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Transparency in a chain of disparate quantum emitters strongly coupled to a waveguide
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We demonstrate the emergence of transparent behavior in a chain of periodically spaced nonidentical quantum
emitters coupled to a waveguide, in the special case when the nearest neighbor separation is a half-integral
multiple of the resonant wavelength, i.e., kL is an integral multiple of π , with k being the wave number
and L the spatial periodicity. When equal but opposite frequency detunings are assigned in pairs to a system
of even number of atoms, perfect transmission ensues. When the chain size is odd, a similar assignment
leads to the disappearance of collective effects as the odd atom determines the spectral behavior. We also
manifest the robustness of these features against dissipative effects and show how the spectral behavior hinges
significantly on the relative detunings between the atoms as compared to the decay rate. A key distinction from
the phenomenon of electromagnetically induced transparency is that in the waveguide case, the presence of
an intrinsic waveguide-mediated phase coupling between the atoms strongly affects the transport properties.
Furthermore, while reciprocity in single-photon transport does not generally hold due to the phase coupling, we
observe an interesting exception for kL = nπ at which the waveguide demonstrates reciprocal behavior with
regard to both the transmission and reflection coefficients.
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I. INTRODUCTION

There is an ever-growing interest in single and few-photon
scattering from a one-dimensional (1D) continuum because of
their possible applications in quantum information process-
ing. This subject has been studied both theoretically [1–38]
and experimentally [39–49] from a variety of perspectives and
reviewed quite elaborately in Ref. [50]. Some commonly used
1D waveguides are conducting nanowires [39,40], photonic
crystal waveguides [48], and superconducting microwave
transmission lines [44,45]. Collective effects emerging from
a periodic array of two-level atoms coupled to a waveguide
can lead to Fano minima in the reflection spectrum [28,29,38],
superradiant decays [48], rearrangement of the optical band
structure [51], and realization of Bragg mirrors [52,53]. The
role of spatial separation between the atoms in the context of
photon scattering from a 1D continuum has been manifested
in recent works [5,32,33,52–62]. Very recently, multiple Fano
interference channels due to the waveguide-mediated phase
coupling between the atoms leading to the appearance of
transparency points were demonstrated in [38]. In general,
multiemitter waveguide QED has been gaining significant
interest among the optics community in recent years owing
to the engrossing physics of collective effects and the exciting
avenues it opens up [63–70].

Theoretical analysis of photon scattering from a collection
of disparately detuned atoms coupled to a waveguide is a hard
problem in real space, because of the waveguide-mediated
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phase coupling between the atoms. Here, we address the
collective behavior of such a system by constraining the
spatial periodicity to be an integral or half-integral multiple
of the resonance wavelength. Working at this phase substan-
tially simplifies the problem and provides insight into the
various kinds of collective properties of the output radiation.
Since our interest is primarily in the realizability of induced
transparency, we demonstrate the emergence of new Fano
minima in the reflection spectrum for a system of even number
of emitters via appropriate choice of detunings. For an odd
chain size, the system manifests an effective reemergence of
single-atom behavior. These are effects that were not observed
in [38], as the atoms were all supposed to have identical tran-
sition frequencies. Our results are strong enough to withstand
dissipative effects as long as the dissipative channel is weak
compared to the waveguide channel and the atomic detunings
are large compared to the decay rate. In other words, much
like the phenomenon of electromagnetically induced trans-
parency (EIT) [71,72], while perfect transparency emerges
in an ideal dissipation-free scenario, a fairly high degree of
transparency can still be observed in the presence of weak
dissipation. However, in the usual scenario for EIT, the system
comprises noninteracting atoms, whereas in a waveguide, an
effective phase coupling between the emitters persists even
at long spatial separations (of the order of a wavelength).
Another important feature that surfaces at this choice of phase
is the reciprocity in optical transport, i.e., with regard to
both the reflected and transmitted amplitudes. More generally,
the transport is insensitive to the order in which the atoms
are placed in the chain. This is starkly different from the
usual scenario, where the phase coupling makes the system
strongly nonreciprocal. Reciprocity relations for a large class
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FIG. 1. Left: Atomic array coupled to a 1D waveguide. The atoms have been colored differently to indicate nonidentical transition
frequencies. Right: The linear dispersion relation used in the text; the range between the two vertical dashed lines describes the region in
which the atomic transition frequencies lie. Thus, ω(k) = α + vgk with k > 0. Here, α is a constant which is unimportant in the Hamiltonian.

of one-dimensional systems were derived in [73]. A general
discussion on the subject of Lorentz reciprocity for lossless
systems can be found in [74].

The paper is organized as follows: In Sec. II, we review
the transport model for a single photon through a waveguide
coupled to a chain of nonidentical emitters. In Sec. III, we
demonstrate how one can observe transparent behavior for
an atomic chain consisting of two disparately detuned atoms,
when kL is chosen to be an integral multiple of π . In Sec. IV,
we write down the analytical forms for the reflection and
transmission coefficients for an arbitrary chain size and gen-
eralize some of the observations to the case of an even chain
size. Concurrently, we indicate, for an odd chain size, how
one can effect a complete suppression of collective effects so
as to recover single-atom behavior. In Sec. V, we argue that
the commutativity between the transfer matrices leads to re-
ciprocal transport properties. Finally, in Sec. VI, we probe the
effect of including radiative decay into nonwaveguide modes
on the spectral characteristics, with particular emphasis on the
observability of transparent behavior. Section VII summarizes
the key ideas explored.

The ideas in this paper can be mapped onto a variety
of concrete experimental models such as many coupled res-
onators on a transmission line or quantum dots coupled to
plasmonic excitations in a nanowire. Recent techniques, such
as those used in Refs. [52,53], testify to the experimental fea-
sibility of our optical setup. In both these papers, the authors
reported enhanced Bragg reflection off a one-dimensional
waveguide system with atoms trapped periodically to sat-
isfy the Bragg condition. In a more recent work [54], the
observation of a single collective atomic excitation in the
waveguide was reported. Dielectric waveguides, as used in
their experiment, are apt for realizing strong atom-photon
coupling, which is central to the design of a strong waveguide
channel with minimal dissipative couplings.

II. SINGLE-PHOTON TRANSPORT IN A WAVEGUIDE
COUPLED TO N NONIDENTICAL EMITTERS

We start with a coherent review of photon transport through
a waveguide channel based on the transfer matrix formalism
in the weak excitation regime. It, therefore, makes sense

to restrict our model to the single-photon manifold of the
relevant Hilbert space. For a periodic array of N two-level
emitters evanescently coupled to a 1D continuum, as depicted
in Fig. 1 (which also shows the assumed linearized dispersion
of the waveguide), when the atomic transition frequency far
exceeds the waveguide cutoff frequency, one can write down
the Hamiltonian of the system in real space as

Heff = ih̄vg

∫ ∞

−∞
dx

[
a†

L(x)
∂aL(x)

∂x
− a†

R(x)
∂aR(x)

∂x

]

+ h̄
N∑

n=1

(ωn − i�0)|e〉n〈e|

+ h̄
N∑

n=1

J [{aL(xn) + aR(xn)}|e〉n〈g| + H.c.], (1)

where aL(x) and aR(x) describe the real-space bosonic opera-
tors corresponding to the left and the right propagating fields,
ωn corresponds to the transition frequency of the nth atom and
xn = (n − 1)L to its location along the waveguide, vg is the
group velocity of the waveguide modes, and J denotes the
coupling strength between the propagating field and any of the
emitters. �0 denotes the rate of spontaneous emission into all
modes outside of the waveguide continuum, assumed equal
for all the atoms. We disregard the dipole-dipole interaction
between the atoms by assuming the interatomic separation to
be comparable or larger than the resonance wavelength.We
can solve for the transport properties by postulating a scatter-
ing eigenstate in the single-photon manifold,

|Ek〉 =
∫ ∞

−∞
dx[φkL(x)a†

L(x) + φkR(x)a†
R(x)]|�〉

+
N∑

n=1

c(n)
k |0; en〉, (2)

where |�〉 refers to the state with the field in vacuum and
all atoms in the ground state, and |0; en〉 to the one where
the field is still in vacuum but only the nth atom has been
excited. φkL and φkR denote the wave functions corresponding
to left- and right-propagating photonic excitations, respec-
tively. The time-independent Schrödinger equation H|Ek〉 =
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h̄vgk|Ek〉 leads to a system of ordinary differential equations
(ODEs) for the various probability amplitudes:(

− ivg
d

dx
− vgk

)
φkR(x) + J

N∑
n=1

c(n)
k δ(x − xn) = 0,

(
ivg

d

dx
− vgk

)
φkL(x) + J

N∑
n=1

c(n)
k δ(x − xn) = 0,

(
n − vgk)c(n)
k + J φkL(xn) + J φkR(xn) = 0, (3)

where 
n = ωn − i�0. In these considerations, k lies in the
optical domain and is positive. For a wave incident from the
left, one can solve the above ODEs subject to the boundary
condition that φkL/kR(xn) = 1

2 [φkL/kR(x+
n ) + φkL/kR(x−

n )] and
also the discontinuity imposed on the wave functions due
to the delta-function source, i.e., −ivg[φkR(x+

n ) − φkR(x−
n )] +

J c(n)
k = 0 and ivg[φkL(x+

n ) − φkL(x−
n )] + J c(n)

k = 0. The so-
lutions take the form

φkL(x) =
⎧⎨
⎩

r1e−ikx, x < 0
rn+1e−ik(x−nL), (n − 1)L < x < nL
0, x > (N − 1)L

, (4)

φkR(x) =
⎧⎨
⎩

eikx, x < 0
tneik(x−nL), (n − 1)L < x < nL
tN eik(x−NL), x > (N − 1)L

, (5)

which subsequently lead to a system of simultaneous equa-
tions involving the transmission and reflection coefficients and
the atomic excitation amplitudes. Eliminating the excitation
amplitudes from the system engenders in a recursive matrix
relation [

rn

tn−1

]
= Ln

[
rn+1

tn

]
, (6)

where

Ln =
[

eikL
(
1 − iδ−1

k(n)

) −ie−ikLδ−1
k(n)

ieikLδ−1
k(n) e−ikL

(
1 + iδ−1

k(n)

)
]
, (7)

with δk(n) = ωk−
n
�

and � = J 2

vg
, and ωk = vgk. Iterative use

of this relation, i.e., by applying it repeatedly at the level
of each emitter in succession, conjoined with appropriate
boundary conditions t0 = 1, tN = teiNkL , rN+1 = 0, and r1 =
r, yields the final connective relation between the reflection
and transmission coefficients[

r
1

]
=

N∏
n=1

Ln

[
0

teikNL

]
. (8)

r =
( ∏N

n=1 Ln
)

12( ∏N
n=1 Ln

)
22

, t = e−ikNL( ∏N
n=1 Ln

)
22

. (9)

The way �0 enters in this description is through 
n for
each n. Because of the presence of the phase factors e±ikL and
the differential detunings assigned to the emitters, it is ana-
lytically hard to find out compact expressions for the above.
The matrix product, however, becomes simple to evaluate for
kL = nπ , n being any natural number (and not the dummy
index used in the matrix product).

It is to be noted that here we present an exact solution with-
out adiabatically eliminating the waveguide modes and thus,

our approach keeps account of the propagation of light from
one atom to another in the waveguide, i.e., the retardation
effects are included and that is the reason for the appearance
of phase factors like e±ikL .

III. TRANSPARENCY AND COLLECTIVE BEHAVIOR FOR
A TWO-ATOM SYSTEM

Let us first consider the simpler scenario of two differ-
entially detuned atoms in a waveguide and define the mean
detuning of the incident photon � = ωk − 1

2 (ω1 + ω2) and
relative atomic detuning s = ω1 − ω2. It turns out that while
[L1L2]22 is symmetric in s, [L1L2]12 is not, owing to the phase
coupling between the emitters mediated by the waveguide.
In other words, in view of Eq. (9), even though transmission
is perfectly reciprocal, reflection is not. For this system, the
reflection and transmission coefficients reduce to

r = −i�[(eiα + 1)(� + i�0) − (eiα − 1)s/2] − �2(eiα − 1)

[� + i(� + �0)]2 + �2eiα − (s/2)2
,

t = (� + i�0 + s/2)(� + i�0 − s/2)

[� + i(� + �0)]2 + �2eiα − (s/2)2
, (10)

where we have taken α = 2kL. We note, however, in the spe-
cial case kL = nπ , that the above expressions turn symmetric
in s, thereby leading to reciprocity in the transport properties.
In subsequent considerations, we analyze the results pertain-
ing to this special choice of phase.

We also assume an idealized scenario where �0 can be
ignored. The effect of �0 on the transmission is studied later
in Sec. VI. With �0 set to 0, one observes an emergence of
transparent behavior when the two atoms are equally detuned,
albeit in opposite directions, with respect to the laser fre-
quency. In other words, t becomes unity when � equals zero,
or ωk − ω1 = ω2 − ωk , i.e., for a pair of antisymmetrically
detuned emitters. It follows, from Eq. (10) and the plots in
Fig. 2, that there is a transmission peak at � = 0, while there
are two roots of the profile at � = s

2 (or ωk = ω1) and � =
− s

2 (or ωk = ω2) corresponding to perfect reflection. The peak
has unit height in the absence of decay, signifiying transparent
behavior. The height of this peak is strictly less than unity for
any other choice of phase, as can be verified from Eq. (10)
(for instance, in the specific scenario, when kL = nπ

2 with

odd n, the height of this peak is [ s2

s2+8�2 ]2; see Fig. 3). For a
sufficiently small yet nonzero value of |ω1 − ω2|, one finds
a very narrow window of size s over which the system is
capable of demonstrating both opacity as well as transparency.
As s → 0, the two roots come progressively closer. Figure 2
illustrates this scenario for various choices of |ω1 − ω2|.

We also note, in passing, that the poles of the transmission
and reflection demonstrate features remindful of level attrac-
tion. These poles occur at

�
(p)
± = −i� ±

√(
s

2

)2

− �2 . (11)

Level attraction is typically observed between the normal
modes of two coupled oscillators when one of the bare modes
has negative energy and the modes have comparable decay
rates. When the coupling strength equals or exceeds a critical
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FIG. 2. Transmission for a two-atom system without decay for
a couple of values of s = ω1 − ω2 and with kL = nπ . Perfect
transparency is observed at ωk = 1

2 (ω1 + ω2) (zero mean detuning),
unless ω1 = ω2, in which case, the system is perfectly reflecting at
zero detuning. The two roots of the transmission come closer as the
atomic frequencies approach each other.

value, the level separation vanishes. As a direct analogy,
we see, in our case, that the real parts of the transmission
poles coincide and become 0 in the region s

2 � �, while the
imaginary parts expand and shrink, respectively. The point
of transition where the coupling equals this critical value
is referred to as an exceptional point where the complex
eigenfrequencies coincide [75]. Realizing level attraction has
been quite a challenge from an experimental perspective and
consequently, there is burgeoning interest in level attraction
and phenomena occurring in the vicinity of exceptional points.
Recently, level attraction has been observed in a variety of
systems and topological behavior around an exceptional point
has also been explored [76–82].

FIG. 3. Comparison of transmission spectra corresponding to
kL = π and kL = π

2 , with s = 1.5�. The transmission peak attains
unit height for kL = π , whereas it is much shorter than unity for
kL = π

2 .

FIG. 4. Transmission at kL = nπ for s
2 = � − η with η = 0.1�

and η = 0.25�.

In the waveguide case with two atoms, we see that the
transmission has zeros at

�
(r)
± = ± s

2
, (12)

which simultaneously determine the peaks of the reflection
spectrum. These zeros are close to the real parts of the
poles when s

2 � �. In the complementary regime, when s
2

is comparable to �, the real parts of the poles become small
compared to the respective imaginary parts, as a consequence
of which, the resolution between the two levels (or the two
poles) becomes difficult. This problem of resolution arises
fundamentally because � not only appears in the discriminant
of the poles, but also acts as a natural broadening term.

The shrinking of the transmission width as s
2 goes below �

is clearly reflected in the transmission plots shown in Fig. 4.
Note that for s

2 = �, the poles given by Eq. (11) become
degenerate. Thus, if we define s

2 = � − η, then η depicts how
far we are off the degeneracy point. For a positive value of

η > 0, the pole �
(p)
+ shrinks in width, with the relevant width

given by (1 −
√

2η

�
)�. Choosing η

�
∼ 10−1, we find, in Fig. 4,

that the transmission window becomes narrower as η becomes
larger.

IV. TRANSPARENCY IN A MULTIATOM CHAIN

We now bring out some interesting features of the spectral
behavior collectively induced by a chain of multiple emitters
with nonidentical detunings, corresponding to a spatial peri-
odicity so chosen that kL = nπ . In Ref. [38], the analytical
expressions for the spectral amplitudes were derived for a
system of identical emitters for which the transfer matrices
were also identical. Through a diagonalization procedure,
the matrix product was calculated. However, kL = nπ is an
exceptional point of the transfer matrices, since the eigenval-
ues coincide and become (−1)n. Hence, diagonalization fails.
However, in the special case when kL is an integral multiple of
π , one can derive exact analytical expressions for the relevant
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matrix product in Eq. (9):

N∏
j=1

L j = (−1)nN

[
1 − i�

∑N
j=1 δ−1

k( j) −i�
∑N

j=1 δ−1
k( j)

i�
∑N

j=1 δ−1
k( j) 1 + i�

∑N
j=1 δ−1

k( j)

]
.

(13)

It is easy to check this result for N = 2, and the general
result for arbitrary N can be verified using the procedure
of mathematical induction. In other words, if the expression
holds for N = l − 1, it is easy to check algebraically, the
validity of this expression for N = l . One can also verify this
result using Mathematica. By virtue of this simplification, the
following transmission and reflection coefficients entail

t = 1

1 + i�
∑N

j=1(ωk − ω j + i�0)−1
,

r = − i�
∑N

j=1(ωk − ω j + i�0)−1

1 + i�
∑N

j=1(ωk − ω j + i�0)−1
. (14)

The collective effect due to emission from multiple peri-
odically spaced emitters is clearly embodied in the aforemen-
tioned expressions. The spectral dependence on the detunings
has a close resemblance with that in the single-emitter sce-
nario. The key factor that modifies the spectrum is

∑N
j=1(ωk −


 j )−1, an additive effect of the inverse detunings pertaining
to the individual emitters. The expression is, of course, not as
simple for other choices of phase. As a further simplification,
let us focus on the case where �0 is small enough to be
dropped from consideration. This, in principle, entails the
possibility of generating perfect transmission through suitable
arrangements of the individual detunings. The condition for
transparency (r = 0 and t = 1) is given by

N∑
j=1

1

�k( j)
= 0, (15)

where �k( j) = ωk − ω j is the laser detuning relative to the
transition frequency of the jth atom. For a single emitter, this
relation is clearly impossible to satisfy and therefore, a single
atom in a waveguide cannot suppress reflection completely.
One must have multiple atoms to be able to achieve trans-
parency. In a double-emitter scenario, where N = 2, the con-
dition translates to 2ωk = ω1 + ω2, which implies an exactly
antisymmetric assignment of detunings to the two emitters.
This is in line with what was highlighted in the previous
section dedicated to the study of a two-atom chain (see Fig. 2).

For N = 3, the corresponding constraint appears as a
quadratic equation

3ω2
k − 2(ω1 + ω2 + ω3)ωk + ω1ω2 + ω2ω3 + ω3ω1 = 0,

(16)

with roots given by

1
3 [ω1 + ω2 + ω3 ±

√
ω2

1 + ω2
2 + ω2

3 − ω1ω2 − ω2ω3 − ω3ω1].

The discriminant can be reexpressed as 1
2 [(ω1 − ω2)2 +

(ω2 − ω3)2 + (ω3 − ω1)2], which, being a sum of squares, is
strictly non-negative, and hence, the roots are real.

In general, it is easy to see that for an even number
of emitters in the chain, it is always possible to make the

FIG. 5. Even number of emitters with equal and opposite detun-
ings assigned in pairs generates transparency. The order of the atoms
is not important, so the arrangement shown here is just one of the
possible permutations.

system transparent if the atomic transition frequencies can be
so adjusted that for any atom detuned by a certain amount,
there exists another atom in the chain detuned by the same
amount but in the opposite sense (Fig. 5). In other words,
for a chain of 2l atoms, an assignment of the frequency
detunings +�1,−�1,+�2,−�2, . . . ,+�l ,−�l , in no par-
ticular order, would give rise to transparency in the system.
Such an asymmetric pairwise assignment of detunings lead
to Fano minima in the reflection spectrum, which signifies a
destructive interference between the reflected waves emanat-
ing from the emitters. Concomitantly, the transmitted waves
constructively interfere, leading to perfect transmission. This
extreme resonant inhibition of the reflection amplitude rela-
tive to the single-atom emission is a new phenomenon that
is not observed at kL = nπ for a system of identically de-
tuned emitters. We have concentrated on the discussion of
the transmission and reflection for kL = nπ . It turns out that
the corresponding states of the atom could be subradiant or
superradiant depending on whether n is even or odd. For
example, for the case of two antisymmetrically detuned atoms
and for kL = 2nπ , the atom goes over to a subradiant state.

On the other hand, if one has an odd number of emitters
in the chain, one can recover the single-atom emission spectra
by assigning pairwise asymmetric detunings to any randomly
chosen (N − 1)/2 emitter pairs, leaving out a single atom. It
then follows from Eqs. (14), that the remaining atom com-
pletely determines the spectral characteristics. That is, if this
particular atom has a transition frequency ω0, the transmitted
spectrum due to the entire atomic chain reduces simply to

t = 1

1 + i�(ωk − ω0)−1
, (17)

which is identical to the transmission coefficient with just
that single atom coupled to the waveguide (Fig. 6). Stated
differently, when an even number of atoms with a pairwise
asymmetric assignment of frequency detunings are added, in
a periodic fashion, to a single atom coupled to a waveguide,
no discernible collective effects emerge. The order of this
arrangement and therefore, the location of the odd atom are
not important. This makes sense from the perspective of Fano
interference, since the reflected waves from the appended
atoms destructively interfere, while that from the residual
atom effectively goes through unperturbed. As a consequence,
if the odd atom is in resonance with the laser frequency, the
system resembles a perfectly reflecting mirror, regardless of
the frequency detunings of the other atoms.
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incident 
light

 r( ) t( ) 

single atom 
behavior 

FIG. 6. A system of three atoms, out of which two carry equal
and opposite detunings +� and −�. The odd one out (the middle
one, in this figure) with a detuning of �0 determines the spectral
behavior, and no collective effects exist. This behavior transcends
to the case of any odd number of emitters in the chain with a
commensurate assignment of frequency detunings. When �0= 0, the
system behaves as a perfectly reflecting mirror.

One might wonder how robust the transparency effect
happens to be against sign-flip error in the detunings. If we
take the instance of a simple two-emitter system and ignore
dissipative couplings to keep the physics transparent, we know
that perfect transparency ensues from assigning detunings
that are equal in magnitude but opposite in signature to the
individual emitters. Practical setups are not devoid of noise,
and perfect flip in signature would be too ideal to achieve. In
order to test the robustness against this indispensable error,
we can reexamine the case of an atomic array of 2l atoms,
furnished with pairwise frequency detunings such that the jth
pair is assigned a set of detunings {+� j,−� j + ε j}. The
transmission becomes

t = 1

1 − i�
∑N

j=1
ε j

�2
j

∼ 1 + i
N∑

j=1

�ε j

�2
j

+ · · · . (18)

It is useful (and perhaps, obvious) to note that the leading
order correction term in the transmitted intensity is quadratic
in �ε j

� j
for sign-flip error ensuing from the jth pair. This is

a testimony to the fact that transparency in our optical setup
achievable via this protocol can largely withstand fluctuations
in sign flip, as long as the fluctuations are tiny compared
to the magnitude of the detunings. An error analysis can
also be made in relation to the proclaimed reemergence of
single-atom behavior in a chain of odd size, subjected to a
similar assignment protocol, which will similarly vindicate its
robustness against imperfections in sign flip.

Finally, in the event that all the atoms have identical
frequencies, one can observe Dicke-type superradiant behav-
ior due to enhancement of the reflection amplitude. If the
atomic frequencies are all set equal to ω0, the corresponding
transmitted spectrum is obtained to be

t = 1

1 + iN�(ωk − ω0)−1
, (19)

which pertains to a Lorentzian with a half-width of N�.
The superradiant behavior observed for a collection of

identical emitters coupled to a 1D continuum, at kL = nπ ,
was also derived in [38] and also in the context of Bragg
reflection [83,84]. However, the possibility of controlling

collective effects by tuning the individual atomic frequencies
was not explored in that work. Having this added flexibility of
adjusting the atomic frequencies brings out different types of
interesting radiant behavior that one can observe, in principle.
We do not merely encounter the possibility of superradiant
reflection, but also come across new points of transparency. In
particular, if we have an even number of emitters coupled to
the waveguide, a pairwise asymmetric allotment of detunings
generates new Fano minima. For an odd chain size, we see
how a similar assignment of frequencies to any N − 1 of
the atoms can lead to a complete disappearance of collective
behavior and give rise to a spectrum governed entirely by the
transition property of the leftover atom.

V. RECIPROCAL BEHAVIOR FOR kL = nπ

As has been discussed previously, in the context of a two-
atom system, reciprocity entails the choice of phase kL = nπ .
It follows, quite generally, from the expressions in Eqs. (14),
that kL = nπ ensures perfect optical reciprocity for any arbi-
trary chain size. In fact, this choice of phase is both necessary
and sufficient for reciprocity in both the reflection and the
transmission. The fundamental property that brings about this
reciprocal character is the commutativity between any two
transfer matrices, i.e.,

[Lr,Ls] = 0, ∀ r, s. (20)

The commutation relation follows from the form in Eq. (7).
As an essential implication of this, one finds that the matrix
product

∏N
j=1 L j is insensitive to the order in which the

individual matrices are multiplied. Consequently, no matter
what the order of the atoms is, one has the same transmission
and reflection coefficients. Of course, this result is valid under
the assumption that each emitter couples identically to the
left- as well as the right-propagating fields, as far as the two
coupling strengths are concerned. It is easy to verify that
Eq. (20) holds true for any arbitrary assignment of detunings
if and only if kL = nπ .

VI. EFFECT OF DISSIPATION INTO NONWAVEGUIDE
MODES ON TRANSPARENCY

The simplistic results laid out in the preceding discussions
in Secs. III and IV hold only when �0 is small enough to be
ignored. However, we can look at more realistic scenarios with
dissipation included (�0 	= 0) and examine the effect of the
same on those observations. For a two-atom chain, we dis-
cover that the behavior changes drastically depending on how
the relative detuning between the atomic frequencies com-
pares to this decay rate. Figure 7 shows the plots for |t |2 vs |�

�
|

for a good-quality waveguide with a weak dissipative channel
(�0 = 0.1�), for varying values of |ω1 − ω2|. It is observed
that for sufficiently small values of the latter, the transmission
peak almost disappears, whereas for large values, the height
of the peak approaches unity. In other words, by adjusting
the relative frequency detuning between the emitters, one can
achieve either high opacity or high transparency around ωk =
1
2 (ω1 + ω2). For perfectly matched up atomic frequencies,
i.e., ω1 = ω2, one observes a diametrically opposite behavior
as the two roots coincide—the central peak is replaced by a

063814-6
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FIG. 7. Effect of dissipation on the transmission of a two-atom
system. If the dissipative channel is weak compared to the waveguide
channel, the profile closely resembles the dissipation-free spectrum,
except when the frequency mismatch between the atoms is smaller
than or comparable to the rate of dissipation. The central peak
disappears as s → 0 and is replaced by a trough at s = 0.

trough. This is a Dicke-type superradiant effect—for negli-
gible decay, the transmission profile is a vertically inverted
Lorentzian with a half-width of 2�.

One can analytically understand this behavior by consid-
ering two specific regimes: (i) s 
 2�0 and (ii) s � 2�0. At
� = 0, one obtains

t =
(

s
2

)2 + �2
0(

s
2

)2 + �0(�0 + 2�)
. (21)

For small relative detuning between the atoms, i.e., s 

2�0, the approximate form is given as |t |2 ≈ �2

0
4�2 , which is

vanishingly diminutive, as long as the decay rate is much less
than �. In the opposite scenario when s � 2�0, we get |t |2 ≈
1 − O( 8��0

δ2 ). Thus, a fairly high degree of transparency can be
achieved by specifically working with a large relative detuning
|ω1 − ω2|.

For a system of even number of emitters, in which half of
them have detuning +�, whereas the other half have detuning
−�, the transmission goes as

t = �2 + �2
0

�2 + �0(�0 + N�)
. (22)

For � 
 �0, |t |2 ≈ ( �0
N�

)2, which testifies to highly re-
flecting behavior. However, when � � �0, we have |t |2 ≈
1 − O( 4N��0

�2 ), implying near transparency. The situation here
is reminiscent of EIT where perfect transparency emerges in
the absence of dissipative transitions [71,72].

Similarly, when there are odd number of emitters, with
(N − 1)/2 emitters each having a detuning of +� and
(N − 1)/2 other emitters each detuned by −�, one has, for

the transmission coefficient

t = 1

1 + (N−1)��0

�2+�2
0

+ i�
ωk−ω0+i�0

, (23)

where ω0 is the frequency of the remaining atom. When �

is large compared to �0, one can discern a reemergence of
single-atom behavior.

VII. CONCLUSIONS

To summarize, we have thrown light on new possibilities
that emerge in relation to the collective effects of a chain
of atoms side-coupled to a waveguide when the interemitter
separation is fixed to satisfy kL = nπ , where n is an integer.
For a chain of N atoms, we have demonstrated the emergence
of new Fano minima (transparency points) in the reflection
spectrum for negligible dissipation. When N is even, we
have seen how transparency can be generated by assigning
equal and opposite detunings to the atoms in pairs, while for
odd N , we have highlighted the possibility of reproducing
single-atom behavior through a similar assignment, so that the
odd one out completely determines the emission spectrum.
A system of identically detuned emitters, on the other hand,
demonstrates superradiant behavior, similar to the reflection
from a system of equidistant quantum wells under Bragg
condition. We have also shown that the optical system demon-
strates reciprocal behavior with respect to both transmission
and reflection. In general, the system turns out to be insen-
sitive to the order in which the atoms are arranged. Finally,
it has been demonstrated, both analytically and graphically,
that when dissipation into nonwaveguide modes cannot be
neglected, one can still produce highly transparent behavior
by implementing a considerable disparity in the atomic tran-
sition frequencies. For a small mismatch in the frequencies,
one, however, observes predominantly opaque behavior in its
place.

We also remark, for the sake of completeness, that our
results hold, by and large, for symmetrical atom-photon
couplings with regard to either direction of photon prop-
agation. The problem of what happens in a chiral setting
[13,32,63,65,67,85–87] where the couplings are asymmetrical
would, therefore, be an interesting subject of future theoretical
investigation.

ACKNOWLEDGMENTS

D.M. is supported by the Herman F. Heep and Minnie Belle
Heep Texas A&M University Endowed Fund held and admin-
istered by the Texas A&M Foundation. G.S.A. acknowledges
the support of Air Force Office of Scientific Research (Award
No. FA-9550-18-1-0141).

[1] J. T. Shen and S. Fan, Coherent photon transport from sponta-
neous emission in one-dimensional waveguides, Opt. Lett. 30,
2001 (2005).

[2] L. Zhou, Z. R. Gong, Y.-X. Liu, C. P. Sun, and F. Nori, Control-
lable Scattering of a Single Photon Inside a One-Dimensional
Resonator Waveguide, Phys. Rev. Lett. 101, 100501 (2008).

063814-7

https://doi.org/10.1364/OL.30.002001
https://doi.org/10.1103/PhysRevLett.101.100501


DEBSUVRA MUKHOPADHYAY AND GIRISH S. AGARWAL PHYSICAL REVIEW A 101, 063814 (2020)

[3] J.-Q. Liao, J.-F. Huang, Y.-X. Liu, L.-M. Kuang, and C. P.
Sun, Quantum switch for single-photon transport in a coupled
superconducting transmission-line-resonator array, Phys. Rev.
A 80, 014301 (2009).

[4] D. Witthaut and A. S. Sørensen, Photon scattering by a three-
level emitter in a one-dimensional waveguide, New J. Phys. 12,
043052 (2010).

[5] N. C. Kim, J.-B. Li, Z.-J. Yang, Z.-H. Hao, and Q.-Q. Wang,
Switching of a single propagating plasmon by two quantum dots
system, Appl. Phys. Lett. 97, 061110 (2010).

[6] N.-C. Kim, M.-C. Ko, and Q.-Q. Wang, Single plasmon switch-
ing with n quantum dots system coupled to one-dimensional
waveguide, Plasmonics 10, 611 (2015).

[7] M.-T. Cheng, X.-S. Ma, M.-T. Ding, Y.-Q. Luo, and G.-X. Zhao,
Single-photon transport in one-dimensional coupled-resonator
waveguide with local and nonlocal coupling to a nanocavity
containing a two-level system, Phys. Rev. A 85, 053840 (2012).

[8] Z. Liao, X. Zeng, S.-Y. Zhu, and M. S. Zubairy, Single-photon
transport through an atomic chain coupled to a one-dimensional
nanophotonic waveguide, Phys. Rev. A 92, 023806 (2015).

[9] W.-B. Yan and H. Fan, Control of single-photon transport in a
one-dimensional waveguide by a single photon, Phys. Rev. A
90, 053807 (2014).

[10] C.-H. Yan and L. F. Wei, Photonic switches with ideal switching
contrasts, Phys. Rev. A 94, 053816 (2016).

[11] T. S. Tsoi and C. K. Law, Quantum interference effects of a
single photon interacting with an atomic chain inside a one-
dimensional waveguide, Phys. Rev. A 78, 063832 (2008).

[12] T. S. Tsoi and C. K. Law, Single photon scattering on type three-
level atoms in a one-dimensional waveguide, Phys. Rev. A 80,
033823 (2009).

[13] D. F. Kornovan, M. I. Petrov, and I. V. Iorsh, Transport and
collective radiance in a basic quantum chiral optical model,
Phys. Rev. B 96, 115162 (2017).

[14] J. T. Shen and S. Fan, Theory of single-photon transport in a
single-mode waveguide. I. Coupling to a cavity containing a
two-level atom, Phys. Rev. A 79, 023837 (2009).

[15] J. T. Shen and S. Fan, Theory of single-photon transport in a
single-mode waveguide. II. Coupling to a whispering gallery
resonator containing a two-level atom, Phys. Rev. A 79, 023838
(2009).

[16] D. Roy, Two-Photon Scattering by a Driven Three-Level Emit-
ter in a One-Dimensional Waveguide and Electromagnetically
Induced Transparency, Phys. Rev. Lett. 106, 053601 (2011).

[17] P. Longo, P. Schmitteckert, and K. Busch, Few-Photon Trans-
port in Low-Dimensional Systems: Interaction-Induced Radia-
tion Trapping, Phys. Rev. Lett. 104, 023602 (2010).

[18] H. Zheng, D. J. Gauthier, and H. U. Baranger, Cavity-Free
Photon Blockade Induced by Many-Body Bound States, Phys.
Rev. Lett. 107, 223601 (2011).

[19] Y.-L. L. Fang and H. U. Baranger, Waveguide QED: Power
spectra and correlations of two photons scattered off multiple
distant qubits and a mirror, Phys. Rev. A 91, 053845 (2015).

[20] M. Bradford, K. C. Obi, and J.-T. Shen, Efficient Single-Photon
Frequency Conversion Using a Sagnac Interferometer, Phys.
Rev. Lett. 108, 103902 (2012).

[21] L. Neumeier, M. Leib, and M. J. Hartmann, Single-Photon
Transistor in Circuit Quantum Electrodynamics, Phys. Rev.
Lett. 111, 063601 (2013).

[22] L. Zhou, L.-P. Yang, Y. Li, and C. P. Sun, Quantum Routing of
Single Photons with a Cyclic Three-Level System, Phys. Rev.
Lett. 111, 103604 (2013).

[23] X. Li and L. F. Wei, Designable single-photon quantum routings
with atomic mirrors, Phys. Rev. A 92, 063836 (2015).

[24] M.-T. Cheng, X.-S. Ma, J.-Y. Zhang, and B. Wang, Single pho-
ton transport in two waveguides chirally coupled by a quantum
emitter, Opt. Express 24, 19988 (2016).

[25] E. Sanchez-Burillo, D. Zueco, J. J. Garcia-Ripoll, and L.
Martin-Moreno, Scattering in the Ultrastrong Regime: Non-
linear Optics with One Photon, Phys. Rev. Lett. 113, 263604
(2014).

[26] S. Derouault and M. A. Bouchene, One-photon wave packet
interacting with two separated atoms in a one-dimensional
waveguide: Influence of virtual photons, Phys. Rev. A 90,
023828 (2014).

[27] Y. S. Greenberg and A. A. Shtygashev, Non-Hermitian Hamil-
tonian approach to the microwave transmission through a one-
dimensional qubit chain, Phys. Rev. A 92, 063835 (2015).

[28] M.-T. Cheng and Y.-Y. Song, Fano resonance analysis in a pair
of semiconductor quantum dots coupling to a metal nanowire,
Opt. Lett. 37, 978 (2012).

[29] M.-T. Cheng, J. Xu, and G. S. Agarwal, Waveguide transport
mediated by strong coupling with atoms, Phys. Rev. A 95,
053807 (2017).

[30] W. Konyk and J. Gea-Banacloche, One- and two-photon scat-
tering by two atoms in a waveguide, Phys. Rev. A 96, 063826
(2017).

[31] W. Konyk and J. Gea-Banacloche, Passive, deterministic pho-
tonic conditional-phase gate via two-level systems, Phys. Rev.
A 99, 010301 (2019).

[32] I. M. Mirza and J. C. Schotland, Multiqubit entanglement in
bidirectional-chiral-waveguide QED, Phys. Rev. A 94, 012302
(2016).

[33] Z. Liao, H. Nha, and M. S. Zubairy, Dynamical theory of single
photon transport in a one-dimensional waveguide coupled to
identical and nonidentical emitters, Phys. Rev. A 94, 053842
(2016).

[34] F. LeKien and A. Rauschenbeutel, Propagation of nanofiber-
guided light through an array of atoms, Phys. Rev. A 90, 063816
(2014).

[35] S. Das, V. E. Elfving, F. Reiter, and A. S. Sorensen, Photon
scattering from a system of multilevel quantum emitters. I.
Formalism, Phys. Rev. A 97, 043837 (2018).

[36] S. Das, V. E. Elfving, F. Reiter, and A. S. Sorensen, Photon
scattering from a system of multilevel quantum emitters. II. Ap-
plication to emitters coupled to a one-dimensional waveguide,
Phys. Rev. A 97, 043838 (2018).

[37] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J.
Kimble, and D. E. Chang, Exponential Improvement in Pho-
ton Storage Fidelities Using Subradiance and “Selective Radi-
ance”in Atomic Arrays, Phys. Rev. X 7, 031024 (2017).

[38] D. Mukhopadhyay and G. S. Agarwal, Multiple Fano inter-
ferences due to waveguide-mediated phase coupling between
atoms, Phys. Rev. A 100, 013812 (2019).

[39] A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S.
Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Generation
of single optical plasmons in metallic nanowires coupled to
quantum dots, Nature (London) 450, 402 (2007).

063814-8

https://doi.org/10.1103/PhysRevA.80.014301
https://doi.org/10.1088/1367-2630/12/4/043052
https://doi.org/10.1063/1.3475769
https://doi.org/10.1007/s11468-014-9846-5
https://doi.org/10.1103/PhysRevA.85.053840
https://doi.org/10.1103/PhysRevA.92.023806
https://doi.org/10.1103/PhysRevA.90.053807
https://doi.org/10.1103/PhysRevA.94.053816
https://doi.org/10.1103/PhysRevA.78.063832
https://doi.org/10.1103/PhysRevA.80.033823
https://doi.org/10.1103/PhysRevB.96.115162
https://doi.org/10.1103/PhysRevA.79.023837
https://doi.org/10.1103/PhysRevA.79.023838
https://doi.org/10.1103/PhysRevLett.106.053601
https://doi.org/10.1103/PhysRevLett.104.023602
https://doi.org/10.1103/PhysRevLett.107.223601
https://doi.org/10.1103/PhysRevA.91.053845
https://doi.org/10.1103/PhysRevLett.108.103902
https://doi.org/10.1103/PhysRevLett.111.063601
https://doi.org/10.1103/PhysRevLett.111.103604
https://doi.org/10.1103/PhysRevA.92.063836
https://doi.org/10.1364/OE.24.019988
https://doi.org/10.1103/PhysRevLett.113.263604
https://doi.org/10.1103/PhysRevA.90.023828
https://doi.org/10.1103/PhysRevA.92.063835
https://doi.org/10.1364/OL.37.000978
https://doi.org/10.1103/PhysRevA.95.053807
https://doi.org/10.1103/PhysRevA.96.063826
https://doi.org/10.1103/PhysRevA.99.010301
https://doi.org/10.1103/PhysRevA.94.012302
https://doi.org/10.1103/PhysRevA.94.053842
https://doi.org/10.1103/PhysRevA.90.063816
https://doi.org/10.1103/PhysRevA.97.043837
https://doi.org/10.1103/PhysRevA.97.043838
https://doi.org/10.1103/PhysRevX.7.031024
https://doi.org/10.1103/PhysRevA.100.013812
https://doi.org/10.1038/nature06230


TRANSPARENCY IN A CHAIN OF DISPARATE QUANTUM … PHYSICAL REVIEW A 101, 063814 (2020)

[40] H. Wei, D. Ratchford, X. Li, H. Xu, and C.-K. Shih, Propagating
surface plasmon induced photon emission from quantum dots,
Nano Lett. 9, 4168 (2009).

[41] A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, Con-
trolled Coupling of a Single Nitrogen-Vacancy Center to a
Silver Nanowire, Phys. Rev. Lett. 106, 096801 (2011).

[42] T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R.
Maze, P. R. Hemmer, and M. Loncar, A diamond nanowire
single-photon source, Nat. Nanotechnol. 5, 195 (2010).

[43] J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N.
Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, A highly
efficient single-photon source based on a quantum dot in a
photonic nanowire, Nat. Photonics 4, 174 (2010).

[44] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Jr., Yu. A.
Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S.
Tsai, Resonance fluorescence of a single artificial atom, Science
327, 840 (2010).

[45] I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B.
Peropadre, and P. Delsing, Demonstration of a Single-Photon
Router in the Microwave Regime, Phys. Rev. Lett. 107, 073601
(2011).

[46] R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, Cavity
Quantum Electrodynamics on a Nanofiber Using a Composite
Photonic Crystal Cavity, Phys. Rev. Lett. 113, 143601 (2014).

[47] A. Javadi, I. Söllner, M. Arcari, S. Lindskov Hansen, L. Midolo,
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