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In a sequence of single spins interacting longitudinally with a mechanical oscillator, and using the micromaser
model with random injection, we show that after an appropriate postselection of each spin, a phonon laser
analog with Poisson statistics is created with nearly perfect coherence, evidenced by the second order coherence
function that goes asymptotically to one. The nonlinear gain of the system depends crucially on the properly
postselected spin state as well as the pump. Our model and results suggest that the mechanism of interaction
followed by a postselected state or partial trace (common in laser and maser theory) of the spins may create the
coherent vibrational radiation. However, for situations where the mechanical losses are high and it is impossible
to decrease these, then the heralded postselection can be the only resource to get phonon lasing if compared to the
partial trace operation. These ideas and results may be useful for further theoretical and technical developments.
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I. INTRODUCTION

A quantum system coupled to the motion of a micro- or
nanofabricated mechanical oscillator has become of pivotal
importance in realizing quantum technological tasks. Myriad
applications such as cooling of phonon modes to enhance
sensing [1–3], exploration of quantum effects [4–9] and others
have been realized. Over the last decades, besides cooling or
creating quantum vibrational states [10–12], there has been
a great interest in the research of generating a phonon laser
effect. Some theoretical proposals include vibrational amplifi-
cation of a single trapped ion [13], nanomechanical analog of
a laser [14], and phonon laser effects in nanomagnets [15]. On
the experimental side, there have been several results related
to ultrasonic pulses by maser action [16], stimulated emission
of phonons in ruby [17,18], and stimulated emission in an
acoustic cavity [19]. More recently, a phonon laser was re-
alized using a single trapped ion and two laser beams [20], in
a microcavity system coupled to a radio frequency mechanical
mode [21], in an electromechanical resonator [22], and in an
optomechanical system with a silica nanosphere levitating in
an optical tweezer [23].

From the history of the L(M)aser development we know
that many kind of systems and concepts were proposed to
reach the ultimate effect: Amplification of radiation by stimu-
lated emission. Hence, this impressive experience drove the
community to find the feasible mechanisms for a phonon
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laser analog, which presents nowadays different technological
challenges. In the spirit of this idea, we propose here to take
into account the richness of the physical effects discovered in
the last years by using the hybrid systems, usually composed
by the quantum systems and mesoscopic object as mechanical
oscillator/resonator, metamaterial, etc., Refs. [24–26] Addi-
tionally to the richness and effectiveness of the hybrid system,
we propose to include also the advantages of the postselective
measurement, proven to play a key role as found in some
recent theoretical and experimental investigations [10–12,27–
31].

Measurements in quantum mechanics are usually de-
scribed by the interaction of a system we want to measure and
the measurement apparatus in such a way that the modification
of the probe state depends on the value of the observable. If
this interaction is strong, and the apparatus is represented by
a narrow wave function, as compared to the spectrum gaps
of our observable, we get the usual von Neumann scenario,
where the state of the system is strongly modified by the mea-
surement. On the other hand, Aharonov et al. [33] proposed an
idea of weak measurements combined with the pre- and post-
selections, where the measurement apparatus was represented
by a state with a very large uncertainty, when compared with
the typical distance between the eigenvalues of a given ob-
servable. As a result, one can get, under certain conditions, an
amplification of a small effect, and the final state of our system
is hardly modified at all. Although there were some claims that
the amplification obtained from weak interaction followed by
postselection had a classical nature [34], it was later proven
to be of quantum origin [35]. There is a large amount of
literature in connection to successfully realized postselection
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measurements in different setups [36–38] and weak value am-
plification (WVA), on theoretical and experimental grounds.
In particular, WVA has been used to estimate small parameters
like precision frequency measurements with interferometric
weak values [39], enlarge birefringent effects [40], or sensitive
estimation of angular rotations of a classical beam, getting an
amplification as big as one hundred [41], just to mention a
few.

Finally, WVA has become crucial to observe directly the
wave function and trajectory in a two-slit experiment [42],
and single photon amplification, both as a nonlinear effect
or in an optomechanical interaction [28,29]. These ideas will
prove useful for the proposed phonon laser model in a spin-
mechanical system pumped by a combination of randomly
injected spins and postselection of particular spin states. As
demonstrative examples we consider the cases where the
lasing is realized within the mechanisms of postselection with
successful and unsuccessful readouts, also with the partial
tracing operation. On the other hand, the most important result
we want to emphasize in this work is that by using the advan-
tage of the controled post-selection protocols [10,30–32] it is
possible to amplify considerably the effect of lasing and so,
for situations where the mechanical losses are high enough,
then the heralded postselection with the optimal initial and
final states (nearly orthogonal) is the only resource to realize
phonon lasing if compared to the partial trace operation under
the optimal initial state, which is spin “up” or “down” in this
case. To the best of our knowledge, such a phonon lasing
model is an original one, particularly under the framework
of the micromaser theory together with the postselective
measurement of the spin interacting nonresonantly with a me-
chanical oscillator. We point out that this proposal comes as a
logical continuation of our previous work [11,12], where we
demonstrated several interesting effects as a consequence of
the pre- and postselective measurements applied for a hybrid
system with the spin-mechanical longitudinal coupling [9,10],
i.e., interaction without energy exchange.

II. METHODS

A. Model of phonon maser assisted by postselection

In this work we present as a theoretical model, an al-
ternative scheme for a phonon laser, and will show that in
some cases the pre- and postselective measurements play an
important role to obtain and amplify the lasing effect. To
understand better the impact of the postselection on the lasing
effect we will present the comparison with the case of spin
tracing operation, which is the standard method in the laser
theory. For our phonon lasing proposal we are inspired by the
one-atom maser (micromaser) like model [43–45] by applying
it to a hybrid system as in Ref. [11], where a mechanical
oscillator interacts longitudinally with a spin during a fixed
short time, τ . At the end of the interaction, we postselect a
state of the spin, with a certain probability. If this process is
successful, the oscillator relaxes a longer time, i.e., �t � τ ,
under the action of the thermal bath until the next spin is ready
to interact. These processes of interaction, postselection, and
relaxation continue until the mechanics reaches a phonon
steady-state with a nearly Poisson distribution plus phonon
amplification, hence showing phonon lasing.

The main idea is pictorially represented in Fig. 1 with a
sequence of spin qubits coupled longitudinally [9–11] to a me-
chanical oscillator, with specified pre- and postselected spin
states. This elementary system is described in the interaction
picture by (with h̄ = 1)

Ĥ = b̂†b̂ − λσ̂z(b̂† + b̂), (1)

where λ = λ0/ωm is the scaled coupling strength, λ0 the direct
spin-mechanical coupling interaction and ωm the oscillator
frequency; b̂ stands for the annihilation bosonic operator. We
assume the oscillator to be initially in a thermal state ρ̂m(0) ≡

1
2π n̄0

∫ {d2βe− |β|2
n̄0 |β〉〈β|, with β = r exp[iφ] representing the

amplitude of the coherent state; We additionally assume that
we have a low initial phonon number, i.e., n̄0 < 1. The spin is
preselected in the state ρ̂s(0) = (|↑〉 + |↓〉)(〈↑| + 〈↓|)/2, and
the initial state of the entire system (oscillator + spin) reads
as ρ̂(0) = ρ̂m(0) ⊗ ρ̂s(0).

The main task of our lasing protocol is to evolve the
preselected spin under the interaction energy for a given time
τ , and to postselect the spin in a target state |ψt〉 = cos θ |↑〉 +
sin θ |↓〉. The dynamics of the spin mechanics is calcu-
lated by using the unitary time evolution operator Û (τ ) =
exp[λσ̂z(ηb̂† − η∗b̂)] exp[−ib̂†b̂τ ], derived in Ref. [11] from
Ĥ with η = 1 − e−iτ ; for more details about the calculation of
the unitary operator for a similar Hamiltonian see Ref. [46].
Therefore, the evolved mechanical state after the spin postse-
lection, reads

ρ̂m(τ ) = 〈ψt|Û (τ )ρ̂(0)Û †(τ )|ψt〉. (2)

After a straightforward calculation, one gets the normalized
mechanical density operator

ρ̂m(τ ) = 1

N

(
cos2 θD(λη)e−ib̂†b̂τ ρ̂m(0)eib̂†b̂τ D(−λη)

+ sin2 θD(−λη)e−ib̂†b̂τ ρ̂m(0)eib̂†b̂τ D(λη)

+ sin 2θ

2
[D(λη)e−ib̂†b̂τ ρ̂m(0)eib̂†b̂τ D(λη) + H.c.]

)
,

(3)

where N = (cos2 θ + sin2 θ + sin 2θ
2 Tr{ρ̂m(0)eib̂†b̂τ [D2(λη)

+ D2(−λη)]e−ib̂†b̂τ }) and D(α) is the usual displacement
operator. For example, for θ = π/2 one has N = 1.

B. Maser master equation

Next, we make use of the well known Micromaser model.
From that viewpoint, it is clear that Eq. (3) represents the
gain corresponding to a single spin of the micromaser master
equation (ME), as described, for example, in Ref. [47] by
using the quantum theory of the laser. So the gain part can be
written as ρ̂m(τ ) ≡ M̂(τ )ρ̂m(0), where M̂ is a superoperator
generally deduced from the system’s Hamiltonian, in our case
considering Eq. (1). Next we fix the interaction time and the
postselected state, e.g., τ = π and θ = π/2, so M̂(τ )ρ̂m(0) =
D(−λη)e−ib̂†b̂τ ρ̂m(0)eib̂†b̂τ D(λη). The full ME, considering
the gain term assisted by spins injected at the rate r (see
Appendix A) and the loss term, reads [47]

˙̂ρm(t ) = r(M̂(τ ) − 1)ρ̂m(t ) + Lρ̂m(t ), (4)
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FIG. 1. Artistic sketch of the phonon maser model, where one spin is approaching the magnetic tip (Mtip) at the time interval �t and
interacts longitudinally with a mechanical oscillator during the time τ . The damping mechanisms to thermal environments are present for the
oscillator at the rate κ in units of the oscillator’s frequency, ωm. By this scheme we want to evidence the two possible outputs that depend
crucially on the type of spin measurement, used at an intermediate step of the micromaser model.

where Lρ̂m(t ) = κ (1 + n̄0)(b̂ρ̂mb̂† − 1
2 ρ̂mb̂†b̂ − 1

2 b̂†b̂ρ̂m) +
κ n̄0(b̂†ρ̂mb̂ − 1

2 ρ̂mb̂b̂† − 1
2 b̂b̂†ρ̂m) is the standard Lindbladian

describing the field decoherence; here κ is the rate of the
phonon damping to the bath with n̄0 = (exp[h̄ωm/kBT ] −
1)−1 phonons (the mechanics is initially in the same state) at
temperature T and r = 1/�t with �t being the time between
two consecutive spin-oscillator interactions satisfying the
necessary condition for the maser model �t � τ .

A more general model includes pump statistics (see Ap-
pendix A), but here we assume a random arrival and mea-
surement of the spins interacting with the oscillator, that
corresponds to p → 0 in the micromaser notation. Such an
approach for our model is reasonable and practical from
experimental point of view. The argumentation is that the
preparation (preselection) and measurement (postselection)
are inherently probabilistic processes, hence the random ar-
rival (incoherent pump) of the spins will adequately “simulate
the physics” of the probabilistic events involved in the model.

III. RESULTS

A. Scenario for heralded successful postselections

In the following we consider the particular case, when the
spin postselection is successful after each spin-mechanical
interaction, i.e., the readout gives the state |ψt〉 if the previous
readout was successful, and as result the mechanical density
operator defined by Eq. (3) evolves within the maser ME,
Eq. (4). Such a scenario looks more like a theoretical idealiza-
tion, nevertheless it is not only a theoretical idea [10,30], but
can be implemented in some experimental setups [10,31,32],
known as heralded control of the postselective measurement.
Hence we consider this case as useful for comparison with
more common experimental situations discussed further. In
order to witness the laser effect we calculate the properties
such as phonon statistics, second order coherence function,
g(2)(0), and the linewidth.

Average phonon number and distribution function. From
the ME (4), we can deal with the dynamics and solve a
Fokker-Planck equation, using Glauber’s P distribution,
which we solved analytically (see Appendix B), obtaining for
the mean phonon number, Eq. (B3), the following result:

〈n̂(t )〉 = n̄0 + 16λ2r2

κ2
(1 − exp[−κt/2])2. (5)

Hence, the steady-state (t → ∞) average phonon number is
n̄SS = n̄0 + 16λ2r2/κ2.

Thereafter, the phonon probability distribution function
is calculated for the steady-state solution, i.e., in Eq. (4)
considering ˙̂ρm = 0, and reads (see Appendix B)

P(n) ≡ ρ̂mn,n = 1

π n̄0n!

∫
d2β|β|2ne−|β|2− |β−β̄|2

n̄0 , (6)

where |β̄|2 ≡ n̄SS − n̄0. By numerical calculation of Eq. (5)
we plot the time evolution of the average phonon number
and the respective phonon distribution function, Fig. 2. In the
Fig. 2(a), we show the growth of the average phonon number
as a function of time, which for longer times, saturates to a
steady state value. On the other hand, in Fig. 2(b), we present
the steady state phonon statistics obtained and compared to
an exact Poisson distribution with the same phonon mean
value. We observe that the two distributions are very similar,
indicating that the state of the phonons is nearly coherent.

Second -order coherence function. In order to witness the
degree of coherence of the laser emission we evaluate the
second-order correlation function, g(2). Therefore, defining a
generating function Q(s) = ∑∞

n=0(1 − s)nP(n), with P(n) =
ρ̂mn,n as in Eq. (6). It is simple to prove (see, e.g., Ref. [49])

that g(2)(0) = 1
〈n〉

d2Q
ds2 |s=0= 〈n(n−1)〉

〈n〉2 , where 〈n〉 = − dQ
ds .

Hence, after a simple but rather long calculation, one gets
the final expression

g(2)(0) = 2n̄2
0 + 4β2

1 n̄0 + β4
1

n̄2
0 + 2β2

1 n̄0 + β4
1

. (7)
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(a) (b)

FIG. 2. (Left panel) Time evolution of the average phonon number calculated: (i) using analytical expression Eq. (5), which converges to
the steady-state n̄SS = 9.7 (red solid line) and (ii) using numerical simulation of the ME (4) which converges to the steady-state n̄SS ≈ 9.3
(dot-dashed). (Inset) Steady state phonon number vs pump ∝r2, as in Eq. (5).(Right panel) Probability distribution function evidencing the
steady-state solution (green bars) and compared to the standard Poisson distribution for the same mean value (red line). (Inset) Wigner function
plots and the thermal initial distribution. The model parameters are: n̄0 = 0.1, λ = 0.001, κ = 0.01 ∗ λ and �t = 41 ∗ τ , for τ = π .

Linewidth. Another qualitative witness of the laser emis-
sion is its linewidth, which in fact results from the
intrinsic quantum nature of the lasing. Hence, to complete our
analysis of the phonon maser in the following we calculate
the analytical expression of the linewith. The Fokker-Planck
equation, Eq. (A1), can be written in polar coordinates with
β = r exp iθ [49]. Therefore, for the steady state that corre-
sponds to the regime with ∂

∂r = 0 one has: ∂P
∂t = 0 = D

2
∂2P
∂θ2 ,

where

D = κ n̄0

2n̄SS
= κ n̄0

2(n̄0 + 16λ2r2/κ2)
(8)

is the linewidth for the phonon maser steady state regime.

FIG. 3. Second-order coherence degree, evidencing the forma-
tion of coherent state when g(2)(0) → 1. Here we compare: (i)
analytical expression Eq. (7) (red dashed) and (ii) numerical solu-
tion resulted from the ME (4) (black dot-dashed). Both curves fit
perfectly. (Inset) Linewidth vs pump ∝ r2, as in Eq. (8).

As result, in the main plot of Fig. 3 we present the
analytical solution Eq. (7) for the second-order coherence
versus time which evidences a very good agreement with the
numerical simulation (red dashed) of the ME (4). As shown,
the phonon steady state correspond to a coherent state, i.e.,
g(2)(0) → 1 for long times. In the inset of the same figure we
plot the linewidth as in Eq. (8), which is observed to behave
similarly as in the standard laser model [49].

One would think that instead of postselecting the spins, we
could average over the spin variables, that is, to perform a
partial trace and study the evolution of the system. Thus, we
readily get the evolved mechanical density matrix

ρ̂m(τ ) ≡ Trs[Û (τ )ρ̂(0)Û †(τ )]

= D(λη)e−ib̂†b̂τ ρ̂m(0)eib̂†b̂τ D(−λη)

+ D(−λη)e−ib̂†b̂τ ρ̂m(0)eib̂†b̂τ D(λη). (9)

In the micromaser language, the above expression corre-
sponds to the gain part of the ME (4). After performing the
same calculation as in the post-selected version, we arrive to
the following conclusions: (A) The final state of the mechani-
cal oscillator differs very little from the initial thermal one [see
the inset of Fig. 2(b)], and (B) There is no indication of any
lasing effect. As a matter of fact, there is hardly any change in
the average phonon number, during its time evolution. Starting
from n̄0, the evolution results in an increase of less than 5%,
behavior that shows no amplification of phonons.

Therefore, the main conclusion in this scenario is that for
the conditions considered above there exists lasing only for
the mechanism of successful postselections, i.e., not including
the failures in the ME. Such a type of a successful postselec-
tion mechanism is applied in the experimental setups with her-
alded control [10,31], where the postselection measurements
are used iteratively and hence the sequence of successful
readouts are important. On the other hand, we found that

063815-4



PHONON MASER STIMULATED BY SPIN POSTSELECTION PHYSICAL REVIEW A 101, 063815 (2020)

FIG. 4. (Left panel) Time evolution of the average phonon number calculated: (i) using heralded postselection in the state |ψf〉 results in
lasing with the steady-state n̄SS = 9.2 (magenta line); (ii) using postselection in the same |ψf〉 state but with failures, results in lasing with
the steady-state n̄SS = 2.5 (blue dashed line); (iii) using spin tracing, which gives no lasing (red dot-dashed line); (iv) using postselection or
spin tracing with the initial state |↓〉 or |↑〉 result in lasing with the steady-state n̄SS = 4.9 (green line-diamonds). For the first three cases the
initial unnormalized state is |ψi〉 = 0.4|↑〉 + 0.6|↓〉. (Right panel) Second-order coherence degree, evidencing the formation of coherent state
when g(2)(0) → 1. The result for spin tracing operation, i.e., case (iii), is far from a coherent state. The model parameters here are: n̄0 = 0.1,
λ = 0.001, κ = 0.014 ∗ λ and �t = 41 ∗ τ , for τ = π .

under the approaches of spin tracing and postselections with
failures there is no lasing observed under the conditions of this
scenario, i.e., the initial and final spin states.

B. Scenario for the imperfect postselection including the failures

For a more general case, we take into account the un-
successful postselective readouts during the full evolution.
In order to take full advantage of the Aharonov-Albert-
Vaidman [33] WVA effect, we take the initial and final states
nearly orthogonal, in such a way that if |ψi〉 = cos φi|↑〉 +
sin φi|↓〉 and |ψf〉 = cos φf|↑〉 − sin φf|↓〉, the successful
postselection probability is PS ≡ |〈ψf|ψi〉|2 going to zero.

We did the numerical calculations for such a scenario and
find the following interesting results: (A) Considering her-
alded postselections only (i.e., disregarding fully or partially
the failures) we can get great amplification, thus a larger
stationary phonon number as compared to spin tracing or to
the case where the final state is |↑〉 or |↓〉 as in Fig. 2(a),
for the same initial conditions. (B) If the failures are included
in the maser ME, i.e., using the projector: PS|ψf〉〈ψf| + (1 −
PS )|ψf⊥〉〈ψf⊥|, where |ψf⊥〉 is orthogonal to |ψf〉, then the
amplification effect is reduced as compared to (A). Neverthe-
less, if there is lasing, then the steady-state phonon number,
n̄SS , is higher than for the case of spin tracing operation for
the same initial state. Also, it is possible to have a situation
of high mechanical losses when the lasing occurs for the
postselections with failures while with spin tracing we get no
lasing at all. In Fig. (4) we illustrate the results of the cases
(A) and (B), where we choose the following unnormalized ini-
tial |ψi〉 = 0.4|↑〉 + 0.6|↓〉 and final |ψf〉 = 0.9|↑〉 − 0.1|↓〉
states that give the probability of successful postselection of
PS = 0.21, where we see that WVA produces roughly twice
the number of phonons as compared to postselection or spin
tracing with the initial state |↑〉 or |↓〉, see cases (i) and (iv) in
Fig. 4(a).

In the case when the initial spin state is |↑〉 or |↓〉, then
spin tracing or postselection including failures give the same
steady-state phonon number, since the initial state is an eigen-
state of the interaction Hamiltonian. However, if the mechani-
cal losses are high (higher than the gain), then the heralded
postselection shows a real advantage, i.e., the WVA effect
stimulates the lasing, as shown in Fig. 4(a). Therefore, in our
model we show how the phonon lasing may be stimulated by
a protocol as heralded control of the postselection, similar to
Ref. [10].

IV. EXPERIMENTAL FEASIBILITY

As an experimental case study we suggest the prototype
with the physical characteristics similar as in Refs. [8,10].
For example, a nanomechanical resonator (cantilever), with
a magnetic tip (atomic force microscope (AFM)) at one end,
may oscillate at the frequency, ωm ∼ 5 MHz and be coupled
via the magnetic field gradient to the electronic spin of the
defect in the single nitrogen vacancy center, e.g., see Fig. 1 in
Ref. [8]. In such a setup the spin-mechanics interaction could
be considered in the regime from ultraweak(λ0 ∼ 100 Hz,
Ref. [10]) to strong (λ0 ∼ 100 kHz, Ref. [8]) coupling, and
hence the interaction constant considered by us, i.e., λ0/ωm ∼
10−3 belongs to a weak coupling regime. For modern ex-
perimental conditions, such as low temperatures in the mK
regime and high vacuum environment, the quality factor (Q)
of the resonator can reach a value of ∼105, so the dimen-
sionless phonon damping, κ/ωm = 1/Q ∼ 10−5, as we con-
sidered in our numerical calculations, see Fig. 2. Regarding
the spin losses as dephasing and relaxation processes, the
corresponding damping rates in the recent experiments are
low [8] as compared to the cavity damping, and under these
conditions we omitted these losses in our theoretical model.
Finally, in order to witness the phonon lasing, it is possible
to implement the readout of the phonon statistics (coherence)
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as in the experimental proposal [7], where an analog of
Hanbury Brown and Twiss interferometry is used to measure
the correlations in the emitted phonons by the single-photon
detection.

V. DISCUSSION

In summary, we have proposed a model of a phonon maser
in a spin-mechanical system with longitudinal interaction ac-
companied by preselection and postselection measurements.
Our model is based on the setup similar to a micromaser
with random atomic injection [47–49], where a sequence of
prepared spins are interacting with a mechanical oscillator and
after a choice of postselection of each spin we demonstrate,
both analytically as well as numerically, that the oscillator
goes to a steady state with a phonon probability distribution
close to a Poissonian and almost perfect coherence. As result
we find a thresholdless phonon laser, where the nonlinear
gain in the dynamics depends crucially on the preselected and
postselected spin states.

From the experimental point of view, to achieve phonon
lasing based on our proposal, the experimentalist should do
the best to realize the preselective and postselective mea-
surements with a high success fidelity. Nevertheless, we have
checked the impact of the fidelities of preselection and postse-
lection states on the result of the lasing effect. It is interesting
to remark that for an initial spin state chosen as an arbitrary
superposition, i.e., α|↑〉 + β|↓〉 with randomly generated α

and β one obtains a similar result as for the preselected
equilibrium superposition, i.e., (|↑〉 + |↓〉)/

√
2, with only the

difference that the dynamics is a bit slower to reach the
lasing steady-state. Nevertheless, if the postselection on the
state |↓〉 or |↑〉 is substituted by a partial trace for the same
randomly generated initial state, there is no lasing observed as
mentioned before. Another effect occurs when the initial spin
state is |↑〉 or |↓〉, then spin tracing or postselection including
failures give the same steady-state phonon number, since the
initial state is an eigenstate of the interaction Hamiltonian.
Hence, with this result in mind, it seems that it is sufficient
to prepare the spins in one of the basis states in order to obtain
lasing within the considered spin-mechanical maser setup.
Indeed, such a scenario/opportunity may be considered for
a real experiment, particularly for low losses as compared to
the gain and so obtaining lasing with no need of postselection.
On the other hand, the heralded postselection procedure can
advantageously resolve the situation of high losses, e.g., when
the lasing with the spin tracing operation is impossible for the
optimal initial condition. For such circumstances we propose
to choose the initial and final states almost orthogonal, e.g.
as in Fig. (4), then similar to the WVA effect it is possi-
ble to stimulate the lasing with the help of heralded post-
selection. Experimentally postselective measurements have
been realized successfully for different problems in several
laboratories, e.g., Refs. [36–38]. For example, concerning the
high-fidelity postselective measurement, some recent theoreti-
cal and experimental works have proposed to reduce the probe
losses due to the wrong postselection, such as power-recycled
weak value metrology, e.g., Ref. [32] or heralded control of
mechanical motion [10]. These techniques are designed to

improve the protocol of WVA in some physical setups by
controlling the events of successful postselections.

As a practical example, particularly to emphasize the
advantages and disadvantages of the postselection strategy
versus the spin tracing one, we did some numerical compar-
ison as presented in Fig. 5. An important technical issue in
our model is to maximize the postselection probabilities and
minimize the number of spins necessary to get lasing. This
number, in fact, depends on several parameters, particularly
on the coupling constant, steady-state phonon number (as
result of gain vs losses) and on the success probability of each
postselection measurement. Fortunately the relation between
the number of spins and the probabilities can be improved
by searching optimally the coupling constant as a result of
numerical calculations. Therefore, in Figs. 5(a)–5(c) we show
for the postselection measurement the relationship between
the number of spins and the achievable steady-state phonon
number for different success probabilities, which is compared
to the values obtained by the spin tracing operation for the
initial eigenstate of the interaction Hamiltonian. We see that
the lower the probability and steady-state phonon number, the
less spins needed to achieve the steady state. The efficient way
to minimize the number of spins is to have low output phonon
number, and so in case (a) one finds that the steady-state
lasing for the postselection with the probability of 8% may be
reached with about 10 spins or maybe less for better optimized
parameters. With the same parameters and the eigenstate
strategy there is no lasing, resulting in n̄SS = 0.5 < 1 with
about 20 spins. On the other hand, when the lasing with the
eigenstate method becomes possible, i.e., for low losses, then
the heralded postselection strategy can be advantageous if a
large amplification is required. In order to get a larger phonon
number, one has to increase the number of spins in both
strategies. However, as found from the simulations the spin
tracing uses at least double the number of spins, as compared
with the postselection. Furthermore, considering the fidelities
of the spin preparation, this factor may even be larger. With
respect to the overall success probability, of course for many
individual postselective measurements, in fact, any overall
probability will decrease drastically; this is the price to pay
particularly for WVA approach. However as mentioned above,
some protocols of the heralded successful postselections are
used to resolve the problem of the successive postselective
measurements, e.g., Ref. [10]. We expect such a protocol to
be promising for the case of reduced number of spins, e.g.,
about 10 spins.

Finally, we point out that all the analytical results presented
in our work were compared to their respective quantities
obtained from the numerical simulation of the ME (4) by
using the Quantum Toolbox in Python (QuTiP) [50]. It is
important to note that both methods of calculation concur
very well, sometimes even superposed as in Fig. 3. However,
the numerical simulation is based on the approximation of
a reduced Hilbert space. In order to solve numerically the
master equation (using QuTiP) we have limited the Fock
number of excitations to almost three times the steady-state
phonon number, particularly cutting the Fock space at 26, see
Fig. 2(b). In fact, the numerical solution could reach the exact
solution for the large enough Hilbert space, however, such
dynamics increase dramatically the computation resources.
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FIG. 5. (a)–(c) Phonon number as function of the number of spins calculated for different postselection success probabilities (PS in legend)
and several values of the steady-state phonon number, neigen

SS , obtained by spin tracing operation for the initial eigenstate of σ̂z. (d) The steady-
state phonon number vs post-selection probability. The parameters here are: n̄0 = 0.1, λ = 0.06, �t = 35 ∗ τ , τ = π and the preselected spin
state for the postselection is |ψi〉 = (|↑〉 + |↓〉)/

√
2.
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APPENDIX A: GENERAL MICROMASER MODEL

To apply the micromaser theory to our spin-mechanical
system in the case of many spins (main ingredient for mi-
cromaser), one considers that (i) the spins interact with the
oscillator in sequence, and (ii) the time that one spin interacts
with the mechanics, τ , is much shorter than the total time,
t , of the oscillator’s evolution as well compared to the time,
�t , determining the relaxation under the thermal reservoir
action. The density operator of the mechanics after a total time
t , during which the oscillator interacted with k spins can be
written as ρ̂ (k)

m (t ) = M̂k (τ )ρ̂m(0) [47–49]. Another important
ingredient of the laser effect is the the pump mechanism.
To model the pump in our proposal let us consider that the
spins are approaching to interact with the oscillator at the rate
r and that the probability for k spins that are successfully
postselected in the desired state and so contributing to the gain
effect, is calculated as P(k) = CKk pk (1 − p)K−k , where CKk =
K!/k!(K − k)!, p is the probability for a given spin to be
successfully postselected, and K is the total number of spins
involved in the lasing process (i.e., 0 � k � K). Therefore, the
average number of spins contributing to the gain is 〈k〉 = pK .

As a particularity of the micromaser model, the parameter
p plays an important role by introducing the effect of the
statistics of pumping, with the limit p → 0 (considered in
this work) corresponding to random pumping and p → 1, to
uniform pumping. The latter case does not apply here, since
postselective measurements are probabilistic events with, in
fact, very small successful probabilities as in theories and
experiments of WVA [27–29,33,41].

Therefore, the density operator of the mechanics, averaged
over k successful postselective measurements, evolves in time
as the following [47]:

ρ̂m(t ) =
K∑

k=0

P(k)ρ̂ (k)
m (t ) = {1 + p[M̂(τ ) − 1]}K ρ̂m(0),

(A1)

with K = rt/p.
To get the full dynamics for ρ̂m(t ), one computes the

derivative of Eq. (A1) with respect to time and subsequently
expand the result in terms of p(M̂(τ ) − 1) up to the second
order, so one gets

˙̂ρm(t ) = r

p
ln{1 + p[M̂(τ ) − 1]}ρ̂m(t )

� r[M̂(τ ) − 1]ρ̂m(t ) − r p

2
[M̂(τ ) − 1]2ρ̂m(t ). (A2)
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APPENDIX B: DERIVATION OF PHONON DISTRIBUTION

In terms of Glauber’s P−representation, the density matrix
is ρ̂m(t ) = ∫

d2βP(β, β∗, t )|β〉〈β|. Using the displacement
operator, one gets M̂(τ )ρ̂m(t )=∫

d2βP(β, β∗, t )|−β−ηλ〉
〈−β − ηλ|.

By the standard technique to convert a ME into a Fokker-
Planck second-order differential equation [49] with the loss
term Lρ̂m(t ) �⇒ κ

2 ( ∂
∂β

β + ∂
∂β∗ β

∗)P + κ n̄0
∂2P

∂β∂β∗ , we get the
time-dependent Fokker-Planck equation

κP + ∂P

2∂β
(κβ − 4λr) + ∂P

2∂β∗ (κβ∗ − 4λr)

+ κ n̄0
∂2P

∂β∂β∗ = ∂P

∂t
. (B1)

In the following, assuming a solution of the type
P = exp [a(t ) + b(t )β + c(t )β∗ + d (t )ββ∗] and an initial
Gaussian distribution P(β, β∗, 0) = 1

πε
exp(−|β−β0|2

ε
) one

obtains

b(t ) = c(t )= 4λr

κ n̄0
(1 − exp[−κt/2]) + β0

n̄0
exp[−κt/2],

d (t ) = − 1

n̄0(1 − exp[−κt]) + ε exp[−κt]
.

For an initial thermal distribution ε = n̄0, β0 = 0,
we get P(β, β∗, t ) = 1

π n̄0
exp[−|β−β1|2

n̄0
] with β1 = 4λr

κ
(1 −

exp[−κt/2]).
Therefore the probability of having n phonons is calculated

by using the P(β, β∗, t ) function as follows:

ρ̂mn,n (t ) =
∫

d2βP(β, β∗, t )|〈n|β〉|2

= 1

π n̄0n!

∫
d2β|β|2ne−|β|2− |β−β1 |2

n̄0 . (B2)

Average phonon number. Using the definition 〈n̂(t )〉 ≡
Tr{n̂ρ̂m(t )} one has 〈n̂(t )〉 = 1

π n̄0

∫
d2β | β |2 exp(−|β−β1|2

n̄0
).

After a straightforward calculation, we get the final
expression

〈n̂(t )〉 = n̄0 + 16λ2r2

κ2
(1 − exp[−κt/2])2. (B3)
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