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In recent years, several works have demonstrated the advantage of photon-subtracted Gaussian states for
various quantum optics and information protocols. In most of these works, the relation between the advantages
and the usual increasing energy of the quantum state related to photon subtraction was not clearly investigated.
In this paper, we study the performance of an interferometer injected with multiphoton-annihilated squeezed
vacuum states mixed with coherent states for both single- and correlated-phase estimations. For single-phase
estimation, although the use of multiphoton-annihilated squeezed vacuum states at low mean photons per mode
provides an advantage compared to classical strategy, when the total input energy is held fixed, the advantage
due to photon subtraction is completely lost. However, for the correlated case in the analogous scenario, some
advantage appears to come from both the energy rise and improvement in photon statistics. In particular quantum
enhanced sensitivity with photon-subtracted states appears more robust to losses, showing an advantage of about
30% with respect to the squeezed vacuum state in the case of a realistic value of the detection efficiency.
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I. INTRODUCTION

Non-Gaussian states have been recognized as a valuable
resource for many quantum information processing protocols
[1], for example, for enhancing the fidelity of quantum tele-
portation [2–5], for improving the secret key rate in quantum
key distribution [6,7], and in quantum cloning of coherent
states [8]. These exotic states are required in Gaussian en-
tanglement distillation [9–11], error correction [12], noiseless
amplification [13,14], and fundamental loophole-free Bell
tests in continuous variables [15,16]. More recently, resource
theories quantifying the importance of Wigner negativity and
non-Gaussianity for continuous-variable quantum computa-
tion have been reported [17,18]. Because of the higher po-
tential distinguishability of non-Gaussian states from their
original Gaussian states, they have proven useful for more pre-
cise parameter estimation in quantum optics [19,20]. Photon
addition or photon subtraction can transform a Gaussian in a
non-Gaussian state [21–23]. Agarwal and Tara [24] were the
first to propose the transformation of a classical-like coherent
state into a nonclassical state through photon addition, and
this operation was experimentally implemented for the first
time for coherent and thermal states in [25,26]. Furthermore,
photon addition and subtraction have been reported to enhance
the entanglement in the two-mode squeezed vacuum state
(TSV) [27–29]. It is well known that each mode of the
TSV has super-Poissonian photon statistics. In an experimen-
tal work [30], it was reported that multiphoton subtraction
makes the TSV less noisy and helps in shifting the most
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probable distribution to a higher mean photon number, thereby
increasing the mean energy of the resulting state. In recent
years, photon-subtracted TSV states have been theoretically
investigated for other applications; for example, in [31] these
states were proved to be advantageous with respect to TSVs
for target detection in a noisy environment, a scheme dubbed
“quantum illumination” [32,33]. Their advantage has also
been demonstrated in single interferometry with parity mea-
surements [20,34,35].

Since the seminal work by Caves [36], it has been well
known that a single-mode squeezed vacuum (SSV) mixed
with an intense coherent state provides a substantial advantage
in practical phase estimation, and very recently, that scheme
was applied by the LIGO and VIRGO collaborations to fur-
ther improve the sensitivity of gravitational wave detectors
[37,38]. It has also been shown that a squeezed vacuum mixed
with an intense coherent beam allows us to approach the opti-
mal sensitivity achievable by a linear interferometer operated
with a large photon number and non-negligible losses [39]. In
that context, a single-photon subtracted SSV has an advantage
in phase estimation and allows us to reach Heisenberg’s limit
[40]. In that case [40], the mean energy increase of the
photon-subtracted state is compensated by a reduction of the
coherent beam energy in order to keep constant the total input
photon number. Photon-subtracted SSVs mixed with coherent
states lead to improved phase-shift sensitivity in the parity
measurement [34]. In this work, because of the nonlinear
increase of the mean number of photons with the number of
subtracted photons, the total average number of photons is
fixed by choosing a fixed squeezing parameter and increasing
coherent energy. This approach is little different from the
energy-balancing scenario reported in [40].
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However, in most of the literature with a few exceptions
that we will point out later [20,41], it was not clear whether the
advantages come from energy shifts of the photon-subtracted
states or from their potentially improved photon noise prop-
erties. In fact, most of the time, the comparison between the
performance of Gaussian quantum states and the correspond-
ing photon-subtracted states has been considered for a fixed
squeezed parameter, which means generally that the energy
put into the quantum resource is not fixed. Photon subtraction
is a complex operation that can be experimentally realized
probabilistically or with low efficiency [42]. So if the advan-
tage comes mainly from the increased energy, it could be prac-
tically more convenient to increase the squeezing parameter of
the Gaussian state, rather than performing photon subtraction.
This is the reason why we consider understanding whether the
advantage relies solely on an increase of the energy or there
are more fundamental reasons that justify the operation such
as photon subtraction to be of great importance. Answering
this question is the main motivation of this paper.

Specifically, given the importance of practical interfer-
ometry [39], here we study in detail multiphoton-subtracted
single-mode and two-mode squeezed vacuum states for
single-phase and correlated-phase estimation, respectively,
by combining them with coherent states on a beam splitter.
On the one hand, we show that a multiphoton-subtracted
(one-) two-mode squeezed states is formally equivalent to
a state obtained by a (one-) two-mode squeezing operator
applied to a certain class of finite superposition states in the
photon-number basis. This class of states was investigated
earlier [43,44], and these states show quadrature squeezing.
One could expect that this initial squeezing could bring a
benefit in phase estimation. We have therefore investigated
this possibility.

In order to properly understand the origin of the improve-
ment in phase measurement uncertainties, if any, we think
that the proper procedure requires that the total energy should
be fixed by balancing the energies of the subtracted and
unsubtracted states while keeping the coherent pump energy
constant. We will consider this energy-balancing condition for
both single- and correlated-phase estimations. Similar analy-
sis was done in [20], where an advantage in phase estimation
with parity measurement at fixed energy was reported, but that
scheme does not involve the mixing with a coherent state, and
parity measurement is quite far from realistic applications. In
[41], while a precise comparison with two-mode squeezed
states with the same energy was not carried out, the authors
showed that the larger the “affinity” of a non-Gaussian state
with a two-mode squeezed vacuum (with larger energy) is,
the larger the teleportation fidelity is.

This paper is organized as follows. In Sec. II, we in-
troduce the multiphoton annihilated single-mode squeezed
vacuum (PASSV), discussing its properties and its usefulness,
for single-phase estimation by the conventional measurement
strategy (Sec. II A) and in the more general framework of the
Fisher information (Sec. II B). In Sec. III, we describe the
multiphoton symmetrically annihilated two-mode squeezed
vacuum (SPATSV) state. In particular, in Sec. III A, we
analyze the squeezing and photon statistical properties of
SPATSV. In Sec. III B we study the problem of correlated
phase estimation. We present results for up to four- and

three-photon subtraction for single- and correlated-phase esti-
mations, respectively. Finally, we summarize and discuss the
main results in Sec. IV.

II. PASSVS

PASSV states are defined as∣∣� (m)
PASSV

〉 = Nm
− (λ)âmŜ(λeiχ )|0〉, (1)

where Ŝ(reiχ ) = ereiχ a2−H.c. is the single-mode squeezing op-
erator, with r being the squeezing parameter, and χ is the
squeezing angle. The squeezing operator applied to the vac-
uum state originates SSV with energy (mean number of pho-
tons) equal to λ = sinh2 r. The number of subtracted photons
is m, obtained by m consecutive actions of the annihilation
operator â. Since photon subtraction is not a unitary operation,
it is necessary to introduce the normalization constant Nm

− (λ).
Its explicit form is Nm

− (λ) = m!(−i
√

λ)mPm(i
√

λ) [45], with
Pm being the mth-order Legendre polynomial. A known effect
of photon subtraction is the increasing of the mean energy
of the state. This is intuitively explained because it is more
likely to subtract a photon from a highly populated state
corresponding to a selection of the more energetic compo-
nents of the state. For example, the mean photon number
of the PASSV state Nm(λ) for m = 0–3, which correspond
to zero-, one-, two-, and three-photon subtraction from the
SSV state, becomes N0 = λ, N1 = 3λ + 1, N2 = 3λ(3 +
5λ)/(1 + 3λ), and N3 = (3 + 30λ + 35λ2)/(3 + 5λ), respec-
tively.

We have found a representation for PASSV states (exploit-
ing integration within an ordered product (IWOP) technique
[46]) which is equivalent to seeding the squeezing operator
with a photon-number superposition state |�s

(m)(λ, χ )〉 in the
input as follows:∣∣� (m)

PASSV

〉 = Ŝ|�s
(m)(λ, χ )〉,

|�s
(m)(λ, χ )〉 = Nm

− (λ)m!(eiχ
√

λ)m
[m/2]∑
l=0

1

l!
√

(m − 2l )!

×
(

e−iχ

2

√
1 + λ

λ

)l

|m − 2l〉, (2)

where the upper bound of the summation [m/2] stands for
the integer part of m/2. Without any loss of generality, here-
inafter, we set the squeezing angle to χ = 0. For m = 0, the
input simplifies to the vacuum state, as expected. For m = 1, it
becomes a single-photon state, as reported in [40]. Note that,
for other values of m, it becomes a [(m + 1)/2]-component
superposition state for odd m and a [(m + 2)/2]-component
superposition state for even m. The energy increasing with
m of the PASSV state can now be understood in terms of
an increase of the mean number of photons of the seeding
states. The states |�s

(m)(λ, χ )〉 are known to show quadra-
ture squeezing [43,44], even though they cannot be obtained
by any unitary transformation on the vacuum state, like a
standard squeezed state. However, these states do not always
have lower quadrature noise compared to the vacuum state. In
particular, for m = 1, the state |�s

(1)(λ, χ )〉 is a single-photon
state with more quadrature noise than the vacuum state. We
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FIG. 1. Quadrature squeezing of PASSV states and phase mea-
surement uncertainty at working point φ = π/2 with μ = 100, η =
0.98, and ψ = 0 for different numbers of photon subtraction m: m =
0 (solid red line), m = 1 (solid black line), m = 2 (solid yellow line),
m = 3 (solid cyan line), and m = 4 (solid green line). Dashed lines
represents the coherent state: (a) Quadrature squeezing, (b) phase un-
certainty, and (c) phase measurement in energy balancing condition.

checked for subsequent odd values of m that although the
quadrature noise of the seeding states decreases with respect
to the single-photon state, its value still remains above the
vacuum noise. This can be appreciated in Fig. 1(a) when
considering a small value of the squeezing parameter, which
actually means Ŝ ≈ I, with I being the identity operator. In
fact, in Fig. 1 we plot the variance of the quadrature Ŷ =
(â − â†)/i

√
2 of the PASSV states in Eq. (2). In general, we

observe that for odd values of m the quadrature noise of the
PASSV state is worse than that of the SSV (corresponding to
PASSV with m = 0), while for even values of m the quadra-
ture noise is better than SSV for low values of λ. Detectors are
not ideal in realistic scenarios. The effect of a nonunit quan-
tum efficiency η can be modeled as the evolution of the input
field passing through a beam splitter (BS) with transmission
equal to η, while the other free port of the BS is in the vacuum
state [47]. This approach has been used throughout the paper
to account for the optical and detection losses.

In the next section, we will discuss the performance of
PASSV states in phase estimation in connection to the quadra-
ture squeezing.

FIG. 2. Schematic of mixing single-mode squeezed vacuum and
coherent states in a Mach-Zehnder interferometer for phase estima-
tion φ.

A. Single-phase estimation with PASSV states

Let us consider the Mach-Zehnder interferometer (MZI)
sketched in Fig. 2, where one port of the first beam splitter
is injected with coherent light and the other port is injected
with a PASSV state. Thus, the total input state is |�〉1,2 =
|� (m)

PASSV〉 ⊗ |α〉2, with α = |α|eiψ , where |α| (μ = |α|2) and
ψ are the amplitude, and phase of the coherent pump.
μ = |α|2 is the mean photon number.

The uncertainty in measuring the phase φ in the configura-
tion in Fig. 2 is expressed as

U (φ) =
√

�2ô∣∣ ∂ ô
∂φ

∣∣ , (3)

where ô is the photon-number difference operator at the output
port of the interferometer and �2ô is its variance. For a zero-
mean quadrature field such as SSV, 〈ô〉 = (μ − λ) cos(φ). For
SSV, it can be shown that the lowest uncertainty is reached
for φ = π/2, and in the limit of λ � μ, the uncertainty is
shot noise limited, scaling as λ−1/2. However, in the case
with λ � μ, the uncertainty is U (φ) = (�2Xθ=ψ+ π

2
/μ)1/2,

proportional to the noise of the rotated quadrature X̂θ=ψ+ π
2

=
(âe−iθ + â†eiθ )/

√
2. In our case and for the choice of ψ = 0,

the sub-shot-noise sensitivity is related to the squeezing of the
X π

2
≡ Y quadrature. For the sake of completeness we mention

that for a more specific repartition of the total energy (μ + λ)
between squeezing and coherent input states, a more efficient
scaling of the uncertainty can be achieved [∝ (μ + λ)−3/4]
[48], and a different, more sophisticated detection scheme
could allow us to approach the Heisenberg limit in an ideal
decoherence-free scenario [49].

We have derived analytically the uncertainty of the phase
estimation according to Eq. (3) when PASSV states are in-
jected. The results are shown graphically in Fig. 1(b), com-
pared with the shot-noise limit (SNL) at the equivalent total
energy (dotted lines). The latter is obtained by considering the
performance of a coherent state with a mean number of pho-
tons equal to the sum of μ and the mean number of photons of
the PASSV state, which varies with m. It is easy to check that
for PASSV the uncertainty always approaches asymptotically
the SNL when λ � μ. For λ � μ, the uncertainty is basically
determined by the variance of the Y quadrature, reported in
Fig. 1(a), as expected. Indeed, the advantage over the SNL
is present only in the region of quadrature squeezing, and
PASSV(m > 0) performs better than SSV only for even m.
However, we are going to show that this apparent improve-
ment is due to only the energy increase of the state due to pho-
ton subtraction. For that purpose, we have renormalized the
energy of the initial SSV state before the photon subtraction,
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FIG. 3. Phase measurement uncertainty in the energy-balancing
scenario for φ �= π/2 ≈ π/2 − 1, with μ = 10 000 and η = 0.98
for different numbers of photon subtraction m: m = 0 (solid red
line), m = 1 (solid black line), m = 2 (solid yellow line), m = 3
(solid cyan line), and m = 4 (solid green line). The dotted line is
the classical strategy.

so that the mean numbers of photons of the subtracted states
(m = 0–4) are all equal to λ. In this way, also the total input
energies to the interferometer are fixed to Ntot = μ + λ. With
the energy balancing, SSV outperforms PASSV regardless of
the values of λ, as presented in Fig. 1(c).

The diverging behavior of uncertainty in Figs. 1(b) and
1(c) for λ = 100 comes from the singularity in the denomi-
nator of Eq. (3), that is, when the mean number of photons
of the PASSV state equals that of the coherent state, i.e.,
Nm(λ) = μ. Because of the energy increment as a result of
photon subtraction, a relatively lower value of λ is required
for fulfilling the singularity condition, which is evident from
Fig. 1(b). Incidentally, we have observed that far from the
optimal working point π/2, PASSV can still provide some
advantage, even under energy-balancing conditions, as shown
in Fig. 3, without surpassing the sensitivity obtained by SSV
in the optimal point. Typically, this happens from a value of λ

in a middle range (namely, μ/100 < λ < μ/10).
Next, we will see the performance of PASSV in the quan-

tum Fisher information perspective.

B. Quantum Fisher information

Quantum Fisher information (QFI) FQ can be used to iden-
tify the lower uncertainty attainable in a parameter estimation
problem according to the expression

U (φ) � 1√
FQ(φ)

. (4)

For the class of pure states [48], QFI takes the following
compact form:

FQ(φ) = 4〈(�Ĥ )2〉|�〉1,2 , (5)

where Ĥ is the generator of the unitary transformation asso-
ciated with the parameter φ, i.e., Û (φ) = eiĤφ , and |�〉1,2 are
the input states injected into the interferometer. In the case of
the MZI in Fig. 2, the generator is the photon-number operator
n̂3 = â†

3â3, where â3 = (â1 + â2)/
√

2. Per Eq. (5), we shall
evaluate QFI by considering PASSVs and coherent states
injected into the interferometer. The complete expressions for
the QFI are cumbersome: graphical representation can help

FIG. 4. Quantum Fisher information versus the mean number of
photons λ with μ = 100 for different numbers of photon subtraction
m: m = 0 (solid red line), m = 1 (solid black line), m = 2 (solid
yellow line), m = 3 (solid cyan line), and m = 4 (solid green line).
The dotted line represents the classical bound obtained when only
a coherent state with the same total energy (λ + μ) is in input:
(a) without energy balance and (b) the balanced condition.

us to understand its peculiar features. Specifically, Fig. 4(a)
shows a general increasing of the QFI for PASSVs with
increasing m for both low and high values of λ; that is, photon
subtraction is always advantageous with respect to the best
classical strategies (dotted line). This advantage of QFI due
to photon subtraction could be due to the increase of the
mean number of photons of the input state. Indeed, for the
energy-balancing condition, the advantage is completely lost,
as is evident from Fig. 4(b) and also from the expression
for the QFI in the limit Ntot → ∞ (at a finite fixed coherent
energy) reported here:

FQ(m=0) = 2N2
tot,

FQ(m=1) = 2N2
tot

3
,

FQ(m=2) = 2N2
tot

5
, (6)

FQ(m=3) = 2N2
tot

7
,

FQ(m=4) = 2N2
tot

9
.

This confirms that the advantage of the phase parameter
estimation in a MZI provided by photon subtraction of the
squeezed state is exclusively due to the increasing energy of
the field. Using a simple SSV state with the same energy
provides similar sensitivity.
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III. SPATSV STATES

Starting from the definition of the TSV as the two-mode
squeezing operator Ŝ1,2(r12eiχ ) = er12eiχ a1a2−H.c. applied to the
vacuum, the SPATSV can be obtained by the non-Hermitian
operation represented as∣∣� (m)

SPATSV(λ, χ )
〉
1,2 = N−

m (λ)(â1)m(â2)mŜ1,2|0, 0〉1,2, (7)

where N−
m is the normalization constant, λ = sinh2 r12 is the

mean energy (mean photon number) per mode for the TSV,
χ is the squeezing angle, and m is the number of subtracted
photons. It is possible to express the state in the Fock basis as
follows:

|� (m)
SPATSV(λ, χ )〉1,2 = N−

m (λ)√
1 + λ

∞∑
n=0

(
λeiχ

1 + λ

) n+m
2

× (n + m)!

n!
|n, n〉1,2. (8)

The normalization constant has the form N−
m (λ) =

[(m!)2λmPm(2λ + 1)]
−1/2

, where Pm is the mth-order
Legendre polynomial. Furthermore, using squeezed
transformation of mode operators aj (and the IWOP technique
[46]), it is possible to generate the state in Eq. (7) by
applying the squeezing operator to an (m + 1)-component
superposition of the photon-number states |�(λ, χ )〉m as
follows: ∣∣� (m)

SPATSV(λ, χ )
〉
1,2 = ˆS1,2|�(m)(λ, χ )〉1,2 (9)

where ∣∣�(m)(λ, χ )
〉
1,2 =

m∑
k=0

Cm
k (λ, χ )|k, k〉1,2, (10)

and

Cm
k (λ, χ ) = eiχm

√
(1 + λ)m

Pm(2λ + 1)
eiχk

(
m

k

)(√
λ

λ + 1

)k

, (11)

with
∑

k |Cm
k (λ, χ )|2 = 1. Interestingly, |�(m)(λ, χ )〉1,2 is

similar to a truncated TSV up to the components with k � m.
As can be seen by a careful inspection of Cm

k (λ, χ ), they differ
only by a binomial coefficient and a normalization factor. For
m = 0 the state |� (0)

SPATSV(λ, χ )〉1,2 coincides obviously with
TSV. For m = 1, namely, one-photon subtraction, the corre-
sponding normalized two-component photon-number super-
position state is

|�(1)(λ, χ )〉1,2 = 1√
2λ + 1

(
√

1 + λ|0, 0〉 + eiχ
√

λ|1, 1〉).

(12)
This superposition state is entangled for nonzero values of
λ and resembles to the state [41], and for λ � 1 it be-
comes asymptotically a maximally entangled state. In gen-
eral, Eqs. (9), (10), and (11) suggest that a SPATSV state
can be generated by seeding the input modes of a nonlin-
ear two-mode-squeezing interaction by an opportune super-
position state in the photon-number basis [see Fig. 5(b)].
This represents an alternative way to generate the photon-
subtracted states in contrast to the common approach de-
picted in Fig. 5(a), consisting of a postselection of the

FIG. 5. Generation scheme for the SPATSV state with symmetric
photon subtraction of one photon m = 1: (a) Probabilistic process
by two beam splitters of high transmittance T1 = T2 ≈ 1 placed
in two arms of the PDC source. Simultaneous clicks on the two
single-photon detectors confirm the generation of SPATSV. (b) An
alternative approach to the generation of SPATSV consists of inject-
ing the seeding state of the general form in Eq. (10) into the nonlinear
crystal (NL), in particular the one reported in Eq. (12) for the case
m = 1.

state, conditioned on double-click events at the detectors
placed in the two arms, experimentally realized through an
unbalanced BS.

A. Squeezing properties and photon statistics
of the SPATSV state

Analogous to what has already been discussed in Sec. II
for single-mode states [43,44], two-mode superposition states
|�(m)(λ, χ )〉1,2 are also squeezed in the quadrature difference
even though they do not minimize the uncertainty principle.
The maximum squeezing is reached for

X̂ −
χ = X̂1,χ − X̂2,χ , (13)

where X̂ j,χ = (â je−iχ + â†
j e

iχ )/
√

2 is the quadrature of the
jth individual input mode. This is reported in Fig. 6(a). Note
that for m � 1 nonclassical correlations are always present,
becoming stronger with increasing m in the region of small λ.
When m � 2, the squeezing level overcomes the TSV limit
(dotted purple line). The quadrature noise behavior of the
seeding state has a direct effect on the squeezing properties
of the SPATSV, as shown in Fig. 6(b), basically leading to a
further noise reduction, especially for λ < 1 with respect to
the TSV state. This effect is not trivially related to an energy
shift, and it can be beneficial when using the SPATSV state for
specific interferometric schemes, as discussed in Sec. III B.
Aside from quadrature squeezing, other statistical properties
of the field can be improved in terms of noise reduction and
turned to the nonclassical regime by the photon-subtraction
operation. Indeed, postselecting the components of the state
with at least one photon induces a shrinking of the photon-
number distribution because of the elimination of the vacuum
component. On the one hand, it leads to a shift to a higher
value of the mean photon number per mode Lm(λ) � λ, as
shown in Fig. 7. On the other hand, it induces a sub-shot-noise
behavior in each of the two modes.
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FIG. 6. Nonclassical amplitude quadrature correlation (0.5 is the
classical bound) versus λ for different number of photon subtraction
m: m = 0 (solid red line), m = 1 (solid black line), m = 2 (solid
orange line), and m = 3 (solid green line). The plots refer to a) for
superposition state |�(m)(λ, χ )〉1,2, except the dotted curve which
corresponds to TSV and b) the photon subtracted SPATSV state.

Nonclassicality in the photon-number statistics is usually
described by Mandel’s Q parameter [47]:

Q = Var(N̂ ) − 〈N̂〉
〈N̂〉 , (14)

where N̂ = â†â is the photon-number operator. For classical
light Mandel’s parameter is bounded by Q � 0. It is worth
noting that the individual modes of TSV have thermal statis-
tics, but once we apply the subtraction operation with m >

1, they become nonclassical for low mean photon numbers,
which is evident from the negative value of Mandel’s param-
eter reported in Fig. 8. This nonclassical behavior induced by
photon subtraction is clearly not related to an energy shift of
the single mode (which would conserve thermal statistics);
rather, it is a more fundamental uncertainty reduction of the
photon-number distribution.

B. Correlated-phase estimation with SPASTV states

The interferometry system we consider in this section is
presented in Fig. 9. It is composed of two linear interferome-
ters, for instance, a pair of MZIs whose photocurrents at the
readout ports are jointly measured. This is an elegant and
powerful scheme in the detection of extremely faint phase
signals whose magnitude can be much smaller than other
sources of noise, including the shot noise. The advantage
of this scheme comes from the fact that the same signal
shared by the two interferometers, even if hidden in the

FIG. 7. Three-dimensional plots showing the joint photon-
number distribution in the SPASTV state. j and k are the photon
numbers in modes 1 and 2, respectively. The parameter values chosen
are λ = 0.6 and (a) m = 0, (b) m = 1, and (c) m = 3.

noise in the single device, can be found by correlating their
outputs. This strategy has already been considered in several
highly demanding applications, in general related to the re-
search on stochastic fundamental backgrounds, such as the
gravitational-wave background [50–53] and quantum gravity
effects at the Plank scale [54,55].

The advantage of using the quantum state of light in such
a configuration was analyzed in Refs. [56,57]. It was shown
that injection of the quantum state of light in the classically
unused input ports (labeled 1 and 2 in Fig. 9), either as
two independent squeezed states or as a TSV, allows us to
achieve better sensitivities. In the case of a TSV, for specific
working conditions, i.e., very close to the dark fringes and for
high quantum efficiency, the quantum advantage is dramatic
even with respect to the double squeezing. Here our purpose
is to investigate if and to what extent a photon-subtracted
TSV allows us to obtain better performance in light of their
improved nonclassical properties discussed in Sec. III A.
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FIG. 8. Mandel’s Q of the SPATSV state as a function of the
mean photon number per mode λ for different numbers of photon
subtraction m: m = 0 (solid red line), m = 1 (solid black line), m = 2
(solid orange line), and m = 3 (solid green line). Here, we have
chosen η = 0.98.

1. Noise-reduction factor at the readout ports

Let us start by considering the correlation properties of the
readout signals at the output ports (labeled 5 and 7 in Fig. 9).
In particular we are interested in photocurrent subtraction,
proportional to the photon-number difference N̂5 − N̂7.

Here we consider the noise-reduction factor, a standard
measure of nonclassical correlation for a bipartite state de-
fined as [58]

σ = 〈�2(N̂5 − N̂7)〉
〈N̂5〉 + 〈N̂7〉

. (15)

The numerator is the variance of the photon-number differ-
ence, and the denominator represents the standard quantum
limit. Thus, σ < 1 indicates nonclassical correlation. It is con-
venient to introduce the factor τ = cos2(φ/2), representing
the fraction of the power at the input port 1 (2), transmitted to
the readout port 5 (7). Consequently, 1 − τ is the equivalent
loss experienced by the quantum modes due to the interfer-
ence fringe position and, at the same time, the fraction of
coherent power injected at port 3 (4) and transmitted to the
output port 5 (7). The NRF has been evaluated analytically

FIG. 9. Correlated interferometric scheme: The modes of the
bipartite input state |� (m)

SPATSV(λ, χ )〉1,2 are mixed with two identical
coherent states |α〉 = |μeiψ 〉 in two interferometers I1(φ1) and I2(φ2).
A joint detection is performed and the observable Ĉ(φ1, φ2) is
measured.The losses are accounted by considering two identical
detectors in both channels with the same quantum efficiency, i.e,
η5 = η7 = η.

FIG. 10. Noise-reduction factor at output ports 5 and 7 of the
interferometers as a function of the transmittance parameter 1 − τ =
sin2 φ/2 for different numbers of photon subtraction m: m = 0 (red
line), m = 1 (black line), and m = 2 (orange line). Solid thick lines
are for λ = 0.05, and dashed lines stand for λ = 2. Asymptotic limits
for λ � 1 and for λ � 1 (m = 0) are the dotted and the dot-dashed
lines, respectively. The other parameters are η = 1, ψ = π/2, μ =
106.

and is reported in Fig. 10 as a function of 1 − τ . In order to
analyze its behavior let us distinguish between two regimes.
When the output signal is dominated by a photon coming from
the coherent beam, i.e., Lm(λ)τ � μ(1 − τ ) [we recall that
Lm(λ) is the SPATSV mean photon number], each interferom-
eter acts similarly to a homodyne detector. This represents the
typical working condition since, usually, the coherent beam
is several orders of magnitude brighter than the quantum
light and corresponds roughly to the region 1 − τ > 10−4 in
Fig. 10. In this case, the difference in the photon number at
output ports 5 and 7 becomes approximately proportional to
the difference between the quadrature of the input modes at
ports 1 and 2:

N̂5 − N̂7 ∝
√

μ

2
sin(φ)X̂ −

ψ+π/2 (16)

where ψ can be chosen to match the angle of the squeezed
quadrature difference in Eq. (13), in particular ψ = χ − π/2.
Therefore, the nonclassical correlation of the input state re-
ported in Fig. 6(b) immediately traduces the nonclassical
properties of the NRF. In particular, for λ � 1 the NRF is well
approximated by σm(λ) ≈ 1 − τ + τ/(4λ) (the dashed line in
Fig. 10) for all numbers of subtracted photons m (for 1 − τ >

10−4). Also, for λ � 1, i.e., when the quadrature squeezing
of the SPATSV states increases with the number of subtracted
photons, the NRF follows the same behavior, demonstrating
the advantage of using photon-subtracted states, as clearly
shown in Fig. 10. Analytically, it can be found that in this
asymptotic limit of λ � 1 the expression of the NFR at
different orders of photon subtraction can be approximated as

σm=0 ≈ 1 − 2τ (
√

λ − λ), (17)

σm=1 ≈ 1 − 4τ (
√

λ − 2λ), (18)

σm=2 ≈ 1 − 6τ (
√

λ − 3λ), (19)
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where the first of these equations is reported in Fig. 10 as the
dot-dashed line.

In the opposite scenario, when the coherent beam does
not contribute significantly to the outputs and the two inter-
ferometers, i.e., Lmτ � μ(1 − τ ), the interferometers can be
seen as attenuators with transmission τ of the input state.
The photon-number entanglement between the two modes of
the SPATSV input state is then preserved at the output ports
for τ ∼ 1. Indeed, in the ideal case of φ = 0 (τ = 1) and
unit detection efficiency, the photon-number correlation at the
output ports 5 and 7 is perfect, independent of the energy λ of
the input quantum state. This explains the sudden dropping
down of the NRF observed in Fig. 10 for 1 − τ < 10−4.
However, the condition Lmτ � μ(1 − τ ) is reached for a
smaller value of τ (higher value of φ) when the input energy
Lm(λ) is larger. So, recalling that Lm+1(λ) > Lm(λ), if the
energy λ of the TSV before the photon subtraction is fixed,
subtracting more photons makes it easier to reach the region
in which entanglement determines a dramatic reduction of
the uncertainty. In the next section we shall show that the
characteristics of the NRF are strictly related to the sensitivity
of the double interferometric setup.

2. Phase correlation estimation

In the setup of Fig. 9, rather than the magnitude of phase
noise in the single MZI, the quantity being estimated is the
covariance between the phase fluctuations in two interferome-
ters. This estimate can somehow be related to a joint measure-
ment of the readout signals N5 and N7. In the limit of a faint
signal, any joint observable Ĉ(φ1, φ2) = Ĉ(N5(φ1), N7(φ2))
with a local non-null double partial derivative ∂2

φ1,φ2
C(φ1, φ2)

can be exploited for a phase-noise covariance estimation
[57]. Here the goal is to investigate whether SPATSV can
lead to some sensitivity advantage with respect to the TSV
state in that scheme. The uncertainty in the phase covariance
measurement is [56]

U =
√

2 Var[Ĉ(φ1, φ2)]∣∣∂2
φ1,φ2

C(φ1, φ2)
∣∣ . (20)

A good choice for the joint measurement operator
is Ĉ(φ1, φ2) = [N5(φ1) − N7(φ2)]2 = N2

5 + N2
7 − 2N5N7. On

the one hand, according to the results for the NRF discussed
in Sec. III B 1, it has a fluctuation below the classical limit.
On the other, it satisfies the condition ∂2

φ1,φ2
C(φ1, φ2) �= 0.

The classical bound, obtained with coherent states at ports
3 and 4 and vacuum at ports 1 and 2, is given by Ucl =√

2(ημ cos2[φ/2])−1 [57], where we have introduced the de-
tection efficiency η, assumed to be equal in the two channels.
Hereinafter, we present the uncertainties Um for the mth
SPATSV state, as normalized to the coherent classical limit,
namely, Um = Um/Ucl .

Analytical results of uncertainties as a function of the
working central phase φ1 = φ2 = φ are plotted in Fig. 11.
Similar to the case of the NRF analyzed in the previous
section, one can distinguish two different regions: one lying
roughly in the range 10−5 < φ < π (shown up to φ ≈ 10−3

in Fig. 11) and the other for a smaller value of the phase,
φ � 10−6, separated by a short transient. The range 10−5 <

φ < π corresponds to the situation in which the mean number

FIG. 11. Normalized uncertainty as a function of φ with μ =
1012 for different numbers of photon subtraction m: m = 0 (solid red
line), m = 1 (solid black line), m = 2 (solid orange line), and m = 3
(solid green line). The dashed purple line represents two independent
squeezed states: (a) λ = 2, η = 0.98 and (b) λ = 0.05, η = 0.98.
(c) Energy-balancing scenario for λ = 2, η = 0.96.

of coherent photons at the readout ports is much larger than
the transmitted SPATSV photons [i.e., Lm(λ)τ � μ(1 − τ )].
In this case, the quadrature nonclassical correlation of the
input modes is responsible for the readout signal correlation.
To provide compact expressions we have reported analytical
results in relevant regimes. In the limit of high coherent power,
μ � 1, and low squeezing, λ � 1, one gets

Um=0 ≈
√

2[1 − τη(2
√

λ − 2λ)], (21)

Um=1 ≈
√

2
[
1 − τη

(
4
√

λ + 1
2λ(3ητ − 16)

)]
, (22)

Um=2 ≈
√

2
[
1 − τη

(
6
√

λ + 9
2λ(ητ − 4)

)]
, (23)

Um=3 ≈
√

2[1 − τη(8
√

λ + λ(9ητ − 32))]. (24)

Note that these expressions follow the NRF behavior reported
in Eqs. (17), (18), and (19) up to the terms in

√
λ. It turns out
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that asymptotically, for λ � 1, there is an advantage which
increases with the number of subtracted photons m. However,
when the asymptotic condition is not fully fulfilled, i.e., for
finite values of the SPATSV energy Lm(λ), higher values of m
do not always correspond to lower uncertainties, as reported
in Fig. 11(b) in the range φ > 10−5, e.g., for λ = 0.05.
Moreover, Eqs. (21)–(24) show that the detection efficiency
η plays the same role as the interferometer transmission τ and
both of them should be high enough to ensure a significant
quantum advantage.

In the case of strong squeezing, μ � λ � 1, provided the
condition Lm(λ)τ � μ(1 − τ ) is still fulfilled, it turns out that
the Um’s respective expressions for different values of m do
not differ much; in fact, we have

Um=0,1,2,3 ≈
√

2
(

1 − τη − τη

4λ

)
(25)

Also in this case, some deviation from the asymptotic behav-
ior can emerge when finite values of the parameters are con-
sidered. For instance, the case λ = 2 is reported in Fig. 11(a).

The opposite situation, when the number of SPATSV pho-
tons is dominant with respect to the coherent ones at readout
ports 5 and 7 [Lmτ � μ(1 − τ )], corresponds in Fig. 11 to
the range φ � 10−6. Perfect photon-number correlation of the
SPATSV entangled state at input ports 2 and 3 is preserved
between N5 and N7. For μ � 1 (and φ → 0) we obtain the
following asymptotic behavior:

Um=0,1,2,3 ≈
√

2
√

(1 − η)/η λ � 1, (26)

Um=0 ≈ 2
√

5(1 − η) λ � 1,

Um=1 ≈ 2
√

3(1 − η),

Um=2 ≈ 2
√

13/5(1 − η),

Um=3 ≈ 2
√

17/7(1 − η). (27)

Equations (26) and (27) show that in this regime of per-
fect photon-number correlations the uncertainty reduction is
mainly limited by the detection efficiency. This means that
there always exists a value of the efficiency high enough to
make this regime more advantageous with respect to the one
exploiting the quadrature correlation. For example, in Fig. 11,
η = 0.98 guarantees a stronger advantage for φ � 10−6.
From Eq. (27) it is evident that only for λ � 1, the uncertainty
reduction depend on the number of subtracted photons m. In
addition, photon subtraction brings a further improvement: the
increasing of the energy Lm with m (at fixed λ) extends the
range of validity of the photon-number-correlation advantage,
Lmτ � μ(1 − τ ), towards higher values of φ, as shown in
Fig. 11.

It is relevant to understand whether the uncertainty re-
duction observed for SPATSV states can be explained only
in terms of the mean energy increasing due to the photon-
subtraction operation or whether the advantage comes from
other properties of these states. Also in this case, we consider
the energy-balancing approach in Sec. II A, where the en-
ergies of two-mode photon-subtracted states (m = 0, 1, 2, 3)
are made equivalent to the energy of TSV, and we observe
that the uncertainty reduction advantage in the high-detection-
efficiency cases [Figs. 11(a) and 11(b)] almost disappears

FIG. 12. Normalized uncertainty versus the detection efficiency
η with μ = 1012, λ = 2, and φ = 10−8 for different numbers of pho-
ton subtraction m: m = 0 (solid red line), m = 1 (solid black line),
m = 2 (solid orange line), and m = 3 (solid green line), (a) without
energy balancing and (b) for the balanced-energy condition.

[see Fig. 11(c)]. However, in the case of a realistic value of
the detection efficiency and optical losses, we observe that
the improvement of the uncertainty reduction is still present
(Fig. 12). For instance, in this scenario SPATSV with m = 3
presents around 26% of an uncertainty reduction advantage
compared to TSV at a detection efficiency of 0.8. Thus,
the uncertainty reduction obtained with SPATSV states is,
in general, due not only to the energy shifts but also to the
enhancement in mode correlation and statistics.

IV. SUMMARY AND CONCLUSIONS

We have studied in detail multiphoton-subtracted one-
and two-mode squeezed vacuum state, in relation to phase
estimation in both single- and correlated-phase interferometry.
The squeezing of the single-mode PASSV state does not
necessarily improve with the number of subtracted photons.
In the case of an odd number for photon subtraction, it is
definitely worse than SSV, while for even photon subtraction,
it is better than the SSV only for a relatively small brightness.
The phase estimation uncertainty in a single interferometer re-
flects this behavior, as expected. Moreover, by comparing the
phase sensitivity after readjusting the energy of the PASSVs to
match that of the SSV, the advantage of the photon subtraction
disappears, at least at the optimal working point of φ = π/2.
For other values of the central operating phase we have a
different behavior, and in some cases, as shown in Fig. 3,
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the advantage of photon subtraction is preserved even when
energies are balanced.

In terms of QFI, we have found improvements in the
number of subtracted photons, but for the energy-balancing
condition this advantage disappears. However, the Heisenberg
limit can be reached for an asymptotically large number of
photons in a lossless interferometer.

We also investigated SPATSV for correlated interferometry
[56,57]. Usually, such SPATSV states are generated by proba-
bilistic events with a low success rate. We showed analytically
how symmetric photon subtraction from a two-mode squeezed
vacuum is equivalent to the squeezing of a finite-component
superposition state, suggesting an alternative way to generate
SPATSV states. We found that these SPATSV states always
show quadrature squeezing and their strength increases with
symmetrical photon number subtraction for a small energy
of the state. Various statistical properties, including photon-
number distribution, Mandel’s Q function, and the noise-
reduction factor, show a higher nonclassical signature of
SPATSV with respect to TSV, suggesting its potential advan-

tages in a correlated phase estimation. In fact, concerning the
phase correlation measurement among two interferometers,
we observed that SPATSVs are able to achieve a smaller
uncertainty than TSVs for an operation point close to the dark
fringe (φ ≈ 0). In the low-loss scenario, SPATSVs apparently
provide a substantial advantage in uncertainty reduction with
respect to TSV states, but this is essentially explained by the
energy increase of the states due to the photon subtraction. In
fact, renormalizing the energies of the SPATSV to that of the
initial TSV state, the uncertainty reduction is lost. However,
SPATSVs retain an advantage of about 30% with respect to
TSVs in the high-loss scenario, and this can be attributed to
their improved statistical properties.
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