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Photon statistics of quantum light on scattering from rotating ground glass
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When a laser beam passes through a rotating ground glass (RGG), the scattered light exhibits thermal statistics.
This is extensively used in speckle imaging. This scattering process has not been addressed in the photon picture
and is especially relevant if nonclassical light is scattered by the RGG. We develop the photon picture for the
scattering process using the Bose statistics for distributing N photons in M pixels. We obtain an analytical form
for the P distribution of the output field in terms of the P distribution of the input field. In particular, we obtain
a general relation for the nth-order correlation function of the scattered light, i.e., g(n)

out � n! g(n)
in , which holds

for any order n and for arbitrary input states. This result immediately recovers the classical transformation of
coherent light to pseudothermal light by RGG.
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I. INTRODUCTION

Laser light usually carries a (super-)Poisson photon statis-
tics [1–4], but when a laser beam passes through a rotating
ground glass (RGG), the scattered light exhibits a thermal
statistics.1 This is known as the “pseudothermal” light, which
has been well verified in experiments [5–10], and widely
used for ghost imaging [11–13], subwavelength imaging and
lithography [14,15], as well as some fundamental studies
[16–18].

It is quite interesting that the input Poisson statistics can
be changed to be the thermal statistics in such a simple way.
Usually this is understood in classical theory [19,20]: the light
field E collected at the photon detector is the superposition
of the subfields Ẽi propagated from different positions of the
RGG. Due to the rotation of the disk, the phases and ampli-
tudes of these subfields Ẽi are varying with time randomly.
According to the central limit theorem, their summation E , as
a random variable, exhibits a Gaussian distribution [P(E ) ∼
exp(−β|E |2)], and thus the intensity (I ∼ |E |2) exhibits a
negative-exponential distribution, i.e., the thermal distribution
[19–22].

In principle, the central limit theorem requires the sub-
sources Ẽi to be infinitely many point sources. Experimentally,
the number of subsources is limited by the granules within the
light spot on the ground glass; thus the pseudothermal light
generated in experiments shows some deviation from the ideal
thermal distribution [23–25].

Rigorously speaking, the continuous distribution P(I ) for
the light intensity is a classical treatment, but not exactly
equivalent with the distribution Pn for the quantized photon

1Throughout this paper, we focus on the “thermal light” with a
single frequency, namely, only one optical mode is in the thermal
state, and all the other field modes are in the vacuum state.

numbers, especially in the few-photon regime. Moreover, if
the input light is a nonclassical state, the above classical
interpretation does not apply.

In this sense, although the transformation of coherent light
on a diffusing glass plate has been extensively investigated
[6–10,19,20] and achieved wide applications in speckle imag-
ing [11–13,24–26], most of the time it was based on the
above classical understanding rather than a fully quantized
photon picture. In particular, if the input light intensity is at
single-photon level, or is scattered by very few diffusers, the
validity of the above classical theory needs to be checked
more carefully.

In this paper, we develop a quantum framework to study
the full photon number statistics of such light scattered from
general input states. The basic picture is, when NP photons
are scattered randomly by the RGG, the photon number
received by a small area fluctuates stochastically. Therefore,
the photon number statistics is obtained by counting the
combinations how these photons are randomly distributed on
the scattered light pattern, and that naturally gives the thermal
statistics.

Further, by taking the input statistics into account, the
scattered photon statistics can be well obtained for arbitrary
input states, including nonclassical ones. Moreover, we prove
that the scattered g(2)

out is always twice that of the input
g(2)

out � 2g(2)
in for any input states, including nonclassical states.

Besides, we also obtain the P function of the scattered light
in the many-diffuser limit, and that further gives the relation
g(n)

out � n! g(n)
in for high-order correlations of any order n and

any input.
The paper is arranged as follows. In Sec. II, we discuss

the basic generation mechanism of the pseudothermal light. In
Sec. III, we obtain the scattered g(2) correlation for an arbitrary
input state. In Sec. IV, we discuss the scattered P func-
tion and high-order correlations. The summary is drawn in
Sec. V.
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FIG. 1. (a) Demonstration for the photon counting process.
(b) The light beam is scattered divergently by the RGG and generates
a random light pattern.

II. THE PSEUDOTHERMAL LIGHT GENERATION FROM
PHOTON SCATTERING

We first briefly review the basic photon counting process
[Fig. 1(a)]. Considering a steady light flux coming into the
photon detector (PD), in each exposure period, a quantum
projective measurement is made on the light intensity. The
exposure time must be much shorter than the light coherence
time, otherwise the measured result is indeed a time average,
which corresponds to classical treatments [21,22]. In the
idealistic case, the data {nt } of many exposure frames should
be a stochastic series of integers due to the quantized feature
of photons, as well as the intrinsic randomness of quantum
measurements [27–30]. This can be regarded as multiple
repetitive measurements on the same light state. Counting {nt }
gives the photon number distribution Pn of the incoming light.

Therefore, the pseudothermal light generation can be un-
derstood as follows. Considering a laser beam divergently
scattered by a RGG, we suppose all the scattered light is
collected by a pixel lattice composed of M(�1) independent
PDs. In each exposure, this pixel lattice takes a photo frame
of the whole scattered light, which appears as a light pattern
randomly distributed in spatial domain [Fig. 1(b)]. When
the ground glass is moving, this light pattern varies with
time like a “zoetrope” [5,6,24]. Thus, when focusing on a
small area on the light pattern, its intensity fluctuates with
time stochastically, which is similar to the above quantum
measurement data. This is just how the pseudothermal light
is obtained.

Thus, the photon statistics on a certain pixel can be calcu-
lated by counting how the input photons are distributed on the
whole pixel lattice, as shown below.

A. Fock input

We first consider a simple case that in each frame, the in-
coming light always contains exactly NP photons (Fock input).

FIG. 2. (a) The scattered photon distribution Pn on one pixel
from Fock input (left green), comparing with the thermal one (right
yellow) with the same mean photon number. (b) The scattered photon
distribution (in logarithmic scale) from the Fock and Poisson input
(N̄P = 200) comparing with the thermal distribution (dashed gray
line). The dotted cyan line is the approximated result (7).

Due to the stochastic scattering, these NP photons would be
randomly distributed to all the M pixels. Denoting nx,t as the
photon number recorded at pixel x in frame t , all possible
pattern configurations {nx} may appear (assuming with equal
probabilities). Remember all nx are integers (0 � nx � NP),
and they must satisfy the constraint of energy conservation∑

x nx = NP. Thus, since photons are identical bosons, the
total number of such combinations is given by [see Eq. (55.4)
in Ref. [31]]2

Z :=
(

NP + M − 1

M − 1

)
= (NP + M − 1)!

(M − 1)! NP!
. (1)

Further, we count the probability that n photons are re-
ceived by a single pixel. That is equivalent to counting the
combinations of how NP − n photons are distributed on the
rest of the M − 1 pixels, which gives (for M � 2)

P(NP )
n =

{
1
Z

(NP−n+M−2
M−2

)
, 0 � n � NP

0, n > NP.
(2)

This is just the scattered photon statistics on one pixel when
the input light carries NP photons in each frame.

In the regime n � NP, the above probability gives

P(NP )
n+1

P(NP )
n

= 1

1 + M−2
NP−n

� 1

1 + M/NP
, (3)

which is a constant and less than 1 (when M � 1). That
means, the statistics received on this pixel well exhibits the
thermal distribution. In the regime n ∼ NP, the deviation from
the ideal thermal distribution gradually grows larger, but this
difference is not easy to observe in practical experiments
(Fig. 2).

Therefore, when focusing on the photon statistics received
on a local area, the conservation constraint of the total photon
number naturally leads to the thermal statistics. Indeed this is
quite similar to the mechanism for how the canonical ensem-
ble with the thermal statistics emerges as a subsystem inside a
bigger microcanonical one in statistical physics [31,32].

2This is equivalent to counting the combinations of how NP identi-
cal balls are put into M different boxes, with zero reception allowed.
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B. Poisson input

The incoming light could also have certain distribution
Pin(N ) but not exactly NP photons. In this case, taking the
input statistics into account, the scattered statistics is

Pn =
∑

N

Pin(N )PN )
n , (4)

where P(N )
n is the result from the scattering of N photons

[Eq. (2)].
For a laser input, the input statistics Pin(N ) is approxi-

mately a Poisson distribution, which is narrowly distributed
around its mean value N̄P with a relatively small variance
(
√

〈δn2〉/〈n〉 = 1/
√

N̄P). Therefore, in the above summation
(4), only the terms around N � N̄P contribute significantly. As
a result, approximately the output photon statistics is also a
thermal one, which satisfies

Pn+1

Pn
� 1

1 + M/N̄P
. (5)

For the above Fock and Poisson input cases, the exact
output distributions Pn are numerically shown in Figs. 2(a) and
2(b), and they are both quite close to the thermal distribution
in the regime n � N̄P. When the photon number n is large,
both of them deviate from the thermal one.

Generally, the input light state may also contain quantum
coherences between the Fock states (e.g., the coherent state
|α〉 = ∑

n e−|α|2/2/
√

n! |n〉), or between the different scattered
spatial modes. But the RGG randomizes phases, thus the
measurement on the photon number N̂ is directly related to the
photon number distribution Pn and the off-diagonal elements
do not take effect (see p. 127 in Ref. [33]).

C. Nonthermal correction

Here we give an approximated distribution taking into
account the above nonthermal correction. We expand the
above iterative relation (3) as follows:

ln P(NP )
n+1 − ln P(NP )

n = ln
1

1 + M−2
NP−n

� ln
1

1 + M−2
NP

−n
M − 2

NP(NP + M − 2)
+o(n2).

(6)

Omitting the high-order terms o(n2), the summation over n on
both sides gives the following approximated distribution [the
dotted cyan line in Fig. 2(b)]:

P(NP )
n = P0e−β0n−βc(n2−n),

β0 = ln

(
1 + M − 2

NP

)
, βc = 1

2

M − 2

NP(NP + M − 2)
, (7)

where P0 is a normalization constant. A quadratic correction
appears in the exponential factor, and the correction βc is
negligible for strong input NP. Indeed, this is a typical non-
canonical feature resulted from finite system sizes or coupling
strengths [34,35].

Lastly we remark that the “pixels” in the above discussions
do not correspond to realistic detector pixels directly. The

sizes of such pixels are determined by the spatial correlation
length of the scattered light pattern, so they can be regarded
as independent fluctuation units. And their total number M is
roughly determined by the granules within the light spot on
the RGG, which is usually a very large number in practice.

III. THE SCATTERED STATISTICS FROM
NONCLASSICAL LIGHT

Without loss of generality, here we have assumed the input
photons have a uniform spatial distribution as done in the
classical theory. Since usually the imaging area is much larger
than coherence length, this is expected to hold well, and the
nonuniformity at the edges is not significant.

Generally, the quantum light state can be written in the
Glauber-Sudarshan P representation ρ̂ = ∫

d2α P(α)|α〉〈α|,
and it has a form of a probabilistic ensemble of coherent states
|α〉, which corresponds to classical planar waves. But here the
P function P(α) may not be positive definite (e.g., the Fock
state, sub-Poissonian state), and thus cannot be regarded as the
probability distribution. Therefore, in quantum optics, (non-
)classical states refer to those who (do not) have a positive
P(α) [4,36].

Thus, for a nonclassical input state, the above standard
classical theory based on the central limit theorem does not
apply [19,20]. In this case, the scattered photon statistics Pn

still can be obtained from our Eq. (4).
But the photon number distribution Pn and the P function

are not easily measured directly. In experiments, it is the nth-
order correlation function of the light state that is more often
measured, i.e.,

g(n) := 〈(â†)nân〉
〈â†â〉n

=
∑

m Pm
m!

(m−n)!( ∑
m mPm

)n , (8)

which is a more precise indicator to test the nonclassicality of
the light state [4,36]. Considering averagely N̄P = 8 photons
scattered onto M = 8 fluctuating units, although the scattered
Pn from both Fock and Poisson inputs look quite close to the
thermal one [Fig. 3(a)], indeed their second-order correlations
are g(2)

out � 1.556 (Fock input) and g(2)
out � 1.778 (Poisson in-

put), which both deviate significantly from the thermal result
g(2)

th = 2. When g(2) < 1, the light state is a nonclassical one
[4,36].

For arbitrary input states, the scattered g(2) correlation can
be calculated from Eq. (4). The mean photon number of the
scattered light is 〈n〉 = 〈N〉in/M, and the mean square is

〈n2〉 =
∑
N,n

Pin(N )n2P(N )
n =

∑
N

Pin(N )
N (2N + M − 1)

M(M + 1)

= 2〈N2〉in

M(M + 1)
+ 〈N〉in(M − 1)

M(M + 1)
. (9)

Then after simple calculations, the scattered g(2)
out = (〈n2〉 −

〈n〉)/〈n〉2 can be represented by the input g(2)
in :

g(2)
out = 2(〈N2〉in − 〈N〉in )M

〈N〉2
in(M + 1)

= 2g(2)
in

M

M + 1
. (10)

In practice, the RGG usually has a large number of dif-
fusers (M � 1), which gives g(2)

out � 2g(2)
in . It is worth noting
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FIG. 3. (a) The scattered distribution Pn from Fock and Poisson
input (N̄P = 8, M = 8). (b) The scattered g(2)

out from Fock (NP =
2, 5, 10) and Poisson input (N̄P = 1) changing with fluctuator num-
ber M. (c) The scattered g(2)

out changing with the input photon number
(given M = 200), comparing with the input g(2)

in of the Fock state.
(d) The scattered g(2)

out from squeezed input changing with the squeez-
ing phase θ , comparing with the input g(2)

in .

that this is a general result for arbitrary input statistics, in-
cluding nonclassical light.

Therefore, a laser input with Poisson statistics always
leads to the thermal result g(2)

out � 2, irregardless of the input
intensity, even at the single-photon level N̄P = 1.

To the contrary, the Fock input |NP〉 has g(2)
in = 1 − N−1

P ∈
[0, 1), and that makes the scattered g(2)

out � 2g(2)
in increase with

the input photon number NP [Fig. 3(c)]. In particular, the
single-photon input (NP = 1) leads to a scattered state ρ̂out =
(1 − 1

M )|0〉〈0| + 1
M |1〉〈1| [by Eq. (2)] which gives g(2)

out = 0.
Thus, the quantum features of nonclassical states appear

more significant in the few-photon regime. And it is also worth
noting that the Poisson input plays a part in better producing
the thermal statistics than the Fock input, since it always
guarantees g(2)

out � 2, irregardless of the input intensity.
With the increase of the total number M of the fluctuating

units, the scattered g(2)
out increases and converges to g(2)

out �
2g(2)

in [Fig. 3(b)]. And this just corresponds to the condition
of infinite diffusers required by the central limit theorem in
classical theory.

By utilizing the squeezed light, a nonclassical input state
with sub-Poisson statistics can be realized in experiments
[4,36,37]. In Fig. 3(d) we show the scattered g(2)

out from the
squeezed light calculated from Eq. (4). The input statistics
Pin(N ) comes from the squeezed state |α, ξ 〉 = D̂α Ŝξ |0〉,
where Ŝξ := exp[ 1

2 (ξ ∗â2 − ξ â†2)], D̂α := exp[αâ† − α∗â] are
the squeezing and displacement operators, with ξ = reiθ (r �
0) as the squeezing parameter [4,36].

For different squeezing phases θ , the mean photon number
remains N̄P = |α|2 + sinh2 r, while the input statistics gives
sub-Poisson (g(2)

in < 1) or super-Poisson (g(2)
in > 1) distribu-

tions. In the whole regime the above relation g(2)
out � 2g(2)

in well
applies.

Notice that the output light can be used as the input light
for further scattering through another RGG; then that gives
g(2)

out-2 � 2g(2)
out-1 � 22g(2)

in . Clearly, after the hierarchy scattering
through k RGGs, the final output light has g(2)

out-k � 2kg(2)
in . In

particular, if the original input is laser, the final output gives
g(2)

out-k � 2k [19,20,38].
In addition, similarly to Eq. (9), the third-order expectation

〈n3〉 and g(3)
out also can be obtained, i.e.,

〈n3〉 = 6〈N3〉in + 6(M − 1)〈N2〉in + (M2 − 3M + 2)〈N〉in

M(M + 1)(M + 2)
,

g(3)
out = 〈â†3â3〉out

〈â†â〉3
out

= 6g(3)
in

M2

M2 + 3M + 2
, (11)

which gives g(3)
out � 6g(3)

in for large M. But the calculation of
higher orders becomes more and more troublesome. In the
following, with the help of the P function of the scattered
light, we can prove g(n)

out � n! g(n)
in for any order n and any input

state.

IV. THE P FUNCTION OF THE SCATTERED LIGHT AND
THE HIGH-ORDER CORRELATIONS

The nonclassical properties of a light state can be more
clearly characterized by its P function [3,4,39], and here we
show the P function of the scattered light and its high-order
correlations. As seen above, the Poisson input plays a part
in better producing the thermal statistics than the Fock input,
since it always leads to the thermal result g(2)

out � 2 in spite of
the input intensity (in the many-diffuser limit M → ∞). Thus,
approximately this can be written as the following mapping
relation:

ρ̂in = |α0〉〈α0| → ρ̂out =
∑ N̄T

m

(1 + N̄T )n+1
|n〉〈n|,

Pin(α) = δ(2)(α − α0) → Pout(α) = 1

π N̄T
exp

(
−|α|2

N̄T

)
.

(12)

Here |α0|2 and N̄T = |α0|2/M are the mean photon numbers of
the input and output statistics. The coherent state |α0〉 always
gives the same output with the above probabilistic Poisson
input, since the quantum coherences do not take part in the
photon counting.

This input-output relation can be written as a linear func-
tional transformation Pout(α) = Fα[Pin(α)]. Then for a gen-
eral input state Pin(α) = ∫

d2ς Pin(ς )δ(2)(α − ς ), the output
P function is

Pout(α) = Fα[Pin(α)] =
∫

d2ς Pin(ς )Fα[δ(2)(α − ς )]

=
∫

d2ς Pin(ς )
1

π |ς |2/M
exp

(
− |α|2

|ς |2/M

)
. (13)

First, we use Eq. (13) to obtain the high-order moments of
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FIG. 4. The scattered distribution Pn from Fock input (NP =
60) calculated from Eq. (2) (based on combination counting) and
Eq. (17) [based on the mapping relation (12)] for (a) M = 60 and
(b) M = 200. For large M, they almost coincide with each other.

the scattered light,

〈â†nân〉out =
∫

d2α |α|2nPout(α)

=
∫

d2ς

∫
d2α

M

π |ς |2 e−(M/|ς |2 )|α|2 |α|2nPin(ς )

=
∫

d2ς Pin(ς )
|ς |2n

Mn
n! = 〈â†nân〉in · n!

Mn
. (14)

Therefore, for arbitrary input states, the nth-order correlation
function of the scattered light is

g(n)
out = 〈â†nân〉out

(〈â†â〉out)n
= n! 〈â†nân〉in/Mn(〈â†â〉in/M

)n = n! g(n)
in . (15)

This result holds for arbitrary input statistics. In particular,
the second order gives g(2)

out = 2g(2)
in , which is just the result

(10) in the many-diffuser limit M → ∞. After the hierarchy
scattering through k RGGs, the final output light gives g(n)

out-k �
(n!)kg(n)

in .
Next we use the output P function (13) to obtain the

photon statistics, and compare it with the above result (2)
based on combination counting. Since the scattered state can
be written as ρ̂out = ∫

d2α Pout(α)|α〉〈α| = ∑
P̃n|n〉〈n|, the

photon number distribution P̃n also can be obtained as

P̃n = 〈n|ρ̂out|n〉 =
∫

d2α Pout(α)
|α|2n

n!
e−|α|2

=
∫

d2ς Pin(ς )
M/|ς |2

(1 + M/|ς |2)n+1
. (16)

For a Fock input state |N〉, the input P function is Pin(ς ) =
e|ς |2 [∂N

ς ∂N
ς∗δ(2)(ς )]/N! [4], and the above integral gives

P̃(N )
n = lim

ς→0

1

N!
∂N
ς ∂N

ς∗

[
e|ς |2 M/|ς |2

(1 + M/|ς |2)n+1

]

= N!

n!

N∑
k=n

(−1)k−nk!

(N − k)!(k − n)!Mk
, (17)

and P̃(N )
n = 0 for n > N (see Appendix).

Here we emphasize that Eqs. (16) and (17) are valid
only in the many-diffuser limit M → ∞, which guarantees
the Poisson input must exactly produce the thermal state
and g(2)

out = 2g(2)
in holds exactly. Thus, generally P̃(N )

n is not
equivalent with the result (2) based on combination counting,
which applies in more general cases. When M is large, their
difference becomes negligible, especially in the few-photon
regime (Fig. 4).

V. SUMMARY

In this paper, we develop a quantum framework to study
the full photon number statistics of the scattered light passing
through the RGG. The output statistics is obtained by counting
the combinations of how the input photons are distributed
on the scattered light pattern. When the total photon num-
ber of the whole scattered light pattern is approximately a
constant, counting the photon number received by a small
area on the light pattern naturally gives the thermal statistics.
Then for arbitrary input states, the scattered photon statistics
also can be well obtained by taking the input statistics into
account.

We also obtain the P function of the scattered light from
arbitrary input states in the many-diffuser limit. With the
help of these distributions, we find that the scattered light
always gives a general relation g(n)

out � n! g(n)
in , which holds

for any order n and any input state, including nonclassical
ones. In these situations, this theory provides a more precise
description beyond the previous classical theory based on the
central limit theorem.

The above results of g(n) correlations scattered from
nonclassical input can be verified by squeezed light in
current experiments, and may be utilized for correlation
imaging of high orders. This result also indicates it is
possible to create a scattered light with very high g(n)

correlations simply, which may be utilized to enhance
the multiphoton absorption processes and high harmonic
generation [40–42].
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APPENDIX: CALCULATION OF EQ. (17)

The P function of the Fock state |N〉 is a highly singular function Pin(ς ) = e|ς |2 [∂N
ς ∂N

ς∗δ(2)(ς )]/N!, which contains the
derivative of the δ function. Notice that for ς = ςx + iςy, the derivative gives ∂ς∂ς∗ = 1

4 (∂2
ςx

+ ∂2
ςy

) = 1
4∇2. From the Stokes
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theorem we obtain
∫

d2ς [ f (ς )∇2nδ(2)(ς ) − δ(2)(ς )∇2n f (ς )] = 0, thus the integral (16) gives

P̃n = 1

N!

∫
d2ς

[
∂2N

∂ςN∂ς∗N
δ(2)(ς )

]
e|ς |2 M/|ς |2

(1 + M/|ς |2)n+1
= 1

N!

∫
d2ς δ(2)(ς )

∂2N

∂ςN∂ς∗N

e|ς |2 M/|ς |2
(1 + M/|ς |2)n+1

= lim
ς→0

1

N!
∂N
ς ∂N

ς∗

[
e|ς |2 M/|ς |2

(1 + M/|ς |2)n+1

]
. (A1)

Now we need to calculate this derivative and take the limit. Denoting ς → x, ς∗ → y, the above derivative gives

∂N
y

[
exy M(xy)n

(M + xy)n+1

]
=

N∑
k=0

Ck
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y exy∂k
y

M(xy)n

(M + xy)n+1
=

N∑
k=0

Ck
N exyxN−k

k∑
q=0

Cq
k ∂q
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y

1
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=
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k∑
q=0

Ck
NCq

k exyxN−kMxn n!

(n − q)!
yn−q(−1)k−q (n + k − q)!

n!
(M + xy)−n−1−k+qxk−q

= M
N∑

k=0

k∑
q=0

(−1)k−q(n + k − q)!

(n − q)!
Ck

NCq
k

[
yn−qxN−q+nexy(M + xy)−n−1−k+q

]
. (A2)

Now we need to further calculate the derivative ∂N
x by applying the Leibniz rule to the above bracket, which gives∑N

l=0 Cl
N [∂ l

xxN−q+n]∂N−l
x [exy(M + xy)−n−1−k+q].

Since lastly we need to take the limit x, y → 0, from the power factor ∂ l
xxN−q+n = (N−q+n)!

(N−q+n−l )! x
N−q+n−l we can notice that only

a few terms in the above summations could exist, and they must satisfy N − q + n − l = 0, thus we have q − n = N − l � 0.
But since the denominator of Eq. (A2) contains (n − q)! which gives +∞ for n < q, that guarantees q = n and l = N . Therefore,
taking the limit of the above derivative gives

lim
x,y→0

∂N
x ∂N

y

[
exyM(xy)n

(M + xy)n+1

]
=

N∑
k=0

(−1)k−nk!
N!

(N − k)!k!

k!

(k − n)!n!

N!

Mk
, (A3)

as shown in the main text.
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