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Optical deformation of homogeneous and core-shell spherical particles
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We study the optical stress and deformation of a dielectric sphere by an arbitrary shaped electromagnetic
beam. The incident optical beam is described within the framework of generalized Lorenz-Mie theory (GLMT).
A model based on the stress balance across a static fluid interface is used to determine the optical deformation of
a particle composed of concentric spherical shells. An important analytic expression for the optical deformation
is derived. With this result, we examine the optical stress and deformation of (i) a homogeneous spherical particle
and (ii) a sphere with a concentric spherical shell. Illumination by both linearly and circularly polarized Gaussian
and zeroth-order Bessel beams are considered. Cases relevant to optical trapping and manipulation experiments
are analyzed.
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I. INTRODUCTION

The classic radiation pressure experiment of Ashkin and
Dziedzic found that light entering or exiting a transparent
liquid with a higher refractive index than its surroundings
would result in an outward bulging of the liquid surface [1].
Subsequent analysis explained this observation as the result
of optical forces parallel to the liquid surface that arise due
to the tightly focused Gaussian beam used in the experiment
rather than momentum transfer along the direction of beam
propagation [2–4]. Spherical microdroplets have also been
used as a platform for both experimental and theoretical in-
vestigations into both linear and nonlinear optical deformation
[5–9]. For these experiments, models that build on Mie theory
and utilize the Minkowski form of the Maxwell stress tensor
have been able to accurately calculate radiation pressure and,
subsequently, the observed deformation through the Navier-
Stokes equation [6,7].

The phenomenon of radiation pressure is also at the heart
of the optical manipulation of micron- and nanosized objects.
From the initial demonstration of optical trapping [10] and
levitation [11] to the invention of the optical tweezers [12]
and the multitude of applications that have since followed,
including dynamic holographic optical tweezers [13], single
aerosol particle measurements [14], optical pulling [15], par-
ticle sorting [16], and single biomolecule studies [17]. Typ-
ically, the amount of deformation that occurs during optical
trapping is negligible in these applications. For instance, even
with liquid droplets, a micron-sized particle will be deformed
by less than one nanometer when held using normal trapping
powers [18] and the amount of deformation for a solid particle
would be even less than that. However, ultralow interfacial
tensions (on the order of 10−3 mN/m) [19] can be achieved in,
for instance, water-in-oil reverse micelles, resulting in large
deformations that are observable at typical trapping powers
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[20,21]. The so-called optical stretcher consists of two co-
axial counterpropagating beams and has been used to measure
the viscoelastic properties of soft biological materials (e.g.,
soft cells) [22,23].

In atmospheric science, surface tension has long been
known to play a key role in cloud droplet activation [24] and,
more recently, changing surface tension has also been identi-
fied as being of great importance during the cloud droplet for-
mation process [25–27]. Liquid-liquid phase separation can
occur in atmospheric aerosol particles [28,29] and result in a
core-shell droplet with a lower surface tension than if it was
homogeneously mixed [30]. The potential to study surface
tension (along with interfacial tension at the core-shell inter-
face in phase-separated particles) through optical deformation
measurements of single microdroplets is appealing due to the
relative humidity-controlled, contact-free environment that
optical tweezers enable. Such a measurement is hindered
by surface tensions well above the ultralow surface tension
range (e.g., the surface tension of pure water is 73 mN/m at
20 ◦C) [31], so optical deformation of aqueous aerosols will
not be observable using bright-field microscopy. However,
weakly absorbing microdroplets can act as high-quality op-
tical cavities that support whispering gallery modes (WGMs).
By measuring the frequency splitting of WGMs that occurs
when the spherical shape of a microdroplet undergoes a small
change [32,33], deformations on the order of nanometers can
be detected [34–36] and used to determine the surface tension
of the droplet [18]. The development of a model that can
be used to analyze such optical deformation measurements
partially motivates the current work.

In this paper, we present a theoretical model to study
the optical deformation of a particle composed of concentric
spherical shells. In particular, we will focus our attention on
(i) a homogeneous spherical particle and (ii) a homogeneous
spherical particle with a homogeneous concentric spherical
shell (referred to here as a core-shell particle). In Sec. II, we
present the electromagnetic theory and generalized Lorenz-
Mie theory (GLMT) formalism that is used to determine the
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optical stress of an arbitrarily shaped beam on a spherical
surface or interface. In Sec. III, an analytic expression for the
amplitude of deformation is derived by balancing the radiation
pressure, hydrostatic pressure difference, and the product of
tension and curvature across an interface or surface. This
derivation is a key result of the current work. In Sec. IV,
the expressions are used to study the optical stress and defor-
mation of microdroplets with physically relevant parameters
in several cases that are important to optical trapping and
manipulation (particles illuminated by Gaussian or zeroth-
order Bessel beams).

II. ELECTROMAGNETIC THEORY

A. Optical stress

In a medium that is both charge-free and nonmagnetic,
the electromagnetic force density is the sum of the elec-
trostrictive force, Minkowski’s tensor, and Abraham’s tensor
[7,37]. Under steady-state conditions at optical frequencies,
only the Minkowski tensor is required for accurate radiation
pressure calculations, and the other two terms in the electro-
magnetic force expression can be ignored [8,38]. Therefore,
the appropriate form of the Maxwell stress tensor T

↔
for our

calculations is

T
↔ = E ⊗ D + B ⊗ H − 1

2 I
↔

(E · D + B · H), (1)

where the constitutive relations between the electric field E
and the magnetic field H and the auxiliary fields D and B are
D = εE and B = μH, respectively. The quantities ε and μ are
the dielectric permittivity and magnetic permeability of the
medium, respectively.

The time-averaged component of the stress tensor acting
on the plane with a normal unit vector êr is

〈êr · T
↔〉 = Re

{
1
4 êr[ε(ErE∗

r − EθE∗
θ − EφE∗

φ )

+μ(HrH∗
r − HθH∗

θ − HφH∗
φ )]

+ 1
2 [êθ (εErE∗

θ + μHrH∗
θ )

+ êφ (εErE∗
φ + μHrH∗

φ )]
}
. (2)

The radiation pressure σ j (θ, φ) on the jth interface located at
r = a j is

σ j (θ, φ) = êr · (〈êr · T
↔〉r=a+

j
− 〈êr · T

↔〉r=a−
j

)
. (3)

We are only interested in the case where ε changes across the
interface (μ is the same everywhere). Therefore, in Eq. (3),
all of the terms containing components of the field H will
cancel out and the terms with components of the field E
can be evaluated by applying the boundary conditions for
dielectric interfaces. Specifically, that the normal component
of D and the tangential component of E are continuous. For
the core-shell system shown in Fig. 1, the radiation pressure
at the core-shell interface ( j = 1) is then

σ1 = ε0

4
Re
[
(|ε1/ε2|2ε2 − ε1)E (1)

r E (1)∗
r

+ (ε1 − ε2)
(
E (1)

θ E (1)∗
θ + E (1)

φ E (1)∗
φ

)]
, (4)

where E (1)
r , E (1)

θ , and E (1)
φ are the components of the electric

field in the core, ε1 is the dielectric permittivity of the core,

FIG. 1. Geometry of the undeformed and optically deformed
core-shell particle.

and ε2 is the dielectric permittivity of the shell. Similarly, the
radiation pressure at the shell-medium interface ( j = 2) is

σ2 = ε0

4
Re
[
(|ε2/ε0|2ε0 − ε2)E (2)

r E (2)∗
r

+ (ε2 − ε0)
(
E (2)

θ E (2)∗
θ + E (2)

φ E (2)∗
φ

)]
, (5)

where E (2)
r , E (2)

θ , and E (2)
φ are the components of the electric

field in the shell and ε0 is the dielectric permittivity of the
surrounding medium. Calculation of the fields for an arbitrary
incident beam within the GLMT framework will now be
discussed.

B. Field expansion in spherical vector wave functions

In GLMT, the electromagnetic field is expanded in the
basis of spherical vector wave functions (SVWFs). For clarity,
we will omit the harmonic time dependence exp(−iωt ) from
these expressions and throughout the rest of the text. Using
SVWFs, the incident electric field is expanded as

Einc(r) = E0

∞∑
l=1

l∑
m=−l

cpw
l

[
gTE

lmM(1)
lm (k0r, θ, φ)

− igTM
lm N(1)

lm (k0r, θ, φ)
]
, (6)

where E0 is the complex amplitude of the incident electric
field, k0 is the wave number in the medium, cpw

l = il (2l +
1)/l (l + 1) is the plane wave coefficient, gTE

lm and gTM
lm are the

beam-shape coefficients (BSCs) for transverse electric (TE)
and transverse magnetic (TM) polarization, respectively. The
SVWFs M(α)

lm and N(α)
lm are expressed as [39]

M(α)
lm = [

imπ
|m|
l (cos θ )êθ − τ

|m|
l (cos θ )êφ

]
z(α)

l (kr)eimφ, (7)

N(α)
lm =

{
l (l + 1)P|m|

l (cos θ )
z(α)

l (kr)

kr
êr + [τ |m|

l (cos θ )êθ

+ imπ
|m|
l (cos θ )êφ

] [krz(α)
l (kr)

]′
kr

}
eimφ, (8)

where the function z(α)
l is the lth-order spherical Bessel func-

tion of the first kind z(1)
l = jl , second kind z(2)

l = yl , or the
spherical Hankel function z(3)

l = h(1)
l . Note that the primes in

Eq. (8) indicate differentiation with respect to the argument.
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The angular functions in Eqs. (7) and (8) are

π
|m|
l (cos θ ) = P|m|

l (cos θ )

sin θ
,

(9)

τ
|m|
l (cos θ ) = d

dθ
P|m|

l (cos θ ),

and P|m|
l (cos θ ) is the associated Legendre polynomial, de-

fined without the (−1)m factor,

Pm
l (cos θ ) = sin θm dm

d cos θm
Pl (cos θ ). (10)

Here, m is the azimuthal mode number and Pl (cos θ ) is the
Legendre polynomial.

The magnetic field is obtained by making use of ∇ × E =
iωB, the constitutive relation between B and H, and the
following curl identities of the SVWFs:

∇ × M(α)
lm = kN(α)

lm , (11)

∇ × N(α)
lm = kM(α)

lm , (12)

so that

Z0Hinc(r) = −E0

∞∑
l=1

l∑
m=−l

cpw
l

[
gTM

lm M(1)
lm (k0r, θ, φ)

+ igTE
lmN(1)

lm (k0r, θ, φ)
]
, (13)

where Z0 = √
μ0/ε0 is the impedance in the sur-

rounding medium. By exploiting the orthogonality of
P|m|

l (cos θ ) exp (imφ), the BSCs can be expressed in terms of
the radial component of the incident beam

gTM
lm = (−i)l−1

4πE0

k0r

jl (k0r)

(l − |m|)!
(l + |m|)!

∫ 2π

0

∫ π

0
sin θdθ

× dφ(Einc · êr )P|m|
l (cos θ )e−imφ, (14)

gTE
lm = (−i)l−1

4πE0

k0r

jl (k0r)

(l − |m|)!
(l + |m|)!

∫ 2π

0

∫ π

0
sin θdθ

× dφ(Z0Hinc · êr )P|m|
l (cos θ )e−imφ. (15)

In this work, we will investigate both linearly and circularly
polarized Gaussian and Bessel beams that are incident upon a
spherical particle. For a linearly polarized Gaussian beam, an
analytical form of the BSCs can be found using the localized
approximation (see Appendix A) [40]. For the zeroth-order
Bessel beam, analytic expressions for the BSCs in the frame-
work of the GLMT are given in Appendix B [41]. The BSCs
for a circularly polarized beam can be determined using the
BSCs for a linearly polarized beam and the relationships [42]

gTM,±
lm = 1√

2

(
gTM

lm ± igTE
lm

)
, gTE,±

lm = 1√
2

(
gTE

lm ∓ igTM
lm

)
,

(16)

where +(−) denotes right-hand (left-hand) circular polariza-
tion. Note that the time convention in Ref. [42] is exp(iωt ),
which differs from our choice of exp(−iωt ) such that the
results in Eq. (16) are not identical to the relations in
that work.

The scattered fields are expanded as follows:

Esca(r) = E0

∞∑
l=1

l∑
m=−l

cpw
l

[
ialmN(3)

lm (k0r, θ, φ)

− blmM(3)
lm (k0r, θ, φ)

]
, (17)

Z0Hsca(r) = E0

∞∑
l=1

l∑
m=−l

cpw
l

[
iblmN(3)

lm (k0r, θ, φ)

+ almM(3)
lm (k0r, θ, φ)

]
, (18)

where the scattering coefficients alm and blm are to be deter-
mined by imposing boundary conditions on the surface.

For a core-shell particle (Fig. 1), the internal fields in the
shell will be

E(2)(r) = E0

∞∑
l=1

l∑
m=−l

cpw
l

[
d (2)

lm M(1)
lm (k2r, θ, φ)

− ic(2)
lm N(1)

lm (k2r, θ, φ)

+ ie(2)
lm N(2)

lm (k2r, θ, φ) − f (2)
lm M(2)

lm (k2r, θ, φ)
]
,

(19)

Z2H(2)(r) = −E0

∞∑
l=1

l∑
m=−l

cpw
l

[
c(2)

lm M(1)
lm (k2r, θ, φ)

+ id (2)
lm N(1)

lm (k2r, θ, φ)

− i f (2)
lm N(2)

lm (k2r, θ, φ) − e(2)
lm M(2)

lm (k2r, θ, φ)
]
,

(20)

where Z2 is the impedance in the shell and k2 is the wave
number in the shell. The latter is related to the wave number in
the surrounding medium by k2 = n2k0, where n2 denotes the
relative refractive index of the shell. Because of the singular
nature of the Bessel function of the second kind yl at the
origin, the field expansion inside the core must have e(1)

lm = 0
and f (1)

lm = 0:

E(1)(r) = E0

∞∑
l=1

l∑
m=−l

cpw
l

[
d (1)

lm M(1)
lm (k1r, θ, φ)

− ic(1)
lm N(1)

lm (k1r, θ, φ)
]
, (21)

Z1H(1)(r) = − E0

∞∑
l=1

l∑
m=−l

cpw
l

[
c(1)

lm M(1)
lm (k1r, θ, φ)

+ id (1)
lm N(1)

lm (k1r, θ, φ)
]
. (22)

k1 = n1k0 denotes the wave number in the core with relative
refractive index n1. The internal coefficients are determined
from the boundary conditions on the core-shell interface.

III. OPTICAL DEFORMATION

A. Interfacial stress balance and resulting
deformation amplitude

The stress-balance equation for the jth interface can be
found by incorporating σ j into the Young-Laplace equation
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to yield

γ j∇ · n̂ j = �p j + σ j, (23)

where γ j is the interfacial or surface tension, n̂ j is an outward
unit vector normal to the interface, and �pj = pin

j − pext
j is

the difference in fluid pressure across the interface. For a
static fluid, the Navier-Stokes equation gives ∇pin

j = 0 and
∇pext

j = 0 [7]. Then, the excess pressure induced by the
Minkowski tensor has no angular dependence because pin

j

and pext
j are constant values. As such, �p j is a constant that

varies according to the jth interface under consideration. The
deformation at the jth interface will be defined as h j (θ, φ) and
can be represented as an expansion using spherical harmonics

h j (θ, φ) =
∞∑

l=2

l∑
m=−l

h( j)
lm Ylm(θ, φ), (24)

where the spherical harmonics are defined as

Ylm(θ, φ)

=
⎧⎨⎩
√

(2l+1)
4π

(l−|m|)!
(l+|m|)! P

|m|
l (cos θ )eimφ if (m < 0),

(−1)m
√

(2l+1)
4π

(l−m)!
(l+m)! P

m
l (cos θ )eimφ if (m � 0).

(25)

The radial position of a deformed interface will be dj (θ, φ) =
a j + h j (θ, φ). In Eq. (24), the l = 0 term is not included in the
summation due to conservation of volume and the assumption
that the fluid is incompressible and the l = 1 term is omitted
as it corresponds to uniform motion [6].

For small deformations (hj � a j), the expansion [7]

γ j∇ · n̂ j = 2γ j

a j
+ γ j

a2
j

∞∑
l=2

l∑
m=−l

(l − 1)(l + 2)h( j)
lm Ylm(θ, φ)

(26)

can be inserted into Eq. (23) along with the following expan-
sion in spherical harmonics for the radiation pressure

σ j (θ, φ) =
∞∑

l=1

l∑
m=−l

σ
( j)
lm Ylm(θ, φ). (27)

Then, utilizing the orthogonality of the spherical harmonics,
the deformation coefficients will be

h( j)
lm = a2

j

γ j

σ
( j)
lm

(l − 1)(l + 2)
. (28)

Although Eq. (28) relates the coefficients in a straightforward
manner, the main difficulty is in first determining σ

( j)
lm . In the

case of the core-shell system shown in Fig. 1, this would
involve inserting either Eqs. (4) or (5) into the left-hand side
(LHS) of Eq. (27) and using the orthogonality of the spherical
harmonics to then solve for σ

( j)
lm . For the jth layer, this yields

σ
( j)
lm = 2l + 1

8

(l − |m|)!
(l + |m|)!

[
(|ε j/ε j+1|2ε j+1 − ε j )R

( j)
lm

+ (ε j − ε j+1)�( j)
lm

]
, (29)

where R( j)
lm and �

( j)
lm form the contribution of the radial and

angular components of the electric field, respectively. They
can be expressed by making use of either Eqs. (19) or (21) in
expanding the internal field

R( j)
lm = 1

2π

∞∑
l1=1

∞∑
l2=1

l1∑
m1=−l1

l2∑
m2=−l2

∫ 2π

0

∫ π

0
sin θdθdφ

× E ( j)
r E ( j)∗

r P|m|
l (cos θ )e−imφ, (30)

�
( j)
lm = 1

2π

∞∑
l1=1

∞∑
l2=1

l1∑
m1=−l1

l2∑
m2=−l2

∫ 2π

0

∫ π

0
sin θdθdφ

× [E ( j)
θ E ( j)∗

θ + E ( j)
φ E ( j)∗

φ

]
P|m|

l (cos θ )e−imφ, (31)

where it is understood that E ( j)
r , E ( j)

θ , and E ( j)
φ are the internal

electric field components that arise in the summand of either
Eqs. (19) or (21). In what follows, the appropriate internal
field components are inserted into Eqs. (30) and (31) and R( j)

lm ,
�

( j)
lm are rewritten as

R( j)
lm = |E0|2

|k ja j |4 A( j)
l12m12

IA
l12m12lm, (32)

�
( j)
lm = |E0|2

|k ja j |2
[
B( j)

l12m12
IB

l12m12lm + C( j)
l12m12

IC
l12m12lm

]
, (33)

where li j and mi j are shorthand for lil j and mimj respectively.
Here, subscript indices that appear twice within a single term
are implicitly summed over. All of the coefficients and terms
that need to be evaluated on the surface but that do not depend
on θ or φ are taken out of the surface integrals and regrouped
into A( j)

l12m12
, B( j)

l12m12
, and C( j)

l12m12
:

A( j)
l12m12

= l1(l1 + 1)l2(l2 + 1)r ( j)
l1m1

r ( j)∗
l2m2

, (34)

B( j)
l12m12

= [
sl1m1 s( j)∗

l2m2
+ t ( j)

l1m1
t ( j)∗
l2m2

]
, (35)

C( j)
l12m12

= [
s( j)

l1m1
t ( j)∗
l2m2

+ t ( j)
l1m1

s( j)∗
l2m2

]
, (36)

with the terms r ( j)
lm , s( j)

lm , and t ( j)
lm given by

r ( j)
lm = cpw

l

[
c( j)

lm ψl (k ja j ) + e( j)
lm χl (k ja j )

]
, (37)

s( j)
lm = cpw

l

[
c( j)

lm ψ ′
l (k ja j ) + e( j)

lm χ ′
l (k ja j )

]
, (38)

t ( j)
lm = cpw

l

[
d ( j)

lm ψl (k ja j ) + f ( j)
lm χl (k ja j )

]
. (39)

Here, we introduced the Ricatti-Bessel functions ψl and χl

which are related to the Bessel functions jl and yl through
ψl (ρ) = ρ jl (ρ) and χl (ρ) = −ρyl (ρ).

IA
l12m12lm, IB

l12m12lm, and IC
l12m12lm are surface integrals that

depend on θ and φ. They can be reduced to single integrals
over θ by solving the φ integral first. The azimuthal integrals
are straightforward to solve since they only involve products
of complex exponentials [i.e., exp (imφ)]. The integration
gives the condition that the azimuthal mode numbers are
related by m = m1 − m2. If this condition is not met, the three
integrals vanish. This will be implicit from now on. We then
have the following:

IA
l12m12lm =

∫ π

0
sin θdθP|m1|

l1
P|m2|

l2
P|m|

l , (40)
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IB
l12m12lm =

∫ π

0
sin θdθ

[
m1m2π

|m1|
l1

π
|m2|
l2

+ τ
|m1|
l1

τ
|m2|
l2

]
P|m|

l ,

(41)

IC
l12m12lm = −

∫ π

0
sin θdθ

[
m1π

|m1|
l1

τ
|m2|
l2

+ m2τ
|m1|
l1

π
|m2|
l2

]
P|m|

l .

(42)

The resulting integrals contain triple products of P|m|
l , π |m|

l ,
and τ

|m|
l and these are not trivial to solve numerically due to

the presence of numerous zeros on the domain of integration.
Indeed, as l and m increase, the size of the subinterval
must be decreased because the integrand contains functions
that fluctuate rapidly with θ . This makes numerical inte-

gration computationally expensive and time-consuming. In
Appendix C, exact expressions for the three integrals are given
allowing us to derive an analytic expression for σ

( j)
lm . This will

lead to the exact calculation of h j (θ, φ). The final result is
subsequently summarized.

B. Summary and analytic expression for the optical deformation

The solutions to the three integrals are expressed in terms
of the Wigner 3 j symbols. These can be computed directly
from Racah’s formula [see Eqs. (C11) and (C12)] or by means
of the recursion relations of the 3 j symbols [43,44]. The first
integral in question is given by

IA
l12m12lm = 2(−1)�

√
(l1 + |m1|)!(l2 + |m2|)!(l + |m|)!
(l1 − |m1|)!(l2 − |m2|)!(l − |m|)!

(
l1 l2 l3
0 0 0

)(
l1 l2 l
m1 −m2 −m

)
, (43)

with � = m1 +∑mi<0 mi. It is then shown that the second integral is actually related to the first one through

IB
l12m12lm = 1

2 [l1(l1 + 1) + l2(l2 + 1) − l (l + 1)]IA
l12m12lm. (44)

The third integral is the most problematic, and is expressed by a finite series

IC
l12m12lm = (−1)�

√
(l1 + |m1|)!
(l1 − |m1|)!

(l2 + |m2|)!
(l2 − |m2|)!

(l + |m|)!
(l − |m|)!

×
⎛⎝m1

l1+l∑
li=|l1−l|

Gi

√
(l2 − |m2|)!
(l2 + |m2|)!

(li − |m2|)!
(li + |m2|)!I

D
l2im2

+ m2

l2+l∑
l j=|l2−l|

Hj

√
(l j − |m1|)!
(l j + |m1|)!

(l1 − |m1|)!
(l1 + |m1|)!I

D
l1 j m1

⎞⎠, (45)

with the following terms:

Gi = (2li + 1)

(
l1 li l

0 0 0

)(
l1 li l

m1 −m2 −m

)
,

Hj = (2l j + 1)

(
l j l2 l

0 0 0

)(
l j l2 l

m1 −m2 −m

)
,

ID
li j m = δ0,m − (li + |m|)!

(li − |m|)!δ2p+1,l j−li + (l j + |m|)!
(l j − |m|)!δ2p+1,li−l j ,

where p = 0, 1, 2, ... is a positive integer.
When IA

l12m12lm, IB
l12m12lm, and IC

l12m12lm are known, these are

inserted into R( j)
lm and �

( j)
lm . All that remains is to compute

the coefficients A( j)
l12m12

, B( j)
l12m12

, and C( j)
l12m12

. This is done by
matching the boundary conditions for the electric and mag-
netic fields at each interface and then calculating the quantities
r ( j)

lm , s( j)
lm , and t ( j)

lm . Thereafter, σ
( j)
lm is computed from Eq. (29)

and h( j)
lm from Eq. (28). The optical deformation is then found

by inserting these coefficients into Eq. (24).

IV. RESULTS AND DISCUSSION

A. Homogeneous spherical particle in a Gaussian beam

In Fig. 2, we examine the optical stress and resulting
deformation on a homogeneous spherical particle with a
radius a = 5 μm centered on the focal point of a single

Gaussian beam or the shared focal point of two coaxial
counterpropagating Gaussian beams. The particle has physical
parameters corresponding to water, with a refractive index of
n = 1.33 and a surface tension of γ = 73 mN/m [45,46].
Linearly and circularly polarized Gaussian beams of three
different beam waists, w0, are considered. The polar plots
in Fig. 2 are in the plane of φ = 0◦. With decreasing beam
waist, there is an increase in optical stress in both the forward
(θ = 0◦) and backward (θ = 180◦) directions. As the beam
power is the same for all of the calculations, a more focused
beam will transfer more momentum to the particle. Therefore,
the narrowest beam waist (w0 = 0.2a) has both the largest
optical stress and deformation. In addition to the difference
in magnitude, the results for the beam with the narrowest
waist are qualitatively distinct from the case where the beam
waist is the same as the particle radius (w0 = a) and the case
where the beam waist is large compared to the particle radius
(w0 = 5a).

When comparing the optical stress to the deformation
calculations in Fig. 2 (and subsequent figures), one strik-
ing difference between the two sets of calculations is the
absence of the sharp oscillations on the deformation plots.
Sharp oscillations are observed for many of the optical stress
plots but not their corresponding deformation plots which
are always much smoother in curvature. The origin of this
effect can be understood by examining Eq. (28), which relates
stress coefficients σ

(1)
lm to deformation coefficients h(1)

lm with
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FIG. 2. The stress and deformation in the x-z plane induced by one or two Gaussian beams on a homogeneous sphere with a refractive
index of n = 1.33, radius of a = 5 μm, and surface tension of γ = 73 mN/m. The first row [(a), (b)] shows the case of an x polarized beam
coming from θ = 180◦. The second row [(c), (d)] shows the case of one x polarized beam coming from θ = 180◦ and one y polarized beam
coming from θ = 0◦. The third and fourth rows [(e)–(h)] are the same as the first and second rows [(a)–(d)] except the polarization of the
beam(s) is set to be left circular. In all cases, the beam waist of each Gaussian beam, w0, scales with the radius of the sphere while the beam
power is held constant at P = 0.1 W and the beam wavelength is set to λ = 0.532 μm.

an extra factor of (l − 1)(l + 2). This factor dampens the
contribution of higher l spherical harmonics to the optical
deformation calculated using Eq. (24). More generally, this
is the result of curvature rather than deformation amplitude

being proportional to optical stress in the stress-balance equa-
tion [Eq. (23)].

In Figs. 2(a) and 2(e), the stress in the θ = 0◦ direction is
greatly enhanced due to the lensing of the light by the sphere
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FIG. 3. The stress and deformation in the x-z plane induced by one or two Gaussian beams on a homogeneous sphere with physical
parameters identical to those listed in the caption of Fig. 2. However, here the radius has been increased to a = 5.003 μm so that TE2

66 MDR
can be excited by the incident beam(s).

[6–8,47]. In terms of a Debye series analysis, the interference
structure seen for the stress profile at w0 = a and w0 = 5a
is attributed to the coupling of the p = 1 near-paraxial ray
with the p = 1 edge ray of grazing incidence. This two-
ray interference results in a supernumerary structure with
alternating constructive and destructive interference. Indeed,
it is characterized by a large enhancement of the optical

stress in the paraxial limit which oscillates and eventually
disappears at greater angles. For a tightly focused beam (e.g.,
w0 = 0.2a shown here), the interference structure disappears
because edge rays of grazing incidence are negligible for
such a narrow beam waist. Instead, only near-paraxial rays
coming directly from the Gaussian beam are focused onto the
θ = 0◦ side of the sphere, with the magnitude of the optical
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FIG. 4. The stress and deformation on a water-coated organic droplet (n1 > n2) in the x-z plane induced by two coaxial, counterpropagating
Gaussian beams with a shared focal point at the center of the particle. The beams are linearly polarized and mutually orthogonal. The stress and
deformation are shown for both the core and the shell. The sphere has a core (shell) refractive index of n1 = 1.41 (n2 = 1.33), an inner (outer)
radius of a1 = 4.25 μm (a2 = 5 μm), and an interfacial (surface) tension of γ1 = 51 mN/m (γ2 = 73 mN/m). The beam waist is increased
from w0 = 0.2a2 in the first row [(a), (b)] to w0 = a2 in the second row [(c), (d)] and finally to w0 = 5a2 in the third row [(e), (f)]. In all cases,
the power of each Gaussian beam is held constant at P = 0.1 W and the beam wavelength is set to λ = 0.532 μm..

stress consistent with the intensity profile of the Gaussian
beam [47].

Another point of comparison within Fig. 2 is the effect of
the polarization of the incident beam. Physically, circular po-
larization makes the stress and deformation azimuthally sym-
metric, meaning that only m = 0 is considered in Eqs. (24)
and (27). Whereas for linear polarization, the presence of the
m = 2 mode breaks this symmetry. It is apparent in Figs. 2(a),
2(c), 2(e), and 2(g) that the different polarization types slightly
change the stress profiles when w0 = a and w0 = 5a but
have little to no impact in the tightly focused beam case. In
Figs. 2(b), 2(d), 2(f), and 2(h), the change in polarization has
no noticeable effect on the deformation profile for all values of
w0. This result is not surprising as we have already discussed
the smoothing effect of curvature on optical stress and how it
affects the deformation.

In Fig. 3, the parameters are such that the incident beam(s)
can excite a morphology-dependent resonance (MDR) in the
spherical particle. This MDR can be excited by increasing
the radius to a = 5.003 μm. The ratio of w0 to a was kept
constant and the wavelength and refractive index remained
the same as the calculations in Fig. 2. A second-order, trans-
verse electric MDR with a mode number of 66 (the MDR
is referred to as TE2

66) is excited by the incident beam(s).
MDRs can exhibit strong internal electromagnetic fields near
the particle surface [48]. Because Eq. (4) is proportional to
the electromagnetic energy density on the interior interface,
a substantial amplification of the stress can be seen in the
w0 = a and w0 = 5a cases, where the MDR is excited, and the
supernumerary and “jagged” structures become much more
pronounced. For the case of the narrow beam (w0 = 0.2a),
no such amplification is observed as the beam does not
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FIG. 5. The stress and deformation on an organic-coated water droplet (n2 > n1) in the x-z plane. The sphere has a core (shell) refractive
index of n1 = 1.33 (n2 = 1.41), an inner (outer) radius of a1 = 4.25 μm (a2 = 5 μm), and an interfacial (surface) tension of γ1 = 51 mN/m
(γ2 = 23 mN/m). The incident beams are described in the caption of Fig. 4.

efficiently excite the MDR. Coupling between the incident
beam and the MDR occurs through the evanescent field and
is optimal for rays traveling through a point that is located
at a radial distance larger than the radius of the sphere
[40]. This distance is sometimes referred to as the impact
parameter [49]. In the focal plane of the w0 = 0.2a Gaussian
beams examined here, the beam intensity is very small at
distances larger than the radius of the sphere so coupling into
the MDR is negligible and has no noticeable effect on the
optical stress.

B. Core-shell particle in a Gaussian beam

Here, we will examine the stress and resulting deformation
of a core-shell particle with an outer radius a2 = 5 μm and
a core-shell ratio a1/a2 = 0.85 centered on the shared focal
point of two coaxial counterpropagating Gaussian beams. We
will only consider linearly polarized beams of three different

beam waists. For a core-shell particle, two cases must be
considered: (i) The core refractive index is larger than the
shell and (ii) the shell refractive index is larger than the
core. As a physically relevant core-shell particle, we will use
(i) a water-coated organic core and (ii) an organic-coated
water core. In the calculations that follow, the organic core
or shell will have physical parameters that correspond to
decane, as its refractive index, surface tension, and interfacial
tension with water are well known. The refractive index of
decane is n = 1.41 [50]. Depending on whether the water
or the organic constitutes the shell, the surface tension of
the particle will either correspond to that of (i) γ = 73
mN/m for the water coating or (ii) γ = 23 mN/m for the
organic coating. In both cases, the interfacial tension between
the two components that form the shell and the core is
γ = 51 mN/m [46].

Figure 4 shows the optical stress and deformation of the
water shell on an organic core (n1 > n2). As in the case of the
homogeneous sphere, the narrowest beam [Fig. 4(a)] exhibits
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FIG. 6. The stress and deformation on a water-coated organic droplet (n1 > n2) in the x-z plane. The physical parameters of the droplet
are identical to those listed in the caption of Fig. 4. However, the outer radius has been decreased to a2 = 4.941 μm so that TE2

66 MDR can be
excited by the incident beams. The core-shell ratio was unchanged at a1/a2 = 0.85. The incident beams are described in the caption of Fig. 4.

no interference pattern at the core-shell and shell-medium
interface, and the stress profiles on both the core and the shell
correlate with the intensity profile of the Gaussian beams. In
the absence of any interference effect, the influence of the
dielectric contrast from Eqs. (4) and (5) on the optical stress
becomes clear. As the dielectric contrast across the core-shell
interface is much lower than across the shell-medium surface,
the stress on the core is lower than the stress on the shell.
In fact, even when interference effects become important,
this feature is observed in all of the core-shell calculations
(Figs. 4–7). The deformation of the core-shell particle caused
by the narrow beams is shown in Fig. 4(b). As expected, the
shell deforms more than the core despite the lower interfacial
tension with respect to the surface tension. When a beam
with a wider beam waist is used, interference patterns in
the optical stress appear on both interfaces [Figs. 4(c) and
4(e)]. In the core-shell particle cases considered here, it is
interesting to note how the inclusion of the organic core leads
to a substantial increase in the stresses in the θ = 0◦ and 180◦

directions on the shell when compared to the optical stress
at the same locations for a homogeneous sphere [Fig. 2(c)].
This is attributed to the core acting as an additional lens that
focuses the Gaussian beams.

Figure 5 shows the optical stress and deformation for an
organic shell on a water core (n2 > n1). We observe similar
features to the above example in that the stress on the core is
consistently smaller than that on the shell [Figs. 5(a), 5(c), and
5(e)]. The most striking feature here is that the higher index
of the shell relative to the core results in an inward pointing
optical stress at the core-shell interface. Additionally, the
core now acts as a diverging lens which is responsible for the
broadening of the stress profile on the shell in Figs. 5(c) and
5(e). The resulting deformation in Figs. 5(b), 5(d), and 5(f)
consists of the shell being stretched along the axis of the two
beams with the core being compressed along the same axis
(or stretched along the shared focal plane of the two Gaussian
beams). The large shell deformation seen here relative to the
examples in Fig. 4 is simply due to the lower surface tension
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FIG. 7. The stress and deformation on a water-coated organic droplet (n2 > n1) in the x-z plane. The physical parameters of the droplet
are identical to those listed in the caption of Fig. 5. However, the outer radius has been decreased to a2 = 4.941 μm so that TE2

66 MDR can be
excited by the incident beams. The core-shell ratio was unchanged at a1/a2 = 0.85. The incident beams are described in the caption of Fig. 4.

of the organic shell compared to the previously considered
water shell.

Next we examine the effect of exciting the TE2
66 MDR

for both n1 > n2 (Fig. 6) and n2 > n1 (Fig. 7). The outer
radius a2 that accommodates the MDR for a fixed core-shell
ratio a1/a2 = 0.85 was determined numerically [51]. In the
case of the w0 = 0.2a2 beam waist [shown in Figs. 6(a),
7(a), 6(a), and 6(b)], the MDR is not excited and there is
little difference between the off-resonance cases considered
in Figs. 4 and 5. The physical reasons for this were discussed
earlier when analyzing the optical stress and deformation of
a homogeneous sphere. When a MDR is excited, a coated
sphere can have strong internal fields in both the core and shell
provided the shell is not too thick with respect to the core. As
anticipated for beam waists that can excite the TE2

66 MDR,
there is an increase in the stress on both the core and the shell
and the subsequent deformation is enhanced [Figs. 6(c)–6(f)
and Figs. 7(c)–7(f)].

C. Homogeneous spherical particle in a Bessel beam

The optical Bessel beam can be represented as a super-
position of plane waves forming a cone of semiapex angle
θ0 [15,52]. Using this description, analytic expressions for
the GLMT BSCs of a zeroth-order Bessel beam can be
determined (see Appendix B). Figure 8 shows the stress and
deformation of a homogeneous droplet centered on the beam
axis of either a single Bessel beam or two coaxial counter-
propagating Bessel beams at three different semiapex angles.
For the single Bessel beam, increasing the semiapex angle
leads to increased optical stress in the θ = 180◦ direction
[Fig. 8(a)]. Note that for all of the examples in Fig. 8, the
net optical force will be positive. So, while the particle is
deformed in the direction opposite to the direction of Bessel
beam propagation in Fig. 8(b), it would still be pushed along
the direction of the propagating beam (no predicted optical
pulling). In Figs. 8(c) and 8(d), the effect of having two
coaxial and counterpropagating beams leads to the expected
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FIG. 8. The stress and deformation in the x-z plane induced by one or two zeroth-order Bessel beams on a homogeneous sphere with
physical parameters that are identical to those listed in the caption of Fig. 2. The first row [(a), (b)] shows the case of an x-polarized beam
coming from θ = 180◦. The second row [(c), (d)] shows the case of one x-polarized Bessel beam coming from θ = 180◦ and one y-polarized
Bessel beam coming from θ = 0◦. In all cases, each Bessel beam has a fixed power of P = 0.1 W and a wavelength of λ = 0.532 μm.

result of optical stretching along the shared axis of the
beams.

Figure 9 shows the net force in the z direction on a
homogeneous sphere centered on the axis of a single Bessel
beam as the radius of the sphere changes. Here, we have a
included a plot for a very high semiapex angle (θ0 = 80◦). It
can be seen that optical pulling can be achieved for several
narrow ranges of radii. This is not possible for the smaller
semiapex angles (e.g., θ0 = 60◦ is shown in Fig. 9). However,

FIG. 9. The net force in the z direction imparted by an x-
polarized zeroth-order Bessel beam on a homogeneous sphere with a
refractive index of n = 1.33 across a range of radii, a. The semiapex
angle of the Bessel beam is either θ0 = 60◦ or 80◦. In both cases, the
Bessel beam has a fixed power of P = 0.1 W and a wavelength of
λ = 0.532 μm.

even for θ0 = 80◦, as the radius becomes much larger than
the wavelength of the incident light, the net force is always in
the positive z direction and optical pulling can no longer be
realized. In Fig. 9, a longer period envelope also appears over
the more rapid oscillations in force as a function of radius.
This is most distinct in the θ0 = 80◦ curve. Calculations reveal
that this is the well-known Mie interference structure [53].

Figures 10(a) and 10(b) compare the stress and deforma-
tion for three spheres with similar radii that experience very
different net optical forces. The radii are all in a region of
the θ0 = 80◦ curve in Fig. 9 where the net force rapidly
changes between optical pushing and pulling. Therefore,
small changes to the radii allow us to examine the stress and
deformation during (i) optical pulling, (ii) optical pushing,
and (iii) the case where the net optical force is zero. At
such a large semiapex angle, the optical stress on the lateral
sides of the sphere lead to a significant deformation in the
direction perpendicular to the beam axis. This is perhaps
surprising as there are large optical stresses in the θ = 0◦
and 180◦ directions, but it can be attributed to the fact that
most of the beam momentum is along the x axis. It then
follows that the particle must stretch more along the x axis
instead of the z axis. Whether or not the net force is zero
or leads to pushing or pulling does not qualititatively change
any of the results in Figs. 10(a) and 10(b). In Figs. 10(c) and
10(d), the same set of radii are studied for the case where
a second, counterpropagating Bessel beam has been added.
The main result here is that, unlike earlier examples in this
work [e.g., Figs. 2(c) and 2(d)], the counterpropagating beams
can now be thought of as compressing the particle rather than
stretching it.
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FIG. 10. The stress and deformation in the x-z plane induced by one or two linearly polarized zeroth-order Bessel beams on a homogeneous
sphere with physical parameters that are identical to those listed in the caption of Fig. 2 except with differing radii [indicated in the inset of
panel (a)]. The first row [(a), (b)] shows the case of an x polarized beam coming from θ = 180◦. The second row [(c), (d)] shows the case of
one x polarized beam coming from θ = 180◦ and one y polarized beam coming from θ = 0◦. Here, for the single beam, three cases are shown:
negative net force (pulling), zero net force, and positive net force (pushing). In all cases, each Bessel beam has a fixed power of P = 0.1 W
and a wavelength of λ = 0.532 μm.

D. Core-shell particle in a Bessel beam

Figure 11 examines the net force on both the core and shell
of a core-shell particle as a function of shell radius for a large
semiapex angle (θ0 = 80◦). The total force on the core-shell
particle is also calculated. When n1 < n2, it can be seen that
the core is pulled by the beam whereas the shell is pushed
due to the lower refractive index of the core [Fig. 11(a)]. A
peculiar feature is that whenever the net optical force dips

below zero, the core is pushed while the shell is pulled. For the
case when n1 > n2, whenever the net force is below zero, both
the core and shell are pulled toward the beam [Fig. 11(b)]. As
in the homogeneous case, the ranges of radii where optical
pulling is possible are limited and become nonexistent at large
radius. Finally, in Fig. 12, we examine one case of optical
stress and deformation for the core-shell particle in a Bessel
beam. The chosen radius corresponds to one of the regions
on Fig. 11(a), where each Bessel beam pulls the core-shell
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FIG. 11. The net force in the z direction imparted by an x-
polarized zeroth-order Bessel beam on a core-shell particle across
a range of outer radii a2. In all calculations, a1/a2 = 0.85. The
semiapex angle of the Bessel beam is θ0 = 80◦, its beam power is
P = 0.1 W, and its wavelength is λ = 0.532 μm. Both the net force
on the core and the net force on the shell are shown. The total force is
also shown and is the sum of the force on the core and shell. The first
row (a) shows the case when n1 = 1.33 and n2 = 1.41. The second
row (b) shows the opposite case, n1 = 1.41 and n2 = 1.33.

particle. Along the axis of propagation, the broader stress
profile on the shell leads to a stretching deformation unlike its
homogeneous counterpart [Fig. 10(d)]. In addition, the optical
stress will also deform the shell along the perpendicular axis.
The resulting deformation combines these two effects and,
due to the assumption of conservation of volume, this will
lead to a compression of the shell along the axes where the
stress is the lowest.

V. CONCLUSION

We have presented a theoretical model for the optical
stress and deformation induced by an arbitrary incident beam
for a particle composed of concentric spherical shells. The
electromagnetic component of the problem is treated in the
framework of GLMT where the electromagnetic field is ex-
panded in a basis of VSWFs. Then, by applying the stress-
balance equation on the static surface (and core-shell inter-
face) of the particle, an analytic expression for the optical

deformation is derived. Using this theoretical framework, we
investigate the deformation of homogeneous and core-shell
spherical droplets by on-axis Gaussian beams(s) and zeroth-
order Bessel beam(s).

To our knowledge, the optical stress and deformation of
core-shell particles had never been previously studied. In-
teresting results for the core-shell sphere include the role
that the relative refractive index of the core and shell play
in terms of optical stress and deformation. If n1 < n2, two
counterpropagating Gaussian beam will compress the core
and stretch the shell. If n2 < n1, both the core and the shell
will be stretched. When the Gaussian beams are replaced by
Bessel beams with high semiapex angle, it was found that for
n1 < n2 the shell stretches along both the axes parallel and
perpendicular to the beam. Compression then occurs where
the stress distribution is the lowest. Results related to the
excitation of MDRs were consistent with expectations based
on previous studies (i.e., increased optical stress if an MDR is
excited and MDRs are not excited by narrow beam waists).

For the zeroth-order Bessel beam calculations, when a
homogeneous sphere is centered on the beam axis of two
coaxial counterpropagating beams with high semiapex angles
(θ0 = 80◦), the beams will compress rather than stretch the
particle along the shared beam axis. Reducing the semiapex
angle of the Bessel beams (θ0 = 30◦, 45◦, and 60◦) gives the
same qualitative result as the Gaussian beam case (the particle
is stretched by the beams). Similar results were found for the
core-shell system in the Bessel beam.

We would like to emphasize that with the analytic solution
presented here, calculations are not computationally demand-
ing and the optical stress and deformation model can readily
be applied to systems with very large size parameters or to
particles composed of additional concentric spherical shells.
This is because the analytic solution is written in terms of the
Wigner 3 j symbols, and as we have already discussed, recur-
sion relations allow for the accurate and efficient calculation
of the Wigner 3 j symbols. These can be subsequently stored
and used in the aforementioned systems.

One final question that needs to be addressed is whether the
nonsphericity of the deformed particles leads to a significant
change in their internal field distribution and subsequent opti-
cal deformation. We used the T -matrix method to investigate
this question by computing the optical stress profile on the de-
formed surfaces [54]. It was found that, in nonresonant cases,
the minor change in the stress profile that was caused by the
small surface deformation did not significantly alter the results
presented here using the spherical assumption. But, for cases
where a sharp MDR was excited by the incident beam, this
was no longer true. This is because the resonant position of
the MDR will shift as the particle deforms and the stress will
decrease when the MDR is no longer excited by the incident
beam. However, T -matrix calculations also revealed that, if
the wavelength of the incident beam was adjusted to match
the shifted MDR in the deformed particle, excellent agreement
between the spherical calculation and the T -matrix calculation
would be achieved. Therefore, the calculations in this work
are accurate even when the deformations are accounted for,
but it should be recognized that listed MDR positions are for
spherical particles and will need to be slightly modified so that
MDR excitations still occur in deformed particles.
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FIG. 12. The stress and deformation in the x-z plane induced by two coaxial, counterpropagating zeroth-order Bessel beams on a core-shell
particle with physical parameters that are identical to those listed in the caption of Fig. 5 except that the outer radius was changed to a2 =
3.5447μm so that each beam pulls the particle. The beams are linearly polarized and their polarizations are orthogonal. The stress is shown on
the left (a) and the resulting deformation on the right (b). These are shown for both the core and the shell. The Bessel beam has a fixed power
of P = 0.1 W and a wavelength of λ = 0.532 μm.
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APPENDIX A: BEAM-SHAPE COEFFICIENTS OF A GAUSSIAN BEAM

The BSCs of a Gaussian beam are calculated using the localization principle [40]. The beam center is located at (x f , y f , z f )
with respect to the center of origin of the particle and the beam waist is w0. The BSCs are then
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The terms that appear in Eqs. (A1) and (A2) are
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and Jm(Ql ) is the cylindrical Bessel function of the first kind. m is an integer that denotes the order of the Bessel function.
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APPENDIX B: BEAM-SHAPE COEFFICIENTS OF A ZEROTH-ORDER BESSEL BEAM

The fields for a zeroth-order Bessel beam are given by [52,55]

E(r) = EB0eikzz{[J0(σ ) + P⊥J2(σ ) cos(2φ)]êx + P⊥J2(σ ) sin(2φ)êy − i2P‖J1(σ ) cos φêz}, (B1)

Z0H(r) = EB0eikzz{P⊥J2(σ ) sin(2φ)êx + [J0(σ ) − P⊥J2(σ ) cos(2φ)]êy − i2P‖J1(σ ) sin φêz}, (B2)

where σ = kρ sin θ0, φ = arctan(x/y), ρ =
√

x2 + y2, P⊥ = (1 − cos θ0)/(1 + cos θ0), P‖ = (sin θ0)/(1 + cos θ0), and θ0 is the
semiapex angle.

The time-averaged Poynting vector is

〈S〉 = 1

2
Re[E × H∗] = E2

B0

2Z0

[
J2

0 (σ ) − P2
⊥J2

2 (σ )
]
êz. (B3)

The x and y components of the time-averaged Poynting vector are vanishing because the terms that arise are imaginary. In effect,
the energy flux of the Bessel beam is in the z direction. The central core of the Bessel beam is defined by setting the z component
of the time-averaged Poynting vector to zero. In this way, the Bessel beam core is defined as

rbes = σ0

k sin θ0
= σ0

kr
, (B4)

where σ0 is the first root of the transcendental equation

J2
0 (σ0) − P2

⊥J2
2 (σ0) = 0. (B5)

The total power of the core can be found by integrating the time-averaged Poynting vector over the area of the core

Pbes = 2π

∫ rbes

0
Sz(krρ)ρdρ = πE2

B0

Z0

∫ rbes

0

[
J2

0 (krρ) − P2
⊥J2

2 (krρ)
]
ρdρ. (B6)

Using Lommel’s integral, ∫ rbes

0
J2
ν (krρ)ρdρ = r2

bes

2

[
J2
ν (krrbes) − Jν−1(krrbes)Jν+1(krrbes)

]
, (B7)

as well as Eq. (B5) and the fact that J−1 = −J1, we find

Pbes = π

2

E2
B0

Z0
r2

bes

[(
1 − P2

⊥
4

)
J2

1 (σ0) + P2
⊥
2

J1(σ0)J3(σ0) − P2
⊥
4

J2
3 (σ0)

]
, (B8)

In order to compute the optical stress and deformation on a sphere located at r0 = (x0, y0, z0) by an incident Bessel beam,
its BSCs need to be determine by expanding the field in SVWFs [Eq. (6)]. Instead of using Eqs. (B1) and (B2) to calculate
the electromagnetic field, the Bessel beam is reformulated as a sum of plane waves forming a cone of semiapex angle θ0 and
propagating along the z axis [41]. Assuming the Bessel beam is x polarized, the field is given by

E(r) = E0

∫ 2π

0
e0(θ, φ)eik·rdφ, (B9)

where e0 = cos φêθ − sin φêφ and E0 = EB0/[π (1 + cos θ0)]. The BSCs of the plane waves expanded about the sphere located
at r0 are [56]

pmn = Un[cos φτ̃mn(cos θ0) − im sin φπ̃mn(cos θ0)]eimφeik·r0 , (B10)

qmn = Un[m cos φπ̃mn(cos θ0) − i sin φτ̃mn(cos θ0)]eimφeik·r0 , (B11)

Un = 4π in

n(n + 1)
, (B12)

and π̃mn, τ̃mn are normalized πmn and τmn functions. Since the notation used differs from ours, we find the following conversion:

gTM
lm (φ) = (l − |m|)!

(l + |m|)!
[

cos φτ
|m|
l (cos θ0) + im sin φπ

|m|
l (cos θ0)

]
eimφeik·r0 , (B13)

gTE
lm (φ) = (l − |m|)!

(l + |m|)!
[

sin φτ
|m|
l (cos θ0) − im cos φπ

|m|
l (cos θ0)

]
eimφeik·r0 . (B14)

063812-16



OPTICAL DEFORMATION OF HOMOGENEOUS AND … PHYSICAL REVIEW A 101, 063812 (2020)

where we indicate a φ dependence to emphasize that these BSCs go into the integral

gTM
lm = (l − |m|)!

(l + |m|)!
∫ 2π

0
dφ
[

cos φτ
|m|
l (cos θ0) + im sin φπ

|m|
l (cos θ0)

]
eimφeik·r0 , (B15)

gTE
lm = (l − |m|)!

(l + |m|)!
∫ 2π

0
dφ
[

sin φτ
|m|
l (cos θ0) − im cos φπ

|m|
l (cos θ0)

]
eimφeik·r0 . (B16)

Expanding ek·r0 using ρ0 = k
√

x2
0 + y2

0 sin θ0 and φ0 = arctan(−y0/x0) − (π/2), the integrals are solved analytically [41]. The
final result is

gTM
lm = (l − |m|)!

(l + |m|)!eikz0 cos θ0
[
τ

|m|
l (cos θ0)I+ + imπ

|m|
l (cos θ0)I−], (B17)

gTE
lm = (l − |m|)!

(l + |m|)!eikz0 cos θ0
[
τ

|m|
l (cos θ0)I− − imπ

|m|
l (cos θ0)I+], (B18)

with I± given by

I± = π [ei(m−1)φ0 J1−m(ρ0) ± ei(m+1)φ0 J−1−m(ρ0)]. (B19)

A final note is that in calculating the stress induced by a Bessel beam, the plane-wave representation is used. Accordingly, the
field amplitude of the beam E0 is calculated using Eq. (B8) and E0 = EB0/[π (1 + cos θ0)] to yield

E0 = 1

π (1 + cos θ0)

(
2Z0Pbes

πr2
bes

)1/2[(
1 − P2

⊥
4

)
J2

1 (σ0) + P2
⊥
2

J1(σ0)J3(σ0) − P2
⊥
4

J2
3 (σ0)

]−1/2

. (B20)

APPENDIX C: THE OVERLAP INTEGRAL OF THREE ANGULAR FUNCTIONS

1. Solution of the first integral

As stated, the azimuthal mode numbers are related by m = m1 − m2. However, Eqs. (40)–(42) involve the absolute value of
the azimuthal mode numbers. This is a consequence of the convention used in defining the SVWFs in Eqs. (7) and (8). It can be
corrected by using the fact that

P|m|
l =

{
(−1)m (l+|m|)!

(l−|m|)! P
m
l if (m < 0),

Pm
l if (m � 0),

(C1)

and let plm be

plm =
{

(−1)m (l+|m|)!
(l−|m|)! if (m < 0),

1 if (m � 0),
(C2)

such that

IA
l12m12lm = pl1m1 pl2m2 plm

∫ π

0
sin θdθPm1

l1
Pm2

l2
Pm

l . (C3)

Since m1 = m2 + m, the product of the two rightmost associated Legendre polynomials is given by [57]

Pm2
l1

Pm
l = (−1)m1

√
(l2 + m2)!

(l2 − m2)!

(l + m)!

(l − m)!

∑
li

Gi

√
(li − m1)!

(li + m1)!
Pm1

li
, (C4)

where

Gi = (−1)m1 (2li + 1)

(
l2 l li
0 0 0

)(
l2 l li
m2 m −m1

)
, (C5)

and is nonzero provided that (1) |l2 − l| � li � l2 + l , (2) li � |m1|, and (3) li + l2 + l are even. The quantities in parentheses
are Wigner 3 j symbols. If we insert the expansion given in Eq. (C4) into the integral Eq. (C3) and use the orthogonality of the
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associated Legendre polynomials ∫ π

0
sin θdθPm1

li
Pm1

l1
= 2

2l1 + 1

(l1 + m1)!

(l1 − m1)!
δli,l1 , (C6)

then the integral can be expressed as

IA
l12m12lm = pl1m1 pl2m2 plm

(
2(−1)m1

√
(l1 + m1)!(l2 + m2)!(l + m)!

(l1 − m1)!(l2 − m2)!(l − m)!

)(
l2 l l1
0 0 0

)(
l2 l l1
m2 m −m1

)
. (C7)

The Wigner 3 j symbols obey the following permutation relations(
j1 j2 j3

m1 m2 m3

)
=
(

j3 j1 j2
m3 m1 m2

)
, (C8)

(
j1 j2 j3

m1 m2 m3

)
= (−1) j1+ j2+ j3

(
j1 j2 j3

−m1 −m2 −m3

)
. (C9)

Using these relations and expanding the coefficients plm gives

IA
l12m12lm = 2(−1)�

√
(l1 + |m1|)!(l2 + |m2|)!(l + |m|)!
(l1 − |m1|)!(l2 − |m2|)!(l − |m|)!

(
l1 l2 l
0 0 0

)(
l1 l2 l
m1 −m2 −m

)
, (C10)

where � = m1 +∑mi<0 mi. Note that due to the properties of the Wigner 3 j symbols, Eq. (C10) is nonzero when l1 + l2 + l is
even and when the triangle equality |l1 − l2| � l � l1 + l2 is satisfied.

Wigner 3 j symbols are related to the Clebsch-Gordan coefficients

〈l1m1l2m2|lm〉 = (−1)l1+l2−m
√

2l + 1

(
l1 l2 l
m1 m2 −m

)
, (C11)

which in turn are given by Racah’s formula [58]

〈l1m1l2m2|lm〉 = δm,m1+m2

√
(2l + 1)AB

∑
ν

(−1)ν

ν!Cν

, (C12)

where

A = (l1 + l2 − l )!(l2 + l − l1)!(l + l1 − l2)!

(l1 + l2 + l + 1)!
,

B = (l1 + m1)!(l1 − m1)!(l2 + m2)!(l2 − m2)!(l + m)!(l − m)!,

Cν = (l1 + l2 − l − ν)!(l1 − m1 − ν)!(l2 + m2 − ν)!(l − l2 + m1 + ν)!(l − l1 − m2 + ν)!.

The summation over the index ν assumes that the arguments of the factorial are positive integers.
The Racah formula can be used to calculate 3 j symbols but it should be avoided given that symbols up to l ∼ x need to be

calculated (x is the size parameter). Accurately evaluating a sum of products of factorials quickly becomes an unrealistic task for
spheres with large size parameters. Instead, the recursion relations for the 3 j symbols can be used to generate a table accurately
and efficiently [43,44].

Unlike the integral IA
l12m12lm, the two remaining integrals IB

l12m12lm and IC
l12m12lm require some additional analysis to resolve.

2. Solution of the second integral

We begin by inserting the definitions from Eq. (9) into Eq. (41) to give

IB
l12m12lm =

∫ π

0
sin θdθ

[
m1m2

sin2 θ
P|m1|

l1
P|m2|

l2
+ dP|m1|

l1

dθ

dP|m2|
l2

dθ

]
P|m|

l .

The two associated Legendre functions satisfy the generalized Legendre equation [39]:

1

sin θ

d

dθ

(
sin θ

dP|m|
l

dθ

)
+
[

l (l + 1) − m2

sin2 θ

]
P|m|

l = 0. (C13)

063812-18



OPTICAL DEFORMATION OF HOMOGENEOUS AND … PHYSICAL REVIEW A 101, 063812 (2020)

Therefore, by virtue of Eq. (C13), the following relation holds:

1

sin θ

[
P|m2|

l2

d

dθ

(
sin θ

P|m1|
l1

dθ

)
+ P|m1|

l1

d

dθ

(
sin θ

P|m2|
l2

dθ

)]
+
[

l1(l1 + 1) + l2(l2 + 1) − m2
1 + m2

2

sin2 θ

]
P|m1|

l1
P|m2|

l2
= 0.

By reversing the product rule and completing the square, we find after a bit of algebra that

sin θ

(
m1m2

sin2 θ
P|m1|

l1
P|m2|

l2
+ dP|m1|

l1

dθ

dP|m2|
l2

dθ

)

= 1

2

d

dθ

[
sin θ

d

dθ

(
P|m1|

l1
P|m2|

l2

)]+ 1

2

[
l1(l1 + 1) + l2(l2 + 1) − (m1 − m2)2

sin2 θ

]
P|m1|

l1
P|m2|

l2
sin θ. (C14)

The integral of the first term on the right-hand side (RHS) of Eq. (C14) is

1

2

∫ π

0
dθ

d

dθ

[
sin θ

d

dθ

(
P|m1|

l1
P|m2|

l2

)]
P|m|

l ,

which can be integrated by parts twice to give

1

2

∫ π

0
dθ

[
d

dθ

(
sin θ

dP|m3|
l3

dθ

)]
P|m1|

l1
P|m2|

l2
.

The term in brackets satisfies Eq. (C13) such that we can make the substitution

−1

2

∫ π

0
sin θdθ

[
l (l + 1) − m2

sin2 θ

]
P|m1|

l1
P|m2|

l2
P|m|

l .

The integral of the second term on the RHS of Eq. (C14) is

1

2

∫ π

0
sin θdθ

[
l1(l1 + 1) + l2(l2 + 1) − (m1 − m2)2

sin2 θ

]
P|m1|

l1
P|m2|

l2
P|m|

l .

Because m1 − m2 = m, the RHS of Eq. (41) is∫ π

0
sin θdθ

[
m1m2π

|m1|
l1

π
|m2|
l2

+ τ
|m1|
l1

τ
|m2|
l2

]
P|m|

l = 1

2
[l1(l1 + 1) + l2(l2 + 1) − l (l + 1)]

∫ π

0
sin θdθP|m1|

l1
P|m2|

l2
P|m|

l ,

which we rewrite as

IB
l12m12lm = 1

2 [l1(l1 + 1) + l2(l2 + 1) − l (l + 1)]IA
l12m12lm, (C15)

where the integral IA
l12m12lm is known from Eq. (C10).

3. Solution of the third integral

In practice, we are faced with two integrals of the form

−
∫ π

0
sin θdθπ

|m1|
l1

τ
|m2|
l2

P|m|
l =

∫ 1

−1
dzP|m1|

l1

d

dz

(
P|m2|

l2

)
P|m|

l . (C16)

Here, we use the fact that the product of two associated Legendre functions can be expressed as a sum over a single associated
Legendre function by the use of the expansion [59]

Pm1
l1

Pm
l = (−1)m1

√
(l1 + m1)!

(l1 − m1)!

(l + m)!

(l − m)!

∑
li

Gi

√
(li − m2)!

(li + m2)!
Pm2

li
, (C17)

where the term Gi is

Gi = (2li + 1)

(
l1 li l
0 0 0

)(
l1 li l
m1 −m2 −m

)
. (C18)

It is nonzero provided that (1) |l1 − l| � li � l1 + l , (2) li � |m2|, and (3) li + l1 + l are even.
We combine this series expansion with the following result [60]

ID
l2im2

=
∫ 1

−1
dz

d

dz

(
P|m2|

l2

)
P|m2|

li
= δ0,m2 − (l2 + |m2|)!

(l2 − |m2|)!δ2p+1,li−l2 + (li + |m2|)!
(li − |m2|)!δ2p+1,l2−li , (C19)
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with p = 0, 1, 2, ... being zero or any real positive integers. Then in principle,

IC
l12m12lm = (−1)�

√
(l1 + |m1|)!
(l1 − |m1|)!

(l2 + |m2|)!
(l2 − |m2|)!

(l + |m|)!
(l − |m|)!

×
⎛⎝m1

l1+l∑
li=|l1−l|

Gi

√
(l2 − |m2|)!
(l2 + |m2|)!

(li − |m2|)!
(li + |m2|)!I

D
l2im2

+ m2

l2+l∑
l j=|l2−l|

Hj

√
(l j − |m1|)!
(l j + |m1|)!

(l1 − |m1|)!
(l1 + |m1|)!I

D
l1 j m1

⎞⎠, (C20)

where Hj is

Hj = (2l j + 1)

(
l j l2 l
0 0 0

)(
l j l2 l
m1 −m2 −m

)
, (C21)

and is nonzero provided that (1) |l2 − l| � l j � l2 + l , (2) l j � |m1|, and (3) l j + l2 + l are even. A remarkable property of
Eq. (C20) is that it is nonzero provided that l1 + l2 + l3 is odd. Moreover, it was found numerically that Eq. (C20) vanishes
unless the triangle equality |l1 − l2| � l � l1 + l2 is satisfied. In comparison, Eq. (C15) is nonzero when l1 + l2 + l3 is even and
when it also satisfies the same triangle equality. This fact is useful when tabulating the integrals, as the infinite summations in
Eqs. (32) and (33) become bounded in l1 and l2 by the triangle equality and only the integrals that satisfy their respective parity
property need to be considered.

APPENDIX D: NET FORCE ON A SPHERICAL PARTICLE

The net radiation force acting on the particle can be cal-
culated by considering the conservation of momentum for
the combined system of the electromagnetic field and the
particle. The desired result can be obtained by integrating the
time-averaged Maxwell stress tensor in the far field [61]

Frad = r2
∫ 2π

0

∫ π

0
〈êr · T

↔〉 sin θdθdφ. (D1)

The z component of the radiation force is found by projecting
Frad onto the z axis

Fz = r2
∫ 2π

0

∫ π

0
êz · 〈êr · T

↔〉 sin θdθdφ. (D2)

However, in our application and ignoring absorption, it is
more straightforward to express the radiation pressure force
on each layer:

F ( j)
z = a2

j

∫ 2π

0

∫ π

0
êz · (〈êr · T

↔〉r=a+
j

− 〈êr · T
↔〉r=a−

j

)
sin θdθdφ

= a2
j

∫ 2π

0

∫ π

0
σ j (θ, φ) cos θ sin θdθdφ. (D3)

This is because the net force acting at the interface of each
layer is

F ( j)
z = 4

3πa2
jσ

( j)
1 , (D4)

with σ
( j)
1 denoting the coefficient of the first harmonic Y1,0 on

the jth layer. The net force acting on the particle is found by

summing each contributing layer

Fz = 4

3
π
∑

j

a2
jσ

( j)
1 . (D5)

It can be shown that the method of calculating the net
force from Eq. (D5) is equivalent to Eq. (D2) provided that
absorption is absent. To start off, we insert the spherical
harmonic expansion from Eq. (27) into Eq. (D3) to yield

F ( j)
z = a2

j

∫ 2π

0

∫ π

0

∞∑
l=1

l∑
m=−l

σ
( j)
lm

× Ylm(θ, φ) cos θ sin θdθdφ

= a2
j

∞∑
l=1

l∑
m=−l

σ
( j)
lm

∫ 2π

0
eimφdφ

×
∫ π

0
sin θdθPm

l (cos θ ) cos θ. (D6)

The azimuthal integral results in 2πδm,0 and so σ
( j)
l,m → σ

( j)
l

F ( j)
z = 2πa2

j

∞∑
l=1

σ
( j)
l

∫ π

0
sin θdθPl (cos θ ) cos θ. (D7)

Recognizing that cos θ = P1(cos θ ), we make use of the or-
thogonality of Legendre polynomials∫ π

0
sin θdθPl P1 = 2

2l + 1
δl,1 = 2

3
δl,1, (D8)

to yield the net force in the z direction on the jth layer
[Eq. (D4)] .
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