμ(r, r′, ω)].

We then evaluate the sum in the eigenfunction expansion in
Eq. (2). We consider a sphere with a physical permittivity that
is slightly above the first or second eigenpermittivity, namely,
ε1 > ε11 or ε1 > ε12 (see Fig. 5). In this situation s2

l /(s − sl )
have the same sign and approximately the same value for
a very large number of modes (e.g., at least 20 modes for
r1, r2 � 40λ). We now analyze Ẽlμ(rdipole )Elμ(rdipole ). Since
the dual eigenfunctions [26]

Ẽ
(E )
lm ∝ ∇ × fl (kr)X∗

lm, Ẽ
(M )
lm ∝ fl (kr)X∗

lm,

we get that the phase of Ẽlμ(rdipole )Elμ(rdipole ) is determined
by fl . Since fl ≈ fl+2 we get approximately the same phase
for all the modes whose eigenvalues coalesce. Similar argu-
ments apply for the inner product 〈Ẽn|En〉, see Appendix A in
Ref. [26]. For example, the integral in the inner product of the
TE modes can be performed analytically and can be shown
to be invariant to l → l + 2. This leads to a constructive
interference in the field summation. Thus, if we have n modes
that have effectively the same eigenvalue, their resonance con-
tributions will add constructively and we get approximately n
times enhancement in the density of states compared with a
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standard resonance of the same structure. Clearly, the larger
the spherical-structure radius, the more eigenvalues will be
effectively the same (see Fig. 5). This should be multiplied by
the enhancement factor that arises from the proximity of the
physical permittivity to the resonant permittivity (∝ 1/(s −
sn) from Eq. (2)). See Ref. [31] in which the modes also
interfere constructively. In this reference when the physical
permittivity is close to the first eigenpermittivity, s2

l /(s − sl )
decays upon increasing l . When the physical permittivity is
close to the accumulation point the field is enhanced very
close to the metal-dielectric interface, since the high-order
modes, which have approximately the same s2

l /(s − sl ), decay
spatially rapidly. Here the modes have approximately the
same s2

l /(s − sl ) contribution and they all scale as 1/r at large
distances, leading to a strong response that extends relatively
far from the dielectric sphere.

We proceed to analyze the enhancement of absorption and
stimulated emission induced by a dipole on itself due to the
infinite degeneracy. Clearly, the enhancement of the density
of states in the Fermi-golden-rule calculation [37] will be the
same. Assuming that the multiple expansion for light-matter
interaction holds and the dipole interaction is the dominant
interaction for all the modes in the field expansion, we get
that if n modes are effectively on resonance and the field
that is generated by the dipole is enhanced by a factor of
n, |〈ψ j |Hint|ψi〉|2 will scale as n2 and the overall enhancement
will scale as n3 compared with a standard resonance. This is
a very large enhancement, and for n = 20 we get an enhance-
ment factor of 8000 [needs to be multiplied by ∝ 1/(s − sn)3].
Note that a sphere with r1 = 20λ is of the order of a human
cell for visible and infrared light, and hence this phenomenon
has potential use in biomedical applications such as targeting
cells with light (via spherical particles). Another potential
application is an omnidirectional antenna or detector, which
directs its field to the source location.

The enhancement of the scattering arises from the fact
that the total radiated power is a sum of the contributions of
all the multipoles [1]. Thus we deduce that the total power
is enhanced by a factor of n, compared with a standard
resonance, where n is the number of modes that are effectively
on resonance. This should be multiplied by the enhancement
factor that arises from the proximity of the physical permittiv-
ity to the resonant permittivity ∝ 1/(s − sn)2. Similar analysis
follows for the enhancement of absorption by a sphere, as the
absorption power is given by ω · Im(ε1)|E|2/2 [1] and many
modes can be excited inside the sphere.

B. Exploring far field localization with
deep-subwavelength resolution

We now explore two directions to localize an electric field
with deep-subwavelength resolution. We first present a three-
body resonance mechanism in which we slightly change the
permittivity value of the spherical layer to move the system
away from resonance and introduce a spherical particle that
will bring the system back to resonance when located at the
origin. We consider a spherical layer in a host medium that
is off-resonance and close to a resonance, possibly having a
dielectric material with gain. We then introduce a spherical
particle that when situated at the origin results in a TM l = 1

resonance of the three-body system for a given permittivity
value of the particle, possibly a dielectric material that is
different from the host-medium permittivity, and we set the
physical permittivity value of the particle to be equal to
this eigenpermittivity. For a different location of the particle
the system will be on resonance for a different permittivity
value of the particle. This setup translates location changes of
the particle to changes in the eigenpermittivity, utilizing the
1/(s − sn) factor to localization of the particle. We thus may
achieve a strong localization capability of the system—for a
slight change in the location of the particle the field intensity
everywhere will change significantly. To translate this idea
into practical applications one can use frequencies for which
the host medium that can have in general spatially varying
permittivity is relatively uniform or transparent.

We also consider the possibility that the time reversal of
the field emitted in a transition at the origin of an atom or
molecule will spatially match the quantum transition current.
It was suggested based on a classical wave equation analysis
that when the time reversal of the field emitted by a point
source impinges on a perfect absorber at the origin, the field
pattern will have a 1/r scaling near the origin [12]. Now
we turn to the quantum analysis. We first note that in the
semiclassical quantum treatment in Ref. [28] there is a 1/r
scaling in the transition-rate calculation. One can think that
the time reversal of an emission process is absorption, having
a field with a 1/r dependency near the origin. In practice,
emission and absorption are related to the transition between
electronic or nuclear eigenstates. We can thus expect that the
field will not diverge and think of a classical analogue of a
dipole with a characteristic size of the average distance of
the probability density function from the center of mass. Let
us analyze the emission process and its time reversal. We
consider a hydrogen atom for simplicity and assume that there
is a transition from an eigenstate ψ1 to an eigenstate ψ2.

As a result of the spatial change in the probability density
function an electric field is emitted. We express the quantum
current j = vρ = v|ψ |2 = 1

2m (ψ∗ pψ − ψpψ∗), where ψ is
the wave function that can transition between states and v is
the group velocity of the particle [37]. The electric field E
then propagates in space occupying a spherical shell. Now we
time reverse the process. We assume that the field is generated
on the spherical shell. The field then propagates toward the
atom or molecule. We assume that when the field reaches
the atom or molecule they are in the same state as when
they emitted the field up to a π phase difference in v. Using
reciprocity and treating the quantum current as classical, the
field near the origin will then be in the same form of the
quantum current j that generated the field. Thus, the field
pattern matches the form of the transition current and can
be optimal for driving the transition. The field is thus deep
subwavelength with a typical size of the average distance of
the density function from the center of mass. In this situation
the spatial variations of the electric field are comparable to the
electron or nuclear wave function, and the spatial variations
of E or A will have to be taken into account explicitly in
light-atom and molecule interaction calculations. In standard
light-atom and molecule interaction, the term − q

m p · A for
the value of A at the atom or molecule location drives the
dipole transition. However, A is constant [37] and does not
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necessarily spatially overlap optimally with the current that
drives the transition. This absorption process can be comple-
mented by stimulated emission for a field that oscillates at a
frequency ω. Note that the resonant-spherical layer should be
tuned to this ω. This process can have unique characteristics,
such as strong absorption and emission, high-order multipole
transitions involved, large Rabi shift, etc. Interestingly, if A ∝
E ∝ j and j ∝ ψ∗

2 pψ1, and we replace p → imωr, where r is
the position vector [37,38], A maximizes the matrix element
in Fermi’s golden rule given by ∝ 〈ψ2|p · (ψ∗

2 pψ1)|ψ1〉 ∝∫
(ψ∗

2 xψ1) · (ψ∗
2 xψ1)dr. See, for example, Refs. [39–42], in

which phase matching of the electric field to the electron
wave function results in a stronger interaction. If this is indeed
the situation it would make sense that a slight change in the
position of the atom or molecule from the origin will bring the
interaction to the standard multipole-expansion interaction.
Hence, if this can be realized experimentally using a resonant-
spherical layer or another setup that can generate the time re-
versal of the emitted field (for example, a reflecting or phase-
conjugating cavity), it may enable us to localize atoms and
molecules with deep-subwavelength resolution (for a scatter-
ing medium with ballistic photons). For example, there can be
strong absorption and emission or a large Rabi splitting when
the atom or molecule is situated at the origin. One can then
probe these properties by, e.g., observing a frequency shift
possibly via the three-body resonance mechanism described
above. In addition, we note that this description is applicable
to all the transition types (dipole, quadrupole, etc.). While it is
true that the spontaneous-emission rate of high-order radiation
multipoles is usually slow, when it will occur for an atom
or molecule at the origin, the incoming time-reversed field
can spatially match the transition current and drive the tran-
sition. Alternatively, transitions can be driven by an external
current source. In order for the spherical layer to respond
to several transitions one can utilize the infinite-asymptotic
degeneracy. Note that when radiation is emitted by an atom
or molecule at the origin, the spherical-layer setup generates
the time-reversed field also according to the orientation, which
maximizes the spatial overlap when interacting with the atom
or molecule.

In addition, close to a resonance the density of states given
by ρμ = − 2ω

π
Im[Gμμ(r, r′, ω)] [34–36], where Gμμ(r, r′, ω)

can be expressed as the electric field due to a dipole at
the dipole location and direction in Eq. (2). Thus, when
approaching a resonance the density of states and the field
increase, and as a result the transitions are enhanced. Hence,
quantum mechanically we have enhancement in two aspects:
field overlap with the transition current and increase in the
density of states and electric field.

V. SUMMARY

We introduced a setup of a spherical layer that close to
a resonance generates the time reversal of the atomic and
molecular multipole transitions. The time-reversed signal in
our setup is spatially continuous and is naturally generated by
a medium with a uniform permittivity.

We started by situating the spherical layer in a uniform
medium, which generates a subwavelength free-space focal

FIG. 6. |E|2 for a capped spherical layer with a cur-
rent loop and r1 = 3.4 μm, r2 = 4 μm, r0 = 4.4 μm, ε1 = 1.82 +
0.29i, λ = 430 nm, J = 1 A/m2 ẑ.

spot in three dimensions. The degeneracy of the excited mode
is removed by incorporating currents on a plane which is
perpendicular to the spherical layer. Such currents can be
realized by a medium which is polarized due to an impinging
electric field or even a laser source. Interestingly, when situ-
ating an object at the origin, the field emitted by the polarized
medium at the focal spot excites the TM l = 1 spherical layer
mode, which reexcites the medium at the focal spot, etc. This
coupling can enhance the emission from the medium at the
focal spot. Also, near a resonance the field becomes very
strong and may enable larger penetration of ballistic photons
and enhancement of the signal generated at the focal spot by
the spherical layer. To image from the focal spot, one can think
of collecting light from the other side of the spherical layer
by means of a lens or another optical element. This signal
is mostly composed of the sum of the excitation of the TM
l = 1 mode due to the sources and the polarized medium at the
focal spot, which may enable us to acquire also the phase in
the measurement. To further minimize the effective focal-spot
size techniques such as nonlinear optics, PALM or STORM
[7,8], and quantum imaging [43] can be used. In addition,
the TM l = 2 and TE l = 1 modes have a torus shape [25]
and may be used to stimulate fluorescence emission at another
wavelength similarly to STED [6].

We then explored two directions to localize a field with
deep-subwavelength resolution. We presented a three-body
resonance mechanism in which we slightly change the per-
mittivity value of the spherical layer to move the system
away from resonance and introduce a spherical particle that
will bring the system back to resonance when located at the
origin. We then situated an atom or molecule at the origin
and considered the possibility that the time-reversed field of
a transition will generate a field near the origin that spatially
correlates with the quantum transition current, resulting in a
much stronger interaction at the origin.

The resonant-spherical-shell setup differs from a spherical
cavity in several aspects: (1) It enables light from outside of
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FIG. 7. |E|4 for a setup of a spherical layer in vacuum
with a current loop and ε1 = 1.45–0.57i, r1 = 1.7, r2 = 2 μm, λ =
430 nm, r0 = 2.2 μm.

the spherical shell to generate a field inside and vice versa.
(2) There is a strong amplification of the signal. Thus, even
spontaneous emission can generate a substantial field at the
focal spot. When the system is on resonance, the mode is
generated without a source. (3) It couples to a single multipole
or equivalently, an atomic or molecular transition spatially and
temporally.

This analysis is applicable to all wavelengths, and due to
its wave nature it may also apply to acoustics, in which gain
materials were recently introduced [44], and matter waves. In
addition, each spherical-layer mode has several eigenvalues
and therefore there is flexibility in choosing the spherical-
layer material, which may have importance for frequencies
where it is more challenging to find materials that can focus
waves [45]. Importantly, it was shown that spherical waves
(VSHs) can be generated by a single source, which may

enable their practical generation, also at high frequencies
where current modulation is impractical. Potential applica-
tions are high-resolution 3D imaging and precise tissue ab-
lation. In addition, the fact that this setup has a very high Q
factor may be utilized to cavity QED, entanglement, and quan-
tum information [46]. Finally, for spherical structures with
r1 � 10λ there are all-odd and all-even TM and TE eigenvalue
degeneracies, which results in a variety of optical phenomena
of the system close to one of these eigenvalues. Combining
spherical structures, e.g., a sphere and spherical layer(s), each
with a permittivity close to one of these resonances may even
result in an all-mode resonance.
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APPENDIX

In Fig. 6 we present |E|2 for a capped spherical layer
with a current loop and r1 = 3.4 μm, r2 = 4 μm, r0 =
4.4 μm, ε1 = 1.82 + 0.29i, λ = 430 nm, J = 1A/m2 ẑ. The
focal-spot size is similar to that in the complete spherical
layer (smaller in volume by a factor of 18 compared to a
focal spot that can be generated by uniformly illuminating
a lens). Note that the spherical layer has a full coverage of
φs in θ1 < θ < π − θ1, unlike focusing using two lenses. The
angles in that θ range are more important in order to generate
the l = 1 TM VSH.

In Fig. 7 we present |E|4 for for a setup of a spherical layer
in vacuum with a current loop, and ε1 = 1.45–0.57i, r1 =
1.7, r2 = 2 μm, λ = 430 nm, r0 = 2.2 μm. |E|4 represents
the effective intensity in excitation-collection mode, as ex-
plained in the manuscript. As can be seen, the effective focal
spot is smaller by a factor of

√
2 in each dimension, and the

side lobes are negligible.
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