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Spontaneous symmetry breaking in an optomechanical cavity
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A theoretical consideration of the so-called “membrane-in-the-middle” optomechanical cavity revealed that
it undergoes a spontaneous symmetry breaking as a function of transparency of the membrane. Such typical
features of this phenomenon as a square-root development of the order parameter and divergence of the
critical susceptibility were identified. In the contrast to a classical spontaneous-symmetry-breaking system
of ferroelectrics, in the system considered, this divergence remains, due to interference effects, an “internal”
property of the system, which does not reveal itself in any singularity of the output optomechanical response,
though the latter is appreciably affected.
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I. INTRODUCTION

Spontaneous symmetry breaking is a process by which a
physical system in a symmetric state ends up in an asymmetric
state. Such an evolution is characterized by the so-called order
parameter, which is zero in the symmetric state acquiring
nonzero values in the asymmetric state. One also speaks
about the appearance of nonzero order parameter as a phase
transition. This is a general phenomenon, the manifestations
of which span from the particle physics [1] and cosmology
[2] to the condensed-matter physics [3], where ferroelectricity
is a classical example. An important variable used for the
description of this phenomenon is the so-called conjugated
field. The conjugated field is a perturbation, which induces a
nonzero order parameter in the symmetric state. A characteris-
tic feature of spontaneous symmetry breaking is a divergence
(or a strong increase in the case of a discontinuous transition)
of the susceptibility of the order parameter to the conjugated
field at the breaking point, which is called critical susceptibil-
ity. It is this feature of spontaneous symmetry breaking that
is behind most of the applications of ferroelectrics, profiting
from highly enhanced dielectric constant, which plays the role
of the critical susceptibility.

The parity-time symmetry breaking in “gain-loss” systems
is currently a hot topic in optics [4–6]. In this paper, we
theoretically analyze the performance of a simple optome-
chanical cavity, which exhibits only dissipation, to identify a
spontaneous symmetry breaking in the spatial field distribu-
tion in the cavity. Here the difference of decay rates of two
optical modes plays the role of the order parameter, while
the mechanical displacement plays the role of the conjugated
force. As a result, the divergence of the critical susceptibility
translates into anomalously large dissipative optomechanical
coupling constants of the optical modes. Such a situation, be-
ing similar to that in ferroelectrics, however, is yet essentially
different: the divergences of the coupling constants of the
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individual modes do not translate into any singularity of the
total optomechanical response, though the latter is appreciably
affected.

II. PROBLEM

The system addressed is the so-called “membrane-in-the-
middle” optomechanical cavity, which has been attracting
appreciable attention of theorists [7–10] and experimentalists
[7,11–16]. It is schematically depicted in Fig. 1. For the
case where the membrane is set half-way between the end
mirrors, we are interested in the resonance frequencies, decay
rates, and constants of optomechanical coupling of the optical
modes as well as in the optomechanical signal in the light
backscattered from the cavity. To be specific, we set the
following scattering matrices:(

iτ −ρ

−ρ iτ

)
,

(
0 −1

−1 0

)
,

(
it −r
−r it

)
(1)

for the left mirror, right mirror, and membrane, respectively,
where the amplitude transmission coefficients are on the diag-
onals. We set ρ, τ , r, and t as real and positive (r2 + t2 = 1
and ρ2 + τ 2 = 1).

Consider the eigenmodes of the system. Thus, setting the
amplitude of the input field G0 = 0 (see Fig. 1), the complex
amplitudes G1, G2, U1, and U2 (values at the membrane) are
linked with the following relations:

G1 = itU2 − rU1, G2 = −rU2 + itU1,

G1eik(l−x) = −U1e−ik(l−x), ρG2eik(l+x) = −U2e−ik(l+x),

(2)

where, for the definition of l and x, see Fig. 1. These relations
imply the following equation for the resonance k vector:

(e−2ikl − r e−2ikx )(ρ−1e−2ikl − r e2ikx ) + t2 = 0. (3)

In the absence of dissipation, i.e., at ρ = 1, Eq. (3) deter-
mines a well-known relation [7], cos 2kl = r cos 2kx, for a
real resonance wave vector. The complex wave vector k,
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FIG. 1. Schematic of a membrane-in-the-middle optomechanical
cavity. The left mirror is semitransparent; the right mirror is perfectly
reflecting. The membrane is shown shifted from the middle of the
cavity by distance x. Running electromagnetic waves are schemati-
cally shown with arrows and labeled with their complex amplitudes.

which satisfies (3), defines the resonance frequencies, decay
rates, and optomechanical coupling constants (dispersive and
dissipative [17–19]) as follows:

ωc = c Re[k], γ = −2c Im[k], (4)

dωc

dx
= c Re

[
dk

dx

]
,

dγ

dx
= −2c Im

[
dk

dx

]
, (5)

respectively. Below we study these parameters as functions of
t and τ for the central position of the mirror, i.e., at x = 0. We
address the case of practical interest where τ � 1, in what
follows, usually keeping only the lowest-order terms in this
parameter.

III. RESULTS

At x = 0, the solution to (3) reads

e−2ikl = r(1 + ρ) ±
√

(1 − ρ)2 − (1 + ρ)2t2

2
, (6)

where ± corresponds to the two modes of the doublets
merging in the limit of nontransparent membrane [20], i.e.,
at t = 0. A remarkable feature of this solution is that, at
t > t0 ≡ (1 − ρ)/(1 + ρ) ≈ τ 2/4 � 1, the square root in (6)
is imaginary, implying the same damping rate for the modes of
the doublets while, in the opposite case, it is real, implying, in
turn, the degeneracy of the doublet frequencies. These results
are exact.

For the decay rates, using (6) and (4), straightforward
calculations yield, at t > t0,

γ0 = cτ 2

4l
, (7)

while, at t < t0,

γ+,− = γ0[1 ∓
√

1 − (t/t0)2]. (8)

The t dependence of the cavity decay rates according to
(7) and (8) is shown in Fig. 2. The spontaneous symmetry
breaking behavior with the typical square-root development,
cf. Ref. [21], of the order parameter γ − γ0 in the “asym-
metric” state, i.e., at t < t0, is seen here. Such a behavior
is similar to that for the parity-time symmetry breaking in a
meta-material-involved system [6]. Though the systems are
very different, the mathematical descriptions are alike and
can be viewed in terms of the so-called exceptional point
[6]. One should also note that the mathematical framework
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FIG. 2. Decay rates of two optical modes of the doublet as
functions of the membrane transmission. Typical square-root devel-
opment of the order parameter γ − γ0 is seen.

of the exceptional point was also applied to the description of
optomechanical phenomena, however, in a different physical
context: in Ref. [22] a nonreciprocal energy transfer between
two mechanical modes was addressed, while Refs. [23] and
[24] were dealing with a gain-loss situation [5], like in the
meta-material-involved systems.

The symmetry breaking in our system can also be identified
in the field profiles of the modes. Such profiles calculated
neglecting the energy loss from the input mirror (i.e., at
τ = 0) are known [7,10] to be symmetric or antisymmetric
with respect to the middle of the cavity. For nonzero τ , this,
however, is not always the case. We characterize the field
profiles with the amplitudes G1 and G2. From Eqs. (2) one
readily finds [25]

G2

G1
= r(1 − ρ) ±

√
(1 − ρ)2 − (1 + ρ)2t2

2itρ
. (9)

In the “symmetric” state, i.e., at t > t0, Eq. (9) yields
|G2/G1|2 = 1/ρ ≈ 1 for both modes of the doublets, repro-
ducing (to within the accuracy accepted) the results of the
dissipation-free calculations. Note that this relation, being
valid for both modes, actually means that the energy fluxes in
the modes towards the input mirror are the same if the energy
stored in the modes are the same also. This implies the same
decay rates of the modes.

In the asymmetric state, i.e., at t < t0, Eq. (9) results in
asymmetric field profiles. Now to within the accepted accu-
racy of calculations one finds∣∣∣∣G2

G1

∣∣∣∣
2

=
(

t0
t

)2

[1 ∓
√

1 − (t/t0)2]. (10)

Notably, for the modes corresponding to ∓ in this equation, it
implies G+

1 ⇒ 0 and G−
2 ⇒ 0 at t ⇒ 0, respectively, suggest-

ing that, at t = t0, there appears an onset of localization of the
modes into the halves of the cavity. It is also evident that these
relations are qualitatively consistent with (8).

The spontaneous symmetry breaking revealed above in
the mode decay rates and field profiles also manifests itself
in the mode frequencies. Since the spontaneous symmetry
breaking occurs at t = t0 � 1, the further analysis is done
in the approximation of small t . Let us consider the modes
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FIG. 3. Cavity mode splitting vs the membrane transmission for
small t . Results of exact calculations—solid lines. Those obtained
neglecting the spontaneous symmetry breaking—dashed lines.

of a doublet, which at t → 0 merge into a single mode
with frequency ω0 (evidently e2iω0l/c = 1). In the absence of
dissipation one readily finds [7] for the frequencies of these
modes

ωc − ω0 = ∓�0, �0 ≡ ct

2l
. (11)

However, the incorporation of the dissipation dramatically
affects this result: Eqs. (6) and (4) imply that, at t < t0, as
was mentioned above, the doublet stays degenerate at finite t ,
i.e., ωc = ω0, while at t > t0,

ωc − ω0 = ∓
c
√

t2 − t2
0

2l
. (12)

The cavity mode splitting for small t is schematically illus-
trated in Fig. 3. Such a behavior is similar to that for the
parity-time symmetry breaking in a meta-material-involved
system [6].

To address the critical anomaly associated with the spon-
taneous symmetry breaking, the conjugated force is to be
identified. For the order parameter γ − γ0, a displacement of
the membrane from the middle of the cavity x (see Fig. 1)
can be taken as a conjugated force such that the dissipative
coupling constant dγ

dx appears to play the role of the critical
susceptibility.

Using (3) and (6), one finds

dk

dx
= ± r

l

k√
1 − t2 (1+ρ)2

(1−ρ)2

. (13)

Next, to within the accepted accuracy, using (5), Eq. (13)
implies the following: at t > t0,

dγ

dx
= ±2ω0

l

1√
(t/t0)2 − 1

, (14)

while, at t < t0,

dγ

dx
= ∓γ+,−

l

1√
1 − (t/t0)2

. (15)

The dependence of the absolute value of dissipative coupling
constants of the doublet modes given by Eqs. (14) and (15)
is shown in Fig. 4, where at t < t0 relatively small values of
dγ /dx are shown as zero. Here, another characteristic feature
of the spontaneous symmetry breaking—divergence of the
critical susceptibility—is seen; cf. Ref. [21].
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FIG. 4. Absolute values of optomechanical coupling constants
of modes of the doublet normalized to the dispersive coupling
constant of the system at t = 0. Dispersive coupling—dashed lines.
Dissipative coupling—solid lines. Nonzero values of the constants
where these are relatively small are shown as zero.

One sees that, in the symmetric state, this value may readily
exceed the typical value of the dispersive coupling constant
for an optomechanical Fabry-Pérot cavity of the same length.
Note that even not very close to the transition the absolute
values of the dissipative optomechanical coupling constant are
much larger than those discussed in the literature [18,26].

It is instructive to compare the aforementioned result with
those from Ref. [9]. That work deals with the transmission of
the system shown in Fig. 1 where, however, the right mirror
is set identical to the left one. In this system no symmetry
breaking happens and the doublet modes are never degenerate,
just approaching each other in the limit t → 0 (in our nota-
tions) and essentially overlapping at t < 2t0. Here, no critical
behavior of optimechanics of individual modes at t close to
t0 takes place. Instead, the paper predicts an anomalously
strong nonlinear optomechanical response at t � t0 (in our
notations).

As it is clear from (13), the dispersive coupling constants
of the doublet modes also exhibit an anomaly, implying via
(5), to within the accepted accuracy, at t < t0,

dωc

dx
= ±ω0

l

1√
1 − (t/t0)2

, (16)

while, at t > t0,

dωc

dx
= ∓γ+,−

2l

1√
(t/t0)2 − 1

. (17)

The dependence of the dispersive optomechanical coupling
constants given by Eqs. (16) and (17) is schematically shown
in Fig. 4 where, at t > t0, relatively small values of dωc/dx
are shown as zero.

In view of the opposite sign of the coupling constants of
modes of the doublet, the divergences identified above do not
necessarily mean that in the optomechanical signal of the light
reflected from the cavity. To check this, such a signal was
calculated using the so-called input-output relations approach
[27–29].
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Using this approach, we considered the system, schemat-
ically shown depicted in Fig. 1, to be pumped from the left
mirror with a strong monochromatic light of frequency ωL

and amplitude G00. We are interested in modifications of the
light scattered back from the cavity, which are caused by
small and slow displacements x(t ) of the membrane from its
central position, assuming x(�)kL � 1 and � � ωL, where
kL = ωL/c and x(�) is the Fourier transform of x(t ) at the
frequency �. The Fourier transform at the frequency � of the
x-modulated part of the amplitude of the backscattered light
reads (see the Appendix)

u(x)
0 (�) = −i

8G00kLx(�)

τ 2
B(k, kL ), (18)

B(k, kL ) = τ 4 C(k, kL )

2D(k)D(kL )
, (19)

where k = (ωL + �)/c, D(z) = r − e−2izl + ρ(r − e2izl ), and
C(k, kL ) = cos[(k + kL )l] − r cos[(k − kL )l]. Here |B(k, kL )|
has the meaning of the absolute value of the optomechanical
signal normalized the maximal absolute value of that for the
considered system with the perfectly reflecting membrane.

It is seen from Eqs. (18) and (19) that divergence of the
optomechanical signal at t ≈ t0 may occur only if D(k)D(kL )
tends here to zero. One readily checks that it is not the case;
moreover, even no cusp at t ≈ t0 in the u(x)

0 vs t dependence
is present. Thus, in the case of optomechanical cavity, such
a characteristic feature of spontaneous symmetry breaking as
the divergence of the critical susceptibly remains an “internal”
property of the system, which does not reveal itself in any
divergence of its observables. This makes a big contrast with
the manifestation of the spontaneous symmetry breaking in
ferroelectrics.

The fact that divergences of the optomechanical coupling
constants of individual modes of the doublet disappear from
the output signal can be easily rationalized. Evidently, if
the frequencies and dampings of the doublet modes were
equal, the coupling constants of the modes that differ only
in the sign would result in the total cancellation of their
contributions to the optomechanical signal. In our system, the
modes differ either in frequency or in damping such that the
full cancellation does not take place. Instead, at t > t0 where
the dampings of the modes are equal while the frequencies,
according to (12), are split by δωc = c

√
t2 − t2

0 /l , one expects
the signal to be proportional to |δωcdγ /dx|. In view of (14),
being equal to ω2

0τ
2/(2l2), this product does not contain any

singularity. On the same lines one can show that, at t < t0,
the divergence of the dispersive coupling constant dωc/dx
is washed out from the optomechanical output signal also.
Since the frequency and damping in the doublet modes are
available from the above text, it is straightforward to rewrite
Eq. (18) in terms of individual-mode contributions using the
Langevin equation framework. Such an analysis fully supports
the qualitative arguments given above.

The absence of singularity associated with the symmetry
breaking in the output signal does not mean that there is
no manifestation of this phenomenon in it. In reality, the
spectrum of the optomechanical signal is appreciably affected
by the modification of frequency and damping of the modes of
the doublet caused by the symmetry breaking. As an example
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FIG. 5. Spectrum of absolute value of optomechanical signal
normalized to the maximal absolute value of that for the consid-
ered system with the perfectly reflecting membrane (i.e., at t = 0),
denoted as |B|: (a) t = 4t0, (b) t = 1.4t0, and (c) t = 0.65t0. The
spontaneous symmetry breaking takes place at t = t0. Curved dashed
lines show the spectrum if the frequency and damping of the modes
were calculated neglecting the spontaneous symmetry breaking.
Vertical dashed lines show the frequencies � = �0, where 2�0 is
frequency splitting in the doublet calculated neglecting damping,
i.e., at τ = 0. The pumping light frequency equals the resonance
frequency at t = 0, i.e., ωL = ω0.

we give an expression for |B(k, kL )| calculated at kL = ω0/c
and keeping the lowest terms in �, τ , and t , which reads (see
the Appendix)

|B(�/c + ω0/c, ω0/c)| = γ 2
0√(

�2 − �2
0

)2 + γ 2
0 �2

. (20)

We compare this expression with that where (�2 −
�2

0)2 + γ 2
0 �2 is replaced with |(� − �0 + iγ0/2)(� + �0 +

iγ0/2)|2 = (�2 − �2
0)2 + γ 2

0 (�2 + �2
0)/2 + γ 4

0 /16, the latter
corresponding to the frequencies and dampings of the dou-
blet modes calculated neglecting the spontaneous symmetry
breaking. Such a comparison is presented in Fig. 5. It is
cleanly seen that, far from the symmetry breaking point,
at t = 4t0, (a), the optomechanical signal is hardly affected
by the symmetry breaking phenomenon while approaching
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the transition, at t/τ 2 = 1.4t0, (b), and further on, at t/τ 2 =
0.65t0, (c), the impact is appreciable.

IV. SUMMARY

A theoretical consideration of the membrane-in-the-middle
optomechanical cavity revealed that it undergoes a sponta-
neous symmetry breaking as a function of transparency of
the membrane. Such typical features of this phenomenon
as a square-root development of the order parameter and
divergence of the critical susceptibility were identified. In
contrast to a classical spontaneous-symmetry-breaking sys-
tem of ferroelectrics, here this divergence remains an internal
property of the system, which does not reveal itself in any
divergence of its observables. At the same time, the spectrum
of the optomechanical signal is affected by the phenomenon.
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APPENDIX: OPTOMECHANICAL SIGNAL IN
REFLECTED LIGHT CALCULATED USING THE

INPUT-OUTPUT RELATIONS APPROACH

We are interested in an optomechanical signal of the
membrane-in-the-middle optomechanical cavity schemati-
cally depicted in Fig. 1, while parameters of the mirrors and
membrane are given by Eq. (1). Specifically, we consider
small deviations x of the membrane from its central position
and calculate the x-dependent component of the backscattered
light when the cavity is exited with a strong coherent light of
frequency ωL.

1. General

A theory of the system in question was already offered in a
number of papers [7,8,10], a comprehensive treatment being
given using a perturbation approach [8,10]. At the same time,
the linear optomechanical problem we are interested in can
also be treated practically exactly by using the so-called input-
output relations approach [27–29] popular in the gravitational
wave community. Below we implement such an approach, as
yielding a result, which is free from the limitations of the
customary Langevin-equation formalism.

Following this approach, in the frame rotating with the
frequency ωL, we present all amplitudes of the fields (see
Fig. 1) as a sum of a large constant part and a small fluctuating
part, e.g.,

G0(t ) = G00 + g0(t ), G2(t ) = G20 + g2(t ),
(A1)

U0(t ) = U00 + u0(t ), U2(t ) = U20 + u2(t ),

etc. For our system, in view of (1) the following equations:

U00 = iτG20eikLl−ρG00, U20e−ikLl= − ρG20eikLl+iτG00,

G20 = itU10 − rU20, G10 = −rU10 + itU20,

G10 = − U10e−2ikLl (A2)

are satisfied for the constant parts, where kL = ωL/c. The
solution to this set of equation reads

U10 = − tτ eikLl

D(kL )
G00 (A3)

and

U20 = i
τ eikLl (r − e−2ikLl )

D(kL )
G00, (A4)

where

D(z) = r − e−2izl + ρ(r − e2izl ). (A5)

The Fourier transforms of fluctuating parts of the am-
plitudes [denoted as g0(�), u0(�), etc.] meet the following
relations:

u0(�) = iτg2(�)eikl − ρg0(�),

u2(�)e−ikl = − ρg2(�)eikl + iτg0(�),

g2(�) = itu1(�) − ru2 + 2irU20kLx(�), (A6)

g1(�) = − ru1(�) + itu2(�) − 2irU10kLx(�),

g1(�) = − u1(�)e−2ikl ,

where k = kL + �/c and x(�) is the Fourier transform of
x(t ). Here it is assumed that x(�)kL � 1 and � � ωL.

Starting from (A2) and (A6), the Fourier transform of
complex amplitude of backscattered light, u0(�), reads

u0(�) = −D(k)∗

D(k)
g0 − iumB(k, kL ), (A7)

um = 8G00kLx(�)

τ 2
, (A8)

B(k, kL ) = τ 4 C(k, kL )

2D(k)D(kL )
, (A9)

C(k, kL ) = cos[(k + kL )l] − r cos[(k − kL )l]. (A10)

Equations (A7)–(A10) bring us to Eqs. (18) and (19).

2. Nearly resonance excitation

Consider the case of excitation with a frequency ωL, which
is close to the resonance frequency of the half-cavity ωc

calculated neglecting the dissipation. We are infested in a
narrow spectral range about ωL. To characterize the detuning
with respect to ωc and frequency range of interest, which
we keep in mind to be about the mechanical frequencies, we
introduce the following dimensionless parameters:

Q = (ωL − ωc)l/c � 1

and

q = (k − ωL/c)l = �l/c � 1.

Next we expand B(k, kL ) with respect to small parameters of
the problem t , τ , Q, and q, keeping the lowest-order terms.
We readily find

D(kL ) = −t2 + 4Q2 + iτ 2Q,

D(k) = −t2 + 4(Q + q)2 + iτ 2(Q + q),

C(k, kL ) = t2 − 4Q2 − 4Qq

2
,
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and

B(k, kL ) = τ 4

4

t2 − 4Q2 − 4Qq

[t2 − 4Q2 − iτ 2Q][t2 − 4(Q + q)2 − iτ 2(Q + q)]
. (A11)

In the case of the “resonance” excitation, i.e., at Q = 0, Eq. (A11) boils down to the form

B(k, kL ) = τ 4

4

1

t2 − 4q2 − iτ 2q
, (A12)

which, using the definitions �0 ≡ ct
2l and γ0 ≡ cτ 2

4l , can be rewritten as

B(k, kL ) = γ 2
0

�2
0 − �2 − iγ0�0

. (A13)

This brings us to Eq. (20).
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