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Chiral excitation of a single atom by a quantized single-photon pulse in a guided mode of a nanofiber
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We study the interaction between a single two-level atom and a quantized single-photon probe pulse in a
guided mode of a nanofiber. We examine the situation of chiral interaction, where the atom has a dipole rotating
in the meridional plane of the nanofiber and the probe pulse is quasilinearly polarized along the radial direction
of the atom position in the fiber transverse plane. We show that the atomic excitation probability, the photon
transmission flux, and the photon transmission probability depend on the propagation direction of the probe
pulse along the fiber axis. In contrast, the reflection flux and the reflection probability do not depend on the
propagation direction of the probe pulse. We find that, unlike the atomic excitation probability, the asymmetry
parameter for this characteristic does not vary in time and does not depend on the probe pulse shape.
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I. INTRODUCTION

The manipulation and control of coupling between light
and matter at a single quantum level lie at the heart of quantum
optics and quantum information processing and therefore have
received a lot of attention in the past [1–4]. The interaction
between a single two-level atom and a quantized single-
photon light pulse has been studied extensively [5–13]. It has
been shown that the transient excitation probability of a single
two-level atom interacting with a quantized single-photon
pulse can achieve higher values than that in the steady-state
regime. In particular, it has been predicted that the excitation
probability of the atom can, in principle, approach unity if
the photon waveform matches both spatially and temporally
the time-reversed version of a spontaneously emitted photon
[6–9]. This condition means that the spatial profile of the
incident photon should match the atomic dipole emission
pattern and that the temporal shape of the incident photon
should be a rising exponential [6–9]. Schemes for efficient
excitation involving parabolic mirrors [6–8], spherical mirrors
[14], fixed aspheric lenses [15], and waveguides [9–13] have
been studied. The analogy between a single atom and an opti-
cal resonator in the absorption of a light pulse has been inves-
tigated [16,17]. Experiments on the use of rising exponential
pulses for efficient atomic excitation, photon absorption, and
loading of photons into a cavity at a single quantum level have
been reported [18–22].

It is difficult to achieve spatial mode matching between the
incident photon wave packet and the atomic dipole emission
profile when the atom is in free space. In contrast, the use of a
waveguide provides strong spatial mode matching and hence
simplifies practical implementations [9–13]. This strong mode
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matching is also the source of efficient channeling of sponta-
neous emission from atoms into fibers [23–25].

The efficient coupling between atoms and light can be seen
clearly in nanofiber-based systems. Nanofibers are vacuum-
clad, ultrathin optical fibers that allow tightly radially confined
light to propagate over a long distance (the range of several
millimeters is typical) and to interact efficiently with nearby
atoms [26–29]. It has been shown that, for atoms near a
nanofiber, spontaneous emission may become asymmetric
with respect to opposite propagation directions [30–33]. This
directional effect is a signature of spin-orbit coupling of
light carrying transverse spin angular momentum [34–40].
The chirality of the field in a nanofiber-guided mode occurs
as a consequence of the fact that the field has a nonzero
longitudinal component which oscillates in phase quadrature
with respect to the radial transverse component. The chiral
interaction of the guided field with a nearby atom appears
when the atom has a dipole rotating in the meridional plane
of the nanofiber.

The purpose of this paper is to study the chiral interaction
between a single two-level atom and a quantized single-
photon probe pulse in a guided mode of a nanofiber. We show
that the atomic excitation probability, the photon transmission
flux, and the photon transmission probability depend on the
propagation direction of the probe pulse along the fiber axis.

Before we proceed, we need to clarify that we follow the
convention of Ref. [40] and use the terms “chiral interaction”
for the situation where the interaction between light and an
emitter depends on the propagation direction of light and the
polarization of the transition dipole moment of the emitter.
The chiral photon-emitter interaction is nonreciprocal, that
is, photons propagating in two opposite directions interact
differently with the emitter [40].

We also note that the previous work [30–33] on the chiral
photon-emitter interaction in nanofiber-based systems treated
directional spontaneous emission and directional scattering of
a classical continuous field. In our present work, we study the
dependence of the excitation of an atom on the propagation
direction of a quantized single-photon guided light pulse.
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FIG. 1. Two-level atom interacting with a quantized light pulse
in a guided mode of an optical nanofiber. The atom is located at a
fixed point outside the fiber.

The paper is organized as follows. In Sec. II we describe
the model and the Hamiltonian of the system. Section III is
devoted to the dynamical equations. In Sec. IV we present the
results of numerical calculations. Our conclusions are given
in Sec. V.

II. MODEL AND HAMILTONIAN

We consider a single two-level atom interacting with an
injected quantized near-resonant light pulse in a guided mode
of a vacuum-clad, ultrathin optical fiber (see Fig. 1). The
atom has an upper energy level |e〉 and a lower energy level
|g〉, with energies h̄ωe and h̄ωg, respectively, and is located
at a fixed point outside the fiber. The quantized pulse is
described in the continuous-mode quantization formalism as a
superposition of a continuum of temporal modes [41] (see also
Appendix A). We assume that the central frequency ωL of the
probe pulse is close to the transition frequency ω0 = ωe − ωg

of the atom, and the spectral pulse width is small compared
to the optical frequency. The fiber is a dielectric cylinder of
radius a and refractive index n1 > 1 and is surrounded by an
infinite background vacuum or air medium of refractive index
n2 = 1. We are interested in vacuum-clad, silica-core ultrathin
fibers with diameters in the range of hundreds of nanometers,
which can support only the fundamental HE11 mode and a few
higher-order modes in the optical region. Such optical fibers
are usually called nanofibers [26–29]. In view of the very low
losses of silica in the wavelength range of interest, we neglect
material absorption.

We use Cartesian coordinates {x, y, z}, where z is the co-
ordinate along the fiber axis, and also cylindrical coordinates
{r, ϕ, z}, where r and ϕ are the polar coordinates in the fiber
transverse plane xy. We assume that the atom is located at a
point R ≡ (r, ϕ, z) in the cylindrical coordinates. We use the
notation r = (r, ϕ) for the position of the atom in the fiber
transverse plane.

The atom interacts with the full quantum electromagnetic
field, which includes the injected quantum field in the input
mode and the vacuum quantum field in other modes. In the
presence of the fiber, the quantum field can be decomposed
into the contributions from guided and radiation modes [42].
In the interaction picture, the Hamiltonian for the atom-field
interaction in the dipole and rotating-wave approximations

can be written as [25,33]

Hint = −ih̄
∑

α=μ,ν

(Gασ †aαe−i(ω−ω0 )t − H.c.). (1)

Here, σ = |g〉〈e| and σ † = |e〉〈g| are the atomic transition
operators, aα and a†

α are the photon operators, and Gα is
the coupling coefficient for the interaction between the atom
and the quantum field in mode α. To describe the atom, we
use not only the transition operators σ and σ † but also the
operators σee = |e〉〈e| and σgg = |g〉〈g| for the populations of
the excited and ground states, respectively, and the operator
σz = σee − σgg for the level population difference.

In Eq. (1), the notations α = μ, ν and
∑

α = ∑
μ +∑

ν

stand for the mode index and the mode summation. The
index μ = (ωN f p) labels guided modes. Here, ω is the mode
frequency, N = HElm, EHlm, TE0m, or TM0m is the mode
type, with l = 1, 2, . . . and m = 1, 2, . . . being the azimuthal
and radial mode orders, f = ±1 denotes the positive or neg-
ative propagation direction along the fiber axis z, and p =
±1 for HE and EH modes and 0 for TE and TM modes is
the phase circulation direction index [42]. The longitudinal
propagation constant β of a guided mode is determined by the
fiber eigenvalue equation. Meanwhile, the index ν = (ωβl p)
labels radiation modes. Here, β is the longitudinal propagation
constant, l = 0,±1,±2, . . . is the mode order, and p = +,−
is the mode polarization index. The longitudinal propagation
constant β of a radiation mode of frequency ω can vary con-
tinuously, from −kn2 to +kn2 (with k = ω/c). The notations∑

μ = ∑
N f p

∫ ∞
0 dω and

∑
ν = ∑

l p

∫ ∞
0 dω

∫ kn2

−kn2
dβ denote

the generalized summations over guided and radiation modes,
respectively.

The expressions for the coupling coefficients Gα with α =
μ, ν are given as [25,33]

Gμ =
√

ωβ ′

4πε0 h̄
(d · e(μ) )ei( f βz+plϕ),

(2)

Gν =
√

ω

4πε0 h̄
(d · e(ν) )ei(βz+lϕ),

where e(μ) = e(μ)(r) and e(ν) = e(ν)(r) are the normalized
mode functions given in [25,33,42], β ′ is the derivative of
β with respect to ω, and d is the dipole matrix element of
the atom. In general, the dipole matrix element d can be a
complex vector.

III. DYNAMICAL EQUATIONS

In this section, we derive the dynamical equations for
interaction between the atom and a quantized probe light pulse
in a guided mode of the nanofiber. In this derivation, we
closely follow the techniques of Refs. [5,10,12,13] and extend
them to include the specific characteristics of the nanofiber.

A. Heisenberg-Langevin equation for the atom interacting
with a quantized guided light pulse

In this subsection, we extend the Weisskopf-Wigner the-
ory [43] to describe the observables of the internal state of
the atom interacting with a quantized guided light pulse of
the nanofiber. We call O an arbitrary atomic operator. The
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Heisenberg equation for this operator is

Ȯ =
∑

α

(Gα[σ †,O]aαe−i(ω−ω0 )t + G∗
αa†

α[O, σ ]ei(ω−ω0 )t ).

(3)

Meanwhile, the Heisenberg equation for the photon annihila-
tion operator aα is ȧα = G∗

ασei(ω−ω0 )t . When we integrate this
equation, we obtain

aα (t ) = aα (t0) + G∗
α

∫ t

t0

dt ′ σ (t ′)ei(ω−ω0 )t ′
, (4)

where t0 is the initial time.
We assume that the evolution time t − t0 and the charac-

teristic atomic lifetime τ0 are large compared to the atomic
transition period 2π/ω0. When the continuum of the guided
and radiation modes is regular and broadband around the
atomic frequency ω0, the Markov approximation σ (t ′) = σ (t )
can be applied to describe the back action of the second term
in Eq. (4) on the atom. Under the condition t − t0 � 2π/ω0,
we calculate the integral with respect to t ′ in the limit t − t0 →
∞. We set aside the imaginary part of the integral, which
describes the frequency shift. Such a frequency shift is usually
small. We can effectively account for it by incorporating it
into the atomic frequency. With the above approximations and
procedures, we find aα (t ) = aα (t0) + πG∗

ασ (t )δ(ω − ω0). We
insert this expression into Eq. (3). Then we obtain the follow-
ing Heisenberg-Langevin equation:

Ȯ =
∑

α

(Gα[σ †,O]aα (t0)e−i(ω−ω0 )t

+ G∗
αa†

α (t0)[O, σ ]ei(ω−ω0 )t )

+ 1

2

∑
γ ([σ †,O]σ + σ †[O, σ ]) + ξO. (5)

Here, the coefficient γ = 2π
∑

α=μ,ν |Gα|2δ(ω − ω0) is the
total spontaneous emission rate of the atom and ξO is the
noise operator. Note that the total spontaneous emission
rate γ can be decomposed as γ = γg + γr , where γg =
2π

∑
μ |Gμ|2δ(ω − ω0) and γr = 2π

∑
ν |Gν |2δ(ω − ω0) are

the rates of spontaneous emission into guided and radiation
modes, respectively [25,33]. The presence of the nanofiber
leads to channeling of the spontaneous emission into guided
modes with the rate γg and modifies the rate γr of the sponta-
neous emission into radiation modes. The effects of the fiber
on the rates γg and γr and, hence, on the total spontaneous
emission rate γ occur through the dependencies of the cou-
pling coefficients Gα on the normalized mode functions e(μ)

and e(ν) [see Eqs. (2)]. The calculations of the total decay rate
and its components for a multilevel atom near a nanofiber with
the fundamental and higher-order modes have been reported
in Refs. [25,33].

We assume that the initial field is a quantum pulse
light field propagating in a superposition of guided modes
(ωNL fL pL ) with the frequency ω varying in a small inter-
val around a central frequency ωL. We introduce the label
μL = (NL fL pL ) for this integral mode. When the bandwidth
of the pulse is narrow and the field central frequency ωL

is close to the atomic transition frequency ω0, we can use
the approximation

∑
α Gαaα (t0)e−i(ω−ω0 )t ∼= GL

∫ ∞
0 aω(t0)

e−i(ω−ω0 )(t− fLz/vgL )dω. Here, GL = Gω0NL fL pL , aω = aωNL fL pL ,
and vgL = 1/β ′

L(ω0) are the coupling coefficient, the photon
operator, and the group velocity of the input guided mode,
respectively. Then we can rewrite Eq. (5) as

Ȯ =
√

2π (GL[σ †,O]atd + G∗
La†

td [O, σ ])

+ 1
2γ ([σ †,O]σ + σ †[O, σ ]) + ξO, (6)

where td = t − fLz/vgL and

at = 1√
2π

∫ ∞

0
aω(t0)e−i(ω−ω0 )t dω. (7)

We note that Eq. (6) is in agreement with Eqs. (13) and (14)
of Ref. [12].

In deriving Eq. (6), we have used the mode function for the
quasicircularly polarized mode μL = (NL fL pL ) to describe
the input field. However, this equation can also be used for
the quasilinearly polarized mode μL = (NL fLϕpol ), where the
angle ϕpol characterizes the orientation of the principal polar-
ization axis in the fiber transverse plane xy. For this mode, the
coupling coefficient is given as GL = (e−iϕpol Gω0NL fL,pL=+ +
eiϕpol Gω0NL fL,pL=−)/

√
2. Note that the rate of spontaneous

emission from the atom into the input guided mode μL is γL =
2π |GL|2. This rate characterizes the strength of the coupling
between the atom and the input field. The coupling efficiency
is characterized by the parameter ηL = γL/γ .

B. Interaction of the atom with a Fock- or coherent-state pulse

In this subsection we derive the dynamical equations for
the atom interacting with a Fock- or coherent-state quantized
light pulse. First, we consider the interaction of the atom
with a quantized pulse in a Fock state |N〉 of N photons (see
Appendix A). We assume that the atom is initially in the
ground state |g〉. We introduce the notation |g, n, 0〉 for the
state where the atom is in the ground state with n photons in
the pulse field and no photons in the other modes. We also in-
troduce the notation 〈O〉nn′ = 〈g, n, 0|O|g, n′, 0〉. Without loss
of generality, we assume that the axial coordinate of the atom
is z = 0. In this case, we have td = t . Then Eq. (6) yields [12]

〈σ̇z〉nn′ = −γ (〈σz〉nn′ + δnn′ ) − 2
√

2πn′GLFt 〈σ †〉n,n′−1

− 2
√

2πnG∗
LF ∗

t 〈σ 〉n−1,n′ ,

〈σ̇ 〉nn′ = −γ

2
〈σ 〉nn′ +

√
2πn′GLFt 〈σz〉n,n′−1, (8)

where n and n′ run from 0 to N . The initial conditions are
〈σz(t0)〉nn′ = −δnn′ and 〈σ (t0)〉nn′ = 0. It follows from these
initial conditions and Eqs. (8) that the only nonzero matrix
elements of the atomic operators are 〈σz〉nn, 〈σ †〉n,n−1, and
〈σ 〉n−1,n. The time dependencies of these matrix elements are
governed by the coupled equations [12]

〈σ̇z〉nn = −γ (〈σz〉nn + 1) − 2
√

2πnGLFt 〈σ †〉n,n−1

− 2
√

2πnG∗
LF ∗

t 〈σ 〉n−1,n,

〈σ̇ 〉n−1,n = −γ

2
〈σ 〉n−1,n +

√
2πnGLFt 〈σz〉n−1,n−1, (9)
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where n runs from 1 to N . The corresponding initial
conditions are 〈σz(t0)〉nn = −1 and 〈σ (t0)〉n,n+1 = 0. Note
that 〈σz(t )〉00 = −1 for any t � t0.

We now consider the interaction of the atom with a quan-
tized pulse in a coherent state |α〉 of complex amplitude
α (see Appendix A). We introduce the notations 〈σz〉 =
〈g, α, 0|σz|g, α, 0〉 and 〈σ 〉 = 〈g, α, 0|σ |g, α, 0〉. Then Eq. (6)
yields [10,12]

〈σ̇z〉 = −γ (〈σz〉 + 1) − 2
√

2παGLFt 〈σ †〉
− 2

√
2πα∗G∗

LF ∗
t 〈σ 〉,

〈σ̇ 〉 = −γ

2
〈σ 〉 +

√
2παGLFt 〈σz〉. (10)

Note that Eqs. (10) are the same as the equations for a two-
level atom interacting with a classical driving field.

C. Interaction of the atom with a single-photon Fock-state pulse

In this subsection, we consider the case of a single-photon
Fock-state pulse, that is, the case where the pulse is initially
in the Fock state |N〉 with the photon number N = 1. In this
case, Eqs. (9) reduce to [10,12]

Ṗ = −γ P −
√

2πGLFt Q
∗ −

√
2πG∗

LF ∗
t Q,

(11)
Q̇ = −γ

2
Q −

√
2πGLFt ,

where P = (1 + 〈g, 1, 0|σz|g, 1, 0〉)/2 and Q =
〈g, 0, 0|σ |g, 1, 0〉, with the initial conditions P(t0) = 0
and Q(t0) = 0. The quantities P and Q are the excitation
probability and the induced dipole amplitude, respectively, of
the atom. The solution of Eqs. (11) for t � t0 reads [13]

P = 2π |GL|2
∣∣∣∣
∫ t

t0

e−γ (t−t ′ )/2Ft ′dt ′
∣∣∣∣
2

(12)

and

Q = −
√

2πGL

∫ t

t0

e−γ (t−t ′ )/2Ft ′dt ′. (13)

It is clear that P = |Q|2.
Note that in the case of a coherent-state pulse with mean

photon number N̄ = |α|2 = 1, Eqs. (10) do not reduce to
Eqs. (11). The two sets of equations agree with each other
only in the case of 〈σz〉 � −1, that is, the case of weak atomic
excitation. The differences between the atomic excitation in
the case of a Fock-state pulse and that in the case of a
coherent-state pulse have been studied in [10,13]. It has been
shown that, in the lossless case, single-photon Fock-state
pulses with the optimal rising exponential shape can achieve
unit excitation probability [10,13]. Meanwhile, coherent-state
pulses with mean photon number N̄ = |α|2 = 1 can never
achieve very large excitation probabilities, regardless of their
shape [10,13].

We note that the temporal shape of the quantized single-
photon probe pulse can be arbitrary and is described by the
profile function Ft . It has been shown in Refs. [10,12,13]
that the excitation of the atom depends on the temporal
profile of the probe pulse. According to these references,
the maximal value of the excitation probability P is Pmax =
ηL = γL/γ = 2π |GL|2/γ . This value can be achieved at t = 0
for a rising exponential resonant pulse, Ft = T −1/2et/2T for

t � 0 and 0 for t > 0, with the time constant T = 1/γ . It
is worth mentioning here that the techniques for generation
of single-photon pulses of various shapes have been demon-
strated [18–22]. Below, we extend the treatment of Ref. [13]
and present the explicit analytical expressions for P and Q
in the particular cases where the shape of the single-photon
probe pulse is Gaussian, exponentially rising, or exponentially
decaying, with a possible detuning �.

1. Gaussian pulse

First, we consider the case of a Gaussian single-photon
Fock-state pulse, where the pulse form function is Ft =
(2πT 2)−1/4e−t2/4T 2−i�t . Here, T is the characteristic pulse
duration and � = ωL − ω0 is the detuning of the field central
frequency ωL from the atomic transition frequency ω0. In this
case, we find [13]

P = (πT 2/2)1/22π |GL|2e−γ t+(γ 2−4�2 )T 2/2

×
∣∣∣1 + erf

( t

2T
− γ T

2
+ i�T

)∣∣∣2
,

Q = −(πT 2/2)1/4
√

2πGLe−γ t/2+(γ−2i�)2T 2/4

×
[
1 + erf

( t

2T
− γ T

2
+ i�T

)]
. (14)

2. Rising exponential pulse

Next, we consider the case of a rising exponential single-
photon Fock-state pulse, where the pulse form function is Ft =
T −1/2et/2T −i�t for t � 0 and 0 for t > 0. In this case, we find
[13]

P = 8πT

(1 + γ T )2 + 4�2T 2
|GL|2et/T ,

Q = − 2
√

T

1 + γ T − 2i�T

√
2πGLet/2T −i�t (15)

for t � 0, and

P = 8πT

(1 + γ T )2 + 4�2T 2
|GL|2e−γ t ,

Q = − 2
√

T

1 + γ T − 2i�T

√
2πGLe−γ t/2 (16)

for t > 0. It is clear that the maximal value of the excitation
probability is Pmax = 2π |GL|2/γ = γL/γ and can be achieved
at t = 0 for a rising exponential resonant pulse with T = 1/γ

and � = 0.

3. Decaying exponential pulse

Finally, we consider the case of a decaying exponential
single-photon Fock-state pulse, where the pulse form function
is Ft = T −1/2e−t/2T −i�t for t � 0 and 0 for t < 0. In this case,
we find [13]

P = 8πT

(1 − γ T )2 + 4�2T 2
|GL|2(e−t/T + e−γ t

− 2e−t/2T −γ t/2 cos �t ),

Q = 2
√

T

1 − γ T + 2i�T

√
2πGL(e−t/2T −i�t − e−γ t/2) (17)

for t � 0, and P = Q = 0 for t < 0.
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We note that in the case where � = 0, Eqs. (14)–(17)
reduce to the results of Ref. [13].

D. Photon transmission and reflection fluxes

In this subsection we derive the expressions for the fluxes
of transmitted and reflected photons. In the framework of the
continuous-mode quantization formalism, the flux of photons
in the guided modes propagating in the direction f through
the fiber cross-sectional plane at a position z is given by [41]

I f (z, t ) =
∑
N p

〈A†
N f p(z, t )AN f p(z, t )〉, (18)

where

AN f p(z, t ) = 1√
2π

∫ ∞

0
dω aωN f p(t )e−i(ωt− f βz) (19)

is the Fourier-transformed photon operator.
Let the atom be located at a point Ra = (ra, ϕa, za). We

insert Eq. (4) into Eq. (19). Under the condition of nar-
row bandwidth, we use the approximations GωN f p(Ra) =
Gω0N f p(Ra) exp[i f β ′

0(ω − ω0)za] and β = β0 + β ′
0(ω − ω0)

to calculate the integral with respect to ω in expression (19).
In addition, we extend the lower bound of the frequency inte-
gration to −∞. This procedure artificially restores the effects
of the missing counter-rotating terms in the Hamiltonian [41].
As a result, we obtain

AN f p(z, t ) = A(in)
N f p(z, t ) +

√
2πG∗

ω0N f pe−i(ω0t− f β0z)

× σ (t − |z − za|/vg)�[ f (z − za)]

× �(t − |z − za|/vg − t0), (20)

where

A(in)
N f p(z, t ) = 1√

2π

∫ ∞

0
dω aωN f p(t0)e−i(ωt− f βz) (21)

is the injected field. In Eq. (20), the coupling coefficient
Gω0N f p is evaluated at the atomic transition frequency ω0 and
the atomic position Ra. The notation vg = 1/(dβ/dω) stands
for the group velocity and is evaluated at the atomic transition
frequency ω0. The notation �(x) stands for the Heaviside
step function, equal to zero for negative argument and one for
positive argument.

We study the case where the input guided pulse is prepared
in a Fock state of N photons, propagates in a direction fL = ±
along the fiber axis, and has a pulse shape Ft . The flux of
transmitted photons at a position z satisfying the condition
fL(z − za) > 0 is given by IT (z, t ) = I f = fL (z, t ). When we
insert Eq. (20) into Eq. (18) and take f = fL and fL(z − za) >

0, we obtain

IT (z, t )

= N
∣∣Ft− fLz/vgL

∣∣2

+
∑
N p

γN fL p〈σee(t − |z − za|/vg)〉NN

+
√

2πNGLFt− fLz/vgL
〈σ †(t − |z − za|/vgL )〉N,N−1

+
√

2πNG∗
LF ∗

t− fLz/vgL
〈σ (t − |z − za|/vgL )〉N−1,N , (22)

where γN f p = 2π |Gω0N f p|2 is the rate of spontaneous emis-
sion into the guided mode N f p.

Meanwhile, the flux of reflected photons at a position z
satisfying the condition fL(z − za) < 0 is given by IR(z, t ) =
I f =− fL (z, t ). When we insert Eq. (20) into Eq. (18) and take
f = − fL and fL(z − za) < 0, we obtain

IR(z, t ) =
∑
N p

γN ,− fL,p〈σee(t − |z − za|/vg)〉NN . (23)

Without loss of generality, we assume that the atom is
located at a point with the axial coordinate za = 0. In addition,
we assume that in Eqs. (22) and (23) the group delay |z|/vg for
all guided modes N f p is small compared to the characteristic
pulse duration T . Then, Eqs. (22) and (23) reduce to

IT = N |Ft |2 + γ (fw)
g 〈σee〉NN

+
√

2πN (GLFt 〈σ †〉N,N−1 + G∗
LF ∗

t 〈σ 〉N−1,N ) (24)

and

IR = γ (bw)
g 〈σee〉NN , (25)

where γ (fw)
g = γ

( fL )
g and γ (bw)

g = γ
(− fL )

g are the rates of spon-
taneous emission into guided modes in the forward direction
f = fL and the backward direction f = − fL, respectively.
Here, γ

( f )
g = ∑

N p γN f p is the rate of spontaneous emission
into guided modes with the propagation direction f .

The expression on the right-hand side of Eq. (24) has
three terms. The first term, N |Ft |2, is the flux of the incident
field. The second term, γ (fw)

g 〈σee〉NN , is the rate of scattering
into guided modes in the forward direction f = fL. The last
term, proportional to

√
N (GLFt 〈σ †〉N,N−1 + c.c.), describes

the effect of the interference between the incident and forward
scattered fields. Meanwhile, the expression on the right-hand
side of Eq. (25) is the rate of scattering into guided modes in
the backward direction f = − fL. According to Eq. (25), the
photon reflection flux IR and the atomic excitation probability
〈σee〉NN are proportional to each other. Consequently, the time
dependencies of IR and 〈σee〉NN have the same shape.

We introduce the notation Irad = γr〈σee〉NN for the rate
of scattering into radiation modes, where γr is the rate of
spontaneous emission into radiation modes. We find the rela-
tion IT + IR + Irad + 〈σ̇ee〉NN = N |Ft |2, in agreement with the
energy conservation law.

We introduce the notations PT = ∫ ∞
t0

IT (t )dt and PR =∫ ∞
t0

IR(t )dt for the mean numbers of transmitted and reflected
photons, respectively. We also introduce the notation Prad =∫ ∞

t0
Irad(t )dt for the mean number of photons scattered into

radiation modes. We find PT + PR + Prad = N . The extinction
of the pulse is Pext = N − PT = PR + Prad.

In the case of single-photon pulses (N = 1), we can rewrite
Eqs. (24) and (25) in the form

IT = |Ft |2 + γ (fw)
g P +

√
2π (GLFt Q

∗ + G∗
LF ∗

t Q) (26)

and

IR = γ (bw)
g P. (27)

In addition, we find IT + IR + Irad + Ṗ = |Ft |2 and PT + PR +
Prad = 1. Equations (26) and (27) are in agreement with the
results of Ref. [5] for single-photon light pulses. With the help
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of the relation P = |Q|2, valid for the case of single-photon
pulses, we can rewrite Eq. (26) as IT = (γ (fw)

g − γL )P + |Ft +√
2πG∗

LQ|2. In the particular case where γ (fw)
g = γL, we ob-

tain IT = |Ft + √
2πG∗

LQ|2, in agreement with the results of
Ref. [22].

In the case of single-photon pulses, PT and PR are the
probabilities of transmission and reflection, respectively, Prad

is the probability of scattering into radiation modes, and
Pext = 1 − PT = PR + Prad is the extinction probability. When
we integrate the atomic excitation probability P(t ) over the
time t for the whole interaction process, we obtain the quantity
τe = ∫ ∞

t0
P(t )dt , which can be called the effective excitation

time of the atom. With the help of Eqs. (15)–(17), we can show
that single-photon rising and decaying exponential pulses
with the same pulse duration T produce the same effective
excitation time

τe = 4T
γL

γ

1 + γ T

(1 + γ T )2 + 4�2T 2
. (28)

Hence, the reflection probability PR = γ (bw)
g τe, the probability

of emission into radiation modes Prad = γrτe, the extinction
probability Pext = (γ (bw)

g + γr )τe, and the transmission proba-
bility PT = 1 − (γ (bw)

g + γr )τe do not depend on whether the
pulse is exponentially rising or decaying [22].

We note that in the case where the injected pulse is pre-
pared in a coherent state |α〉, we have

IT = |α|2|Ft |2 + γ (fw)
g 〈σee〉 +

√
2π (αGLFt 〈σ †〉

+ α∗G∗
LF ∗

t 〈σ 〉) (29)

and

IR = γ (bw)
g 〈σee〉. (30)

It is worth mentioning that by using appropriate expres-
sions for the coupling coefficient GL, we can apply Eqs. (24)
and (25) to not only quasicircularly polarized modes but also
quasilinearly polarized modes.

E. Chiral coupling between an atom and a quasilinearly
polarized hybrid guided field

In this subsection, we study the dependence of the in-
teraction between the atom and the guided probe pulse on
the propagation direction of the pulse. We assume that the
probe pulse is prepared in a quasilinearly polarized hybrid
guided mode μL of the nanofiber. Quasilinearly polarized
hybrid modes are linear superpositions of counterclockwise
and clockwise quasicircularly polarized hybrid modes. The
amplitude of the guided field in a quasilinearly polarized
hybrid mode can be written in the form [44]

e(μL ) =
√

2[er cos(lϕ − ϕpol ) r̂ + ieϕ sin(lϕ − ϕpol ) ϕ̂

+ fLez cos(lϕ − ϕpol ) ẑ], (31)

where er , eϕ , and ez are the cylindrical components of the
profile function of the corresponding quasicircularly polarized
hybrid guided modes and are evaluated at the frequency ω =
ω0. The phase angle ϕpol determines the orientation of the
symmetry axes of the mode profile in the fiber transverse
plane. In particular, the specific values ϕpol = 0 and π/2

define two orthogonal polarization profiles, called even and
odd, respectively. We again use the notation R = (r, ϕ, z) for
the position of the atom.

It is interesting to note the presence of the factor fL in
front of the function ez in expression (31). The occurrence
of this factor is a consequence of spin-orbit coupling of light
carrying transverse spin angular momentum [34–40]. Indeed,
the densities of the transverse components of the electric spin
of the probe field mode are ρ

spin
x,y ∝ Im [e(μL )∗ × e(μL )]x,y ∝

fL|ez|.
The coupling coefficient GL for the atom and the quasilin-

early polarized hybrid guided field is given as

GL =
√

ω0β
′
L

4πε0 h̄
(d · e(μL ) )ei fLβLz, (32)

where βL and β ′
L are evaluated at the frequency ω = ω0. We

assume that the atom is located on the positive side of the x
axis, that is, ϕ = 0. When we insert Eq. (31) into Eq. (32), we
obtain

|GL(ϕpol = 0)| =
√

ω0β
′
L

2πε0h̄
|dxer + fLdzez| (33)

and

|GL(ϕpol = π/2)| =
√

ω0β
′
L

2πε0h̄
|dyeϕ|. (34)

Here, dx = dr , dy = dϕ , and dz are the components of the
dipole matrix element vector d in the Cartesian and cylindrical
coordinate systems.

According to Eq. (34), the absolute value |GL| of the
coupling coefficient GL for the quasilinearly polarized guided
mode of the odd type (with the polarization angle ϕpol = π/2)
does not depends on the propagation direction fL. The reason
is that the polarization of the field at the position of the atom
is linear.

Meanwhile, Eq. (33) shows that the absolute value |GL|
of the coupling coefficient GL for the quasilinearly polarized
guided mode of the even type (with the polarization angle
ϕpol = 0) depends on the field propagation direction fL if

Re (dxd∗
z ere∗

z ) �= 0. (35)

It is known that both the radial component er and the axial
component ez of the mode function of quasicircularly polar-
ized hybrid modes are nonzero and their relative phase is π/2
[42,44]. Therefore, we have Re (ere∗

z ) = 0 and Im (ere∗
z ) �= 0.

Hence, condition (35) reduces to the condition

Im (dxd∗
z ) �= 0 (36)

for the components dx and dz of the atomic dipole matrix
element vector d. Note that the dipole D of the atom is given
as D = 〈dσ †eiω0t + d∗σe−iω0t 〉. Condition (36) means that the
corresponding dipole D of the atom is elliptically polarized
and, hence, rotates elliptically with time in the meridional
plane zx, that is, the atom is chiral. The ellipticity vector of
the dipole of this atom overlaps with the ellipticity vector
of the quasilinearly polarized field mode of the even type
[30–33,40].
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It is clear that the directional dependence of the absolute
value of the coupling coefficient GL leads to the directional
dependence of the coupling parameter γL = 2π |GL|2 and,
hence, to the directional dependence of the atomic excitation
probability P [see Eq. (12)]. Thus, the chiral behavior of the
atomic excitation is a consequence of the facts that, due to
spin-orbit coupling of light carrying transverse spin angular
momentum, the probe field in a quasilinearly polarized guided
mode is a chiral field and, due to the rotation of the electric
dipole with time in space, the atom is a chiral object.

Similar to the probe-atom coupling parameter γL, the rate
γ

( f )
g of spontaneous emission into guided modes in the direc-

tion f under condition (36) is asymmetric with respect to the
opposite directions f = + and f = − [30–33,40]. The direc-
tional dependence of the decay rate γ

( f )
g is also a consequence

of spin-orbit coupling of light carrying transverse spin angular
momentum [34–40]. It is due to the existence of a nonzero
longitudinal component of the field in the presence of the
nanofiber. This component oscillates in phase quadrature with
respect to the radial transverse component and, hence, makes
the field chiral. The directional dependencies of the coupling
parameter γL and the decay rate γ

( f )
g determine the directional

dependencies of the transmission and reflection fluxes and the
corresponding transmission and reflection probabilities.

We note that the breakage of Lorentz reciprocity is piv-
otal for designing optical isolators and circulators [45]. In
conventional and macroscopic nonreciprocal optical devices,
nonreciprocity is induced by magneto-optical materials in
conjunction with a static magnetic field, a time modulation of
the optical properties, or an optical nonlinearity [45]. When
a magnetic field is applied to a magneto-optical material
to break Lorentz reciprocity, the direction of coupling is
externally imposed. However, nonreciprocity that relies on
chiral light-matter interaction is based on spin-orbit locking of
photons in guided light and on the ellipticity of the transition
polarization of the quantum emitter. For chiral coupling of an
emitter to a reciprocal waveguide, both coupling directions
are available for applications and protocols depending on the
transition polarization [40].

IV. NUMERICAL RESULTS

In this section, we present the results of numerical cal-
culations for the interaction between the atom and a quan-
tized light pulse in a guided mode of the nanofiber. We
use the atomic transition wavelength λ0 = 852 nm and the
natural linewidth γ0/2π = 5.2 MHz, which correspond to
the transitions in the D2 line of atomic cesium. The atomic
dipole matrix element d is calculated from the formula γ0 =
d2ω3

0/3πε0h̄c3 for the natural linewidth of a two-level atom
[41,43]. We note that a two-level approximation can be valid
in a multilevel atom when we use a uniform magnetic field to
split Zeeman levels and tune a light field to resonance with the
desired transition.

In order to maximize the coupling efficiency between
the guided probe field and the atom, we use a single-mode
nanofiber. We assume that the fiber radius is a = 200 nm, and
the refractive indices of the fiber and the vacuum cladding are
n1 = 1.45 and n2 = 1, respectively. This thin fiber supports

only the fundamental mode HE11 at the wavelength λ0 of
the atom considered. The quasilinearly polarized HE11 modes
with the polarization angles ϕpol = 0 and π/2 of the nanofiber
are called x- and y-polarized guided modes, respectively. We
assume that the injected field is prepared in the x-polarized
guided mode. We note that the spatial intensity distribution
of the injected field is maximal on the x axis, and the local
polarization of the field is elliptical on this axis. In order to
get a chiral effect in the interaction between the atom and
the probe guided light field, we consider the case where the
atom is positioned on the positive side of the x axis and
the atomic dipole rotates in the meridional plane containing
the atomic position. In this case, the dipole matrix element
vector d is a complex vector in the zx plane. To be concrete,
we take d = d (ix̂ − ẑ)/

√
2. This matrix element corresponds

to a σ+-type transition between the magnetic levels of an
alkali-metal atom that are specified with the use of the axis
y as the quantization axis. Note that the above choice of
the quantization axis and the type of the atomic transition
polarization correspond to the conditions of the experiment
on directional spontaneous emission of atoms into a nanofiber
[32]. Since condition (36) is satisfied, the absolute value of
the coupling coefficient for the atom and the x-polarized
fundamental mode depends on the field propagation direction
[see Eq. (33)]. Meanwhile, since dy = 0, the atom does not
interact with the y-polarized fundamental mode [see Eq. (34)].
Hence, we have γL = γ

( fL )
g = γ (fw)

g , that is, the probe-atom

coupling parameter γL is equal to the rate γ
( fL )

g of spontaneous
emission into guided modes in the forward direction fL.

We calculate the total spontaneous emission rate γ , the
probe-atom coupling parameter γL = 2π |GL|2, and the cou-
pling efficiency ηL = γL/γ . For these calculations, we use
the method of Refs. [25,33] and employ the fiber eigenmode
functions e(μ) for guided modes and the fiber-dependent mode
functions e(ν) for radiation modes [25,33,42]. We plot in
Fig. 2 the radial dependencies of these characteristics. We
observe from the figure that γ , γL, and ηL reduce quickly
with increasing distance from the atom to the fiber surface.
Figures 2(b) and 2(c) show that the values of the coupling
parameter γL and the coupling efficiency ηL for the probe
field with the propagation direction fL = + (solid red lines)
are larger than those for the probe field with the propagation
direction fL = − (dashed blue lines). It follows from the
dependence of γL on fL and the relation γL = γ (fw)

g that the
rates γ (fw)

g and γ (bw)
g of spontaneous emission into guided

modes in the forward and backward directions also depend
on fL. We show below that the directional dependencies of the
coupling parameter γL and the rates γ (fw)

g and γ (bw)
g lead to the

directional dependencies of the atomic excitation probability,
the photon transmission flux, and the photon transmission
probability.

A. Atomic excitation probability

We use Eqs. (11) or the analytical expressions (12)–(17)
to calculate the internal state of the atom interacting with a
single-photon guided light pulse. We plot in Fig. 3 the time
dependence of the atomic excitation probability P for the case
of a single-photon Gaussian guided light pulse. We observe
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(b)
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0
L
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fL= 

FIG. 2. Radial dependencies of the total spontaneous emission
rate γ (a), the probe-atom coupling parameter γL = 2π |GL|2 (b),
and the coupling efficiency ηL = γL/γ (c). The fiber radius is a =
200 nm. The refractive indices of the silica core and the vacuum
cladding are n1 = 1.45 and n2 = 1, respectively. The atom is po-
sitioned on the x axis. The input field mode μL is quasilinearly
polarized in the x direction and propagates along the fiber axis in
the direction fL = + (solid red lines) or − (dashed blue lines).
The dipole matrix element vector of the atom is d = d (ix̂ − ẑ)/

√
2.

The dipole magnitude corresponds to the natural linewidth γ0/2π =
5.2 MHz of the D2 line of atomic cesium with the transition wave-
length λ0 = 852 nm.

0t

P
|F

t |2 /
0

r/a = 1
= 1.5
= 2

Gaussian pulse

P

fL=+

fL= 

(a)

(b)

(c)

FIG. 3. Excitation of the atom by a single-photon Gaussian light
pulse in the x-polarized fundamental mode HE11. (a) Temporal pulse
profile function |Ft |2. (b), (c) Time dependence of the atomic exci-
tation probability P of the atom interacting with the pulse with the
propagation direction fL = + (b) or fL = − (c). The radial position
of the atom is r/a = 1 (solid red lines), 1.5 (dashed green lines), and
2 (dotted blue lines). The quantized pulse is at exact resonance with
the atom. The characteristic pulse length is T = 1/γ0 � 30 ns. Other
parameters are as for Fig. 2. The vertical dotted black line indicates
the pulse peak time t = 0.

0t
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= 1.5
= 2

Rising exponential pulse
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P
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|F
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0

FIG. 4. Excitation of the atom by a single-photon rising ex-
ponential light pulse in the x-polarized fundamental mode HE11.
(a) Temporal pulse profile function |Ft |2. (b), (c) Time dependence
of the atomic excitation probability P of the atom interacting with
the pulse with the propagation direction fL = + (b) or fL = − (c).
Other parameters are as for Fig. 3.

from the solid red curve of Fig. 3(b) that, for an atom at
the fiber surface, the excitation probability P can be as large
as ≈0.13, even though the incident guided light pulse has
just a single photon. Comparison between different curves of
Fig. 3(b) as well as Fig. 3(c) shows that the peak value of the
excitation probability decreases with increasing distance from
the atom to the fiber surface. This behavior is a consequence
of the evanescent-wave nature of the guided field. We observe
that the arrival of the peak is delayed by a significant amount
of time, which is comparable to the free-space lifetime τ0 =
1/γ0 of the atom. More importantly, comparison between
Figs. 3(b) and 3(c) shows that the excitation probability P
strongly depends on the propagation direction fL of the pulse.
The directional dependence of P is a chiral effect and is a
consequence of spin-orbit coupling of guided light carrying
transverse spin angular momentum [34–40].

We plot in Figs. 4 and 5 the time dependencies of the
atomic excitation probability P for single-photon rising and
decaying exponential pulses. We observe that the excitation
probability of the atom substantially depends on the pulse
shape [10,12,13,22]. Comparison between Figs. 3–5 shows
that the rising exponential pulse shape is more favorable to
excite atoms than the other pulse shapes. The magnitude of P
can be as high as ≈0.2, achieved for a rising exponential pulse
interacting with an atom at the fiber surface [see the solid red
line in Fig. 4(b)]. Comparison between Figs. 4(b) and 4(c)
and between Figs. 5(b) and 5(c) confirms that, like in the case
of Fig. 3, the excitation probability P in the cases of Figs. 4
and 5 strongly depends on the propagation direction fL of the
pulse. We observe again that the peak value of P decreases
with increasing distance from the atom to the fiber surface.

The relative difference between the excitation probabilities
P± = P for the opposite propagation directions fL = ± can
be characterized by the asymmetry parameter ηasym = (P+ −
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|F
t |2 /

0

FIG. 5. Excitation of the atom by a single-photon decaying ex-
ponential light pulse in the x-polarized fundamental mode HE11.
(a) Temporal pulse profile function |Ft |2. (b), (c) Time dependence
of the atomic excitation probability P of the atom interacting with
the pulse with the propagation direction fL = + (b) or fL = − (c).
Other parameters are as for Fig. 3.

P−)/(P+ + P−). It follows from Eq. (12) that ηasym = (γ (+)
L −

γ
(−)

L )/(γ (+)
L + γ

(−)
L ), where γ

(±)
L = γL for fL = ±. It is clear

that the asymmetry parameter ηasym does not vary in time
and does not depend on the pulse shape. We observe these
features in Fig. 6, where the asymmetry parameter ηasym is
plotted as a function of time for single-photon light pulses of
arbitrary shape. We note that the aforementioned features are
not observed in the cases of classical and quantized coherent-
state pulses.

0t

r/a = 1
= 1.5
= 2

as
ym

FIG. 6. Time dependence of the asymmetry parameter ηasym for
the excitation probability of the atom interacting with a single-
photon guided light pulse. The shape of the pulse is arbitrary. Other
parameters are as for Fig. 3.
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/
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= 1.5
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fL= + or 

FIG. 7. Time dependence of the photon reflection flux IR for a
single-photon Gaussian guided light pulse. The propagation direction
of the pulse is fL = + or −. Other parameters are as for Fig. 3.

B. Photon reflection and transmission fluxes

We use Eqs. (26) and (27) to calculate the photon reflection
flux IR and the photon transmission flux IT . We plot in Figs. 7
and 8 the results of calculations for the time dependencies of
the fluxes IR and IT for the atom interacting with a single-
photon Gaussian pulse. Comparison between Figs. 3 and 7
shows that the time dependencies of the atomic excitation
probability P and the photon reflection flux IR have the same
shape, in agreement with Eq. (27). Like the peak of P in Fig. 3,
the peak of IR in Fig. 7 is delayed by a significant amount of
time.

The numerical results presented in Fig. 7 show that, unlike
the atomic excitation probability P, the photon reflection flux
IR does not depend on the propagation direction fL of the
probe pulse. This feature is a consequence of the fact that the

0t

Gaussian pulse

(b)

(a)

I T 
/

0

r/a = 1
= 1.5
= 2

fL=+

fL= 

FIG. 8. Time dependence of the photon transmission flux IT for a
single-photon Gaussian guided light pulse. The propagation direction
of the pulse is fL = + (a) or − (b). Other parameters are as for Fig. 3.
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FIG. 9. Time dependence of the photon reflection flux IR for a
single-photon rising exponential guided light pulse. The propagation
direction of the pulse is fL = + or −. Other parameters are as for
Figs. 3 and 4.

reflection involves two processes, namely, the atomic excita-
tion by the pulse propagating in one direction [see Eq. (12)]
and the subsequent photon reemission into the guided modes
propagating in the opposite direction [see Eq. (27)]. Due to
this fact, the dependence of IR on fL is contained in the
proportionality factor γ (bw)

g γL [see Eqs. (12) and (27)]. For
the considered atomic dipole and guided probe pulse, we have
γL = γ (fw)

g . Therefore, the proportionality factor is γ (bw)
g γL =

γ (bw)
g γ (fw)

g = γ (+)
g γ (−)

g . It is clear that this factor does not
depend on fL and hence neither does the reflection flux IR.

Comparison between Figs. 8(a) and 8(b) shows that the
photon transmission flux IT depends on the field propagation
direction fL. In the case of the solid red curve in Fig. 8(a),

0t

Rising exponential pulse

(b)

(a)

I T 
/

0

r/a = 1
= 1.5
= 2

fL=+

fL= 

FIG. 10. Time dependence of the photon transmission flux IT for
a single-photon rising exponential guided light pulse. The propaga-
tion direction of the pulse is fL = + (a) or − (b). Other parameters
are as for Figs. 3 and 4.
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= 1.5
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FIG. 11. Time dependence of the photon reflection flux IR for a
single-photon decaying exponential guided light pulse. The propaga-
tion direction of the pulse is fL = + or −. Other parameters are as
for Figs. 3 and 5.

where fL = + and r/a = 1, we observe a significant advance
(negative delay) of the time for the arrival of the peak of the
pulse. This advance is related to the anomalous dispersion of
the susceptibility of resonant two-level atoms [43].

We plot in Figs. 9–12 the time dependencies of the photon
reflection and transmission fluxes IR and IT for single-photon
rising and decaying exponential pulses. We observe that the
temporal shapes of the reflection and transmission fluxes
substantially depend on the pulse shape. Like in the case
of Gaussian pulses, we observe in the cases of rising and
decaying exponential pulses that the reflection flux IR does
not depend on the pulse propagation direction fL, while the
transmission flux IT depends on fL.

0t

Decaying exponential pulse

(b)

(a)

I T 
/

0

r/a = 1
= 1.5
= 2

fL=+

fL= 

FIG. 12. Time dependence of the photon transmission flux IT

for a single-photon decaying exponential guided light pulse. The
propagation direction of the pulse is fL = + (a) or − (b). Other
parameters are as for Figs. 3 and 5.
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= 1.5
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Gaussian pulse

FIG. 13. Dependence of the reflection probability PR on the field
detuning � of a single-photon Gaussian guided light pulse. The
propagation direction of the pulse is fL = + or −. Other parameters
are as for Fig. 3.

We observe from Figs. 8(b), 10(b), and 12(b) that, in the
case of the propagation direction fL = −, the transmission
flux IT does not depend much on the radial position r of
the atom. The reason is that, in the case of fL = −, the
excitation probability P of the atom is small and therefore the
transmission flux IT is almost the same as the incident field
flux |Ft |2.

C. Photon reflection and transmission probabilities

We calculate the photon reflection probability
PR = ∫ ∞

t0
IR(t )dt and the photon transmission probability

PT = ∫ ∞
t0

IT (t )dt by integrating the corresponding fluxes. We
plot in Figs. 13 and 14 the dependencies of PR and PT on the

(MHz)

(b)

(a)

P T

r/a = 1
= 1.5
= 2

fL=+

fL= 

Gaussian pulse

FIG. 14. Dependence of the transmission probability PT on the
field detuning � of a single-photon Gaussian guided light pulse.
The propagation direction of the pulse is fL = + (a) or − (b). Other
parameters are as for Fig. 3.

(MHz)

P R

r/a = 1
= 1.5
= 2 fL= + or 

Rising or decaying exponential pulse

FIG. 15. Dependence of the reflection probability PR on the field
detuning � of a single-photon rising or decaying exponential guided
light pulse. The propagation direction of the pulse is fL = + or −.
Other parameters are as for Figs. 3–5.

field detuning � = ωL − ω0 for a single-photon Gaussian
pulse. We depict in Figs. 15 and 16 the corresponding results
for single-photon rising and decaying exponential pulses.
It is clear that the curves are symmetric with respect to �.
According to the numerical results presented in Figs. 13 and
15, the reflection probability PR has the same magnitude
for pulses with the opposite propagation directions fL = ±.
This feature occurs as a consequence of the fact that the
photon reflection flux IR does not depend on the propagation
direction fL of the pulse. Comparison between Figs. 14(a)
and 14(b) and between Figs. 16(a) and 16(b) shows that the
transmission probability PT depends on the field propagation
direction fL. We observe from Figs. 13–16 that the linewidths

(MHz)

(b)

(a)

P T

r/a = 1
= 1.5
= 2

fL=+

fL= 

Rising or decaying exponential pulse

FIG. 16. Dependence of the transmission probability PT on the
field detuning � of a single-photon rising or decaying exponential
guided light pulse. The propagation direction of the pulse is fL = +
(a) or − (b). Other parameters are as for Fig. 3–5.
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of the curves for the frequency dependencies of PR and PT

increase with decreasing distance from the atom to the fiber
surface. This feature is a consequence of the dependence of
the total decay rate γ on the radial position of the atom [see
Fig. 2(a)]. The numerical results presented in Figs. 15 and
16 show that the probabilities PR and PT do not depend on
whether the single-photon probe pulse is exponentially rising
or decaying. This result is valid for an arbitrary detuning of
the field and is in agreement with the results of Ref. [22] for
the extinction probability Pext = 1 − PT of a single photon
interacting with a single trapped atom at exact resonance.
Comparison between the curves of Figs. 13–16 shows that,
for increasing distance from the atom to the fiber surface,
the reflection probability PR decreases and the transmission
probability PT increases.

V. SUMMARY

In conclusion, we have studied the interaction between
a single two-level atom and a single-photon probe pulse
in a guided mode of a nanofiber. We have focused on the
situation of chiral interaction where the atom has a dipole
rotating in the meridional plane of the nanofiber and the probe
pulse is quasilinearly polarized along the radial direction of
the position of the atom in the fiber transverse plane. We
have shown that, for increasing distance from the atom to
the fiber surface, the peak atomic excitation probability and
the photon reflection probability decrease, while the photon
transmission probability increases. We have found that the
atomic excitation probability, the photon transmission flux,
and the photon transmission probability depend on the propa-
gation direction of the probe pulse along the fiber axis. These
directional dependencies are the consequences of spin-orbit
coupling of light carrying transverse spin angular momentum.
We have shown that, unlike the atomic excitation probability,
the asymmetry parameter for this characteristic does not vary
in time and does not depend on the probe pulse shape. Unlike
the photon transmission flux and the photon transmission
probability, the reflection flux and the reflection probability do
not depend on the propagation direction of the probe pulse. In
the case of single-photon Gaussian pulses, we have observed a
time delay of the peak of the photon reflection flux and a time
advance of the peak of the photon transmission flux. We have
shown that, for an arbitrary detuning, the reflection probability
and the transmission probability do not depend on whether the
pulse is exponentially rising or decaying.

Our results are important, as they can be used to control
and manipulate the directional dependence of the interaction
between a single atom and a single-photon guided light pulse.
They can be envisioned to have significant influence on on-
going and future experiments in nanofiber quantum optics.
Due to the high efficiencies that can be achieved for coupling
into the fiber, our scheme could be more efficient than the

scheme for single-photon scattering by a single atom in free
space [22]. Our scheme can also be extended to be used as
a one-atom switch for single-photon routing controlled by a
single photon [4]. Compared to the microcavity-based system
[4], a nanofiber-based system is likely to be less efficient,
though somewhat simpler in design.
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APPENDIX A: FOCK AND COHERENT STATES
OF QUANTIZED LIGHT PULSES

Quantized light pulses are described by the continuous-
mode quantization formalism [41]. We briefly summarize
below the key points of this description [10,12,41].

A quantized light pulse can be considered as a photon wave
packet. The photon wave-packet creation operator is defined
as [41]

A† =
∫ ∞

−∞
Ft a

†
t dt =

∫ ∞

0
Fωa†

ωdω, (A1)

where a†
t and a†

ω = a†
ω(t0) are the photon creation operators in

the time and frequency domains, respectively, and Ft and Fω

are the temporal shape and spectral distribution of the wave
packet. They are related by the Fourier transformation

at = 1√
2π

∫ ∞

0
e−i(ω−ω0 )t aωdω,

Ft = 1√
2π

∫ ∞

0
e−i(ω−ω0 )t Fωdω. (A2)

The amplitudes Ft and Fω are normalized as
∫ ∞
−∞ |Ft |2dt =∫ ∞

0 |Fω|2dω = 1.
The Fock state of the wave packet with the photon number

n = 0, 1, 2, . . . is defined as [41]

|n〉 = 1√
n!

(A†)n|0〉. (A3)

The Fock state |n〉 has the properties at |n〉 = √
nFt |n −

1〉, aω|n〉 = √
nFω|n − 1〉, A|n〉 = √

n|n − 1〉, and A†|n〉 =√
n + 1|n + 1〉.
The coherent state of the wave packet with the complex

amplitude α is defined as [41]

|α〉 = e−|α|2/2
∑

n

αn

√
n!

|n〉. (A4)

It has the properties at |α〉 = αFt |α〉, aω|α〉 = αFω|α〉, and
A|α〉 = α|α〉.

In the continuous-mode quantization formalism, the
photon number operator is defined as n̂ = ∫ ∞

−∞ a†
t at dt =∫ ∞

0 a†
ωaωdω [41]. We have n̂|n〉 = n|n〉 and 〈α|n̂|α〉 = |α|2.
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[8] M. Stobińska, G. Alber, and G. Leuchs, Europhys. Lett. 86,
14007 (2009).

[9] E. Rephaeli, J.-T. Shen, and S. Fan, Phys. Rev. A 82, 033804
(2010).
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