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Radial modal transitions of Laguerre-Gauss modes during parametric up-conversion:
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Optical orbital angular momentum transformation and corresponding azimuthal-mode selection rules have
been studied exhaustively for various nonlinear optical interactions. However, nonlinear transformation of the
radial mode has not been systematically studied since the pioneering work [Phys. Rev. A 56, 4193 (1997)]. In
this paper, we theoretically study and experimentally verify the radial modal transitions of Laguerre-Gauss (LG)
modes in parametric up-conversion. Specifically, we provide a general solution that describes the sum-frequency
generation (SFG) field excited by two arbitrary LG modes. Based on the solution, one can predict the full spatial
complex amplitude of SFG fields upon propagation precisely and readily obtain the associated full-field selection
rule including both azimuthal and radial modes. This paper provides a theoretical basis for quantum and nonlinear
optical research involving parametric up-conversion of complex structured light and paves the way for future
work on full-field transformation of spatial modes in other nonlinear interactions.
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I. INTRODUCTION

Soon after Allen et al. discovered optical orbital angular
momentum (OAM) [1], research on the transformation of
OAM in nonlinear optics began with the second-harmonic
generation (SHG) of Laguerre-Gaussian (LG) modes reported
by Dholakia et al. in 1996 [2]. The azimuthal modal transition
identified in their work, i.e., that SHG fields carry twice
the azimuthal indices of the pump, provided straightforward
insight into OAM conservation during nonlinear interactions
at the photon level. One year later, the researchers further
reported a SHG excited by LG modes with radial indices
[3] in which they found that the radial structure of the SHG
fields varied upon propagation, and it was more interesting
that the beam profiles at the generation plane and the far field
were same. Thereafter, perhaps because OAM conservation
is of interest for both practical applications and fundamental
optics, only the transformation of azimuthal indices and cor-
responding OAM selection rule was studied comprehensively
and thoroughly in various nonlinear optical processes. Re-
search included second-order interactions, third-order interac-
tions, high-order harmonic generation, and even light-sound
(or other matter wave) interactions [4–12]. On the basis of
these OAM selection rules, in the quantum domain, nonlinear
interactions involving photonic OAM have become crucial
to high-dimensional entanglement generation, memory, and
frequency conversion [13–15].

*zhuzhihan@hrbust.edu.cn

Recently, to exploit spatial degrees of freedom (DoFs)
fully, research on structured light has gradually begun to focus
on the forgotten radial mode [16–24], particularly for their
potential value in quantum information [25,26]. With regard
to this, generation, memory, and frequency conversion of light
with on-demand full transverse structure are important. The
premise for these tasks is to know the full-field selection rule
of spatial modes that control the transformation of transverse
structure in nonlinear interactions, e.g., for LG modes is to
know both azimuthal and radial modal transitions. However,
after the pioneering work reported by Courtial et al. [3],
research on radial modal transitions in nonlinear optics has
rarely been considered. More recently, although a few studies
have reported relevant interesting phenomena, such as the de-
pendence between the azimuthal modal and the radial modal
in parametric processes [27–31], there is no unambiguous full-
field selection rule of spatial modes for a specific nonlinear
process, thus far.

Here, driven by the above research requirement and in-
terest, we revisit the radial modal transitions of LG modes
during parametric up-conversion, or rather sum-frequency
generation (SFG). On the theoretical side, we provide a
general solution of the SFG field pumped by two arbi-
trary LG modes, which can precisely describe the spatial
complex amplitude (including both azimuthal and radial
structures) of the SFG field from the generation plane to
the far field. Based on this solution, the full-field selection
rule can be readily obtained via well-established state to-
mography based on projective measurement. On the exper-
imental side, we verify the theory with the help of com-
plex amplitude modulation and digital propagation [32–34].
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All simulations are successfully observed via propagation
tomography.

II. THEORY

The traveling wave function of a LG mode in cylindrical
coordinates can be fully determined by knowing the wave-
vector k, beam-waist w0 at the original plane, and two spatial
(i.e., azimuthal and radial) indices � and p given by [1]

LG�
p(r, ϕ, z) = g(r, z; k,w0, p, �)L|�|

p (γ )e−i�ϕ, (1)

where g(·) denotes a Gaussian envelope function, e−i�ϕ is the
twisted phase that gives rise to the photonic OAM, L|�|

p (γ )
is the Laguerre polynomial with mode orders p and |�|,
and the variable γ = 2r2/w0

2[1 + (z/zR)2] (zR = kw2
0/2 is the

Rayleigh length). It should be noted that L|�|
p (γ ) provides the

radial structure of the spatial amplitude. To be more specific,
the zeros of L|�|

p (γ ) specify the number (N = p � 0) and
position of phase dislocations along the radial coordinate,
thus, leading to a specific multiring structure.

Of the two spatial indices, the azimuthal index � (also
known as the topological charge) can be regarded as the eigen-
value of the OAM operator with respect to the z-axis L̂z =
−ih̄(∂/∂ϕ), i.e., L̂zLG�

p(r, ϕ, z) = � LG�
p(r, ϕ, z) because of

the twisted phase e−i�ϕ within the LG modes. Here, the opera-
tor L̂z depends only on the DoF of ϕ such that � is a conserved
quantity in paraxial propagation and the corresponding OAM
selection rule in rotational-symmetric nonlinear interactions
can be readily inferred. The operator of the radial index p
can be defined via a relation P̂zLG�

p(r, ϕ, z) = p LG�
p(r, ϕ, z),

however, this operator, unlike L̂z, is correlated with other
observable quantities including w0, �, and even z [18]. That
is, the radial quantum number can only be well defined when
all of the relevant beam parameters are known. This is why
controlling the radial mode experimentally is more difficult
than controlling the azimuthal mode. Thus, most recent ex-
periments that explore the radial quantum number have used
imaging systems to match the relevant beam parameters be-
tween the sender and the receiver [19–21]. Precisely because
of this complexity, except when interacting with a plane wave,
revealing the full-field selection rule that determines both
azimuthal and radial modal transitions of LG modes during
nonlinear interactions remains a challenge. Here, we start
from parametric up-conversion to investigate the full-field
transformation of LG modes in general SFG.

The full theoretical framework for a general SFG pumped
by two arbitrary LG modes is provided in Appendix A. In
the main text, for simplicity and without loss of generality,
we assume that the SFG is pumped by two beams with
the same k and w0 but orthogonal polarizations in a type-II
crystal, i.e., a special SFG known as type-II SHG. If we
further assume the SHG is pumped by two collimated and
collinearly propagating LG modes LG�1

p1
and LG�2

p2
in the

perfect phase-matching condition. As the source of the SHG
field, the nonlinear polarization (NP) excited by them at the
generation plane (z0) can be expressed as P2ω = κE2ω(r0, ϕ0),
where κ = ε0χ

(2) denotes the nonlinear coupling coefficient
and E2ω(r0, ϕ0) = LG�1

p1
(r0, ϕ0)LG�2

p2
(r0, ϕ0) is the quadratic

beating field. From this NP, one can readily infer that the SHG

undergoes a doubling transition in the longitudinal-mode DoF
(or frequency), i.e., exp[ik(ω)z] → exp[ik(2ω)z].

Moreover, this NP also fully determines the transition in
the transverse-mode DoF (or spatial mode) involving selec-
tion rules for both azimuthal and radial modes. Note that,
for the broadband phase matching of SHG, the subtle ef-
fect of spatial dispersion of high-order LG modes on the
phase matching can be neglected [35,36]. For the azimuthal
mode, if the two pumps all carrying single-valued topological
charge, one can obtain a concise azimuthal modal transition,
i.e., exp(i�1ϕ) exp(i�2ϕ) → exp[i(�1 + �2)ϕ], and associated
OAM selection, i.e., �SHG = �1 + �2. For the radial mode, at
this stage, we can conclude only that the radial structure of
the amplitude at z0 plane is governed by the term L2ω(r, z0) =
L|�1|

p1 (·)L|�2|
p2 (·) [see Eq. (A2) in Appendix A]. Except when p1

and p2 are zero simultaneously, the generated SHG is not an
eigensolution of the paraxial wave equation, leading to an un-
stable radial amplitude upon propagation. Therefore, to reveal
the complete radial amplitude of the SHG upon propagation, it
is necessary to obtain the traveling wave-function E2ω(r, ϕ, z).

The general solution of E2ω(r, ϕ, z) can be derived using
the Collins propagator with E2ω(r0, ϕ0) as the pupil function
[37,38], given by [see Appendix A for details]

E2ω(r, ϕ, z) = g2ω(r, z; 2k,w0, p1,2, �1,2)L2ω(r, z)e−imϕ,

L2ω(r, z) =
p1+p2∑

j=0

q j (z)L|m|
n+ j (ζz ), (2)

where g2ω(·) is the amplitude envelope, two parameters m =
�1 + �2 and n = (|�1| + |�2| − |�1 + �2|)/2, and L2ω(r, z) is
a series function about z that governs the radial structure of
the SHG field upon propagation. The term e−imϕ contained
in Eq. (2) indicates that E2ω(r, ϕ, z) carries a well-defined
OAM of m = �1 + �2 per photon that corresponds to a concise
OAM selection rule. For the radial mode, we note that the
governing term L2ω(r, z) consists of a series of Laguerre poly-
nomials q j (z)L|m|

n+ j (ζz ). In addition, the weighting coefficient
q j (z) and the complex variable ζz are both functions of z.
This indicates that the radial amplitude structure of the SHG
field is usually (except for p1 = p2 = 0) not constant upon
propagation. Using Eq. (2), one can exactly simulate the full
spatial complex amplitude of the SHG field from the z0 plane
to the far field (z∞). Furthermore, by reformulating Eq. (2) as a
coherent superposition of eigen-LG modes, we can obtain the
full-field selection rule of LG modes involving both azimuthal
and radial modes, given by

E2ω(r, ϕ, z) =
n+ j∑
η=0

aηLGm
η (r, ϕ, z), (3)

where aη denotes weight coefficients that can be obtained
by projecting Eq. (2) onto the corresponding eigenmode.
Moreover, aη’s are real numbers because ζz in Eq. (2) is
also real number at the z0 plane, which indicates the initial
intramodal phase can only be ±π . Equation (3) represents
a radial modal degenerate vortex beam (similar to hyper-
geometric-Gaussian beams [39,40]), and note that the mode
orders of each component, i.e., 2η + m, are different from
each other. This leads to different speeds in accumulation
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FIG. 1. Simulated spatial complex amplitudes of SHG fields of (a) LG0
2LG0

2, (b) LG1
2LG2

2, (c) LG1
1LG−1

1 , (d) LG0
0LG2

1, and (e) LG0
1LG2

1.
In the radial profiles, the transverse unit is r/wz so that the beam enlarging upon propagation is compensated; and the propagation distance is
given in Gouy phase φg ∈ [0, 2π ], i.e., z = zR tan φg, and, thus, one Rayleigh distance (zR) is in the middle position.

of the Gouy phase upon propagation. That is to say, Eq. (3)
explains, via another perspective, why the radial amplitude
structure of the SHG field is usually (except for the special
case of only one LGm

η term) propagation variant. Additionally,
from the polynomial order n + j in Eq. (2) and η in Eq. (3),
we know that the radial-mode components of the SHG field
depend on both the azimuthal and the radial indices of two
pump fields.

From Eqs. (2) and (3) we see that, except for the z0 plane,
the radial governing term L2ω(r, z) and the coefficients aη

will become real again at the far field due to ζz → R at z∞.
At the far field, Eq. (2) becomes a Fourier transformation of
E2ω(r0, ϕ0), given by

E2ω(r, ϕ, z∞) = F[E2ω(r0, ϕ0)]

= g2ω(r, z∞; w0, p1,2, �1,2)L2ω(r, z∞)e−imϕ. (4)

Here, L2ω(r, z∞) is a one-dimensional series function of r
that governs the far-field radial structure. Remarkably, for the
particular case of p1 = p2 = p, it can be further factorized
into two concise forms

L2ω(r, z∞) = L|�1|
p (·)L|�2|

p (·) for �1�2 > 0,

L2ω(r, z∞) = L|�1+�2|
p+n (·)L0

p(·) for �1�2 < 0. (5)

Equation (5) implies two interesting phenomena about the far-
field amplitude: (i) If �1 and �2 have the same sign, the radial
profiles at the z∞ and z0 planes, except for overall enlarging

upon propagation, are exactly same; and (ii) if �1 and �2

have opposite signs, the number of phase dislocations (N) at
the far field is N = 2p + n. This phenomenon is associated
with spatial cross correlation of the two pumps. We further
demonstrate the above predictions by analyzing simulations
of the two cases.

For case (i), we first revisit the special case reported in
Ref. [3], i.e., �1 = �2 = � corresponding to the SHG pumped
by a single LG mode. According to Eq. (5), the relation
L2ω(r/wz, z∞) = L2ω(r/wz, z0) = [L|�|

p (·)]2 indicates that the
radial profiles of the SHG field at z0 and z∞ planes are
exactly the same, i.e., E2ω(r/wz, z0) = E2ω(r/wz, z∞) and
without any radial phase dislocations (N = 0). To illustrate
this special case, Fig. 1(a) shows the simulated radial pro-
file of the SHG pumped by LG0

2, whose radial modal tran-
sition, according to Eq. (3), is LG0

2LG0
2 → √

9/22LG0
0 +√

4/22LG0
2 + √

9/22LG0
4. We then consider a slightly more

general case of |�1| �= |�2| where we still produce the con-
clusion that E2ω(r/wz, z0) = E2ω(r/wz, z∞) but the number
of phase dislocations is N = 2p. With regard to this pre-
diction, Fig. 1(b) shows the simulated SHG pumped by
LG1

2 and LG2
2 that corresponds to a radial modal transi-

tion of LG1
2LG2

2 → √
1/6LG3

0 + √
5/27LG3

2 + √
35/54LG3

4.
Here, both in Figs. 1(a) and 1(b), the propagation distance is
given in the Gouy phase φg ∈ [0, 2π ] so that one Rayleigh
distance (zR) is in the middle position. And we see that the
radial profiles not only at the near and far fields are exactly
the same, but also the mirror symmetry with respect to the
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φg=π/4 (i.e., z = zR) plane is the same. This self-imaging
propagation [41] is attributed to the SHG fields that are radial
degenerate superpositions of LG modes with p = 0, 2, 4 and,
thus, the evolution of the intramodal phase structure is mirror
symmetry with respect to φg=π/4.

For case (ii), we consider a special case of �1 = −�2, i.e.,
the case where the SHG is pumped by a pair of conjugated
LG modes. Figure 1(c) shows the simulated SHG pumped
by LG1

1 and LG−1
1 , corresponding to a radial modal transi-

tion LG1
1LG−1

1 → √
9/20LG0

0 − √
1/20LG0

1 + √
1/20LG0

2 −√
9/20LG0

3. We see that the radial profiles are not mirror
symmetric about z = zR and the number of radial phase
dislocations at z∞ has an interesting value of N = 2p + |�|,
which is exactly the mode order of LG±�

p [42]. The origin
of this coincidence is the Fourier relation F[E2ω(r0, ϕ0)] =
F[LG�

p(r0, ϕ0)LG−�
p (r0, ϕ0)]. We can, thus, regard the far-

field amplitude of case (ii) as the auto (or cross) correlation
of the LG modes [43]. Furthermore, to put this in perspective
of the radial-mode components, unlike case (i), here, the
highest-order η = n + j is controlled by both azimuthal and
radial indices of pump fields.

Beyond the particular cases obeying Eq. (5) discussed
above, we seek to address a practical problem: whether one
can use an easily obtained Gaussian beam to up-convert a
"signal" field encoded with the full-field spatial structure.
Based on Eqs. (2) and (3), Fig. 1(d) shows the simulated
SHG of LG0

0LG2
1. The spatial amplitude of the SHG does

not remain constant upon propagation because of a radial
degenerate mode generation, i.e., LG0

0LG2
1 → √

3/4LG2
0 +

1/2LG2
1. In this case, the only feasible way to accomplish

this task is using a near-plane-wave pump, such as a flattop
beam. In addition, it is important to note that the propagation-
variant SHG, corresponding to a radial degenerate superposed
LG mode, demonstrated above is not always present. For
instance, for the SHG pumped by LG2

1 and LG0
1 shown in

Fig. 1(e), we see that the spatial amplitude keeps constant
upon propagation, and this elegant result corresponds a con-
cise full-field transformation: LG2

1LG0
1 → LG2

2. For this type
of concise transformation, we can obtain the selection rule by
solving aη = 1 in Eq. (3), and for the special case p1 = p2 =
1 is given by LG

(n−1)(n+2)/2

1 LG(3n−n2 )/2
1 = LG−1+2n+n2

2 (n = 1 −
−3 · · · ). That is, corresponding to a series of transformations
LG2

1LG5
1 → LG7

2, LG5
1LG9

1 → LG14
2 , LG9

1LG14
1 → LG23

2 , and
so on.

III. EXPERIMENT

Next, the above analysis was verified by comparing our
observations with their corresponding simulations. A straight-
forward way to verify the full-field transformation is spatial
mode tomography employing a spatial light modulator. How-
ever, it is difficult to exactly match beam parameters, such as
beam size and divergence, required by radial mode projection
in experiment. Therefore, for verifying the theory precisely
and intuitively, the beam profiles of SHG fields from z0 to
z∞ plane were chosen as the observable characteristics. To
record the beam profiles of generated SHG fields from z0 to
z∞ precisely, we employed a propagation tomography system
based on a digital propagation technique [33] (see Ref. [32]

FIG. 2. Schematic of the experimental setup. The key compo-
nents include the single-mode fiber (SMF), polarizing beam split-
ter (PBS), spatial light modulator (SLM), half-wave plate (HWP),
quarter-wave plate (QWP), polarizing grating (PG), and dichroic
mirror (DM).

for the details and the MATLAB code). Further experimental
details are provided in Appendix B.

Figure 1 shows the schematic of the experimental appa-
ratus. A type-II SHG with two orthogonally polarized LG
modes was used as the experimental platform. A narrow-
linewidth 800-nm laser was first converted to a perfect hori-
zontally polarized TEM00 mode by passing it through a spatial
filter in combination with a polarizing beam splitter (PBS)
(see Fig. 2). After this, the beam was incident on a phase-only
SLM, Holoeye-VIS-080. Damman gratings based on complex
amplitude modulation were used to generate a pair of LG
modes simultaneously with the same w0 but different spatial
indices [32]. The two LG modes were converted to orthogonal
polarizations via HWP and then combined into a copropagat-
ing beam, or rather, a vector mode, using a 4 f -imaging system
with a PG [44]. This vector mode was then loosely focused
( f = 100 mm) into a 3-mm-long type-II periodically poled
KTiOPO4. Finally, the generated SHG field was sent to the
propagation tomography system.

The propagation tomographies of various SHG fields were
recorded successfully with the help of the aforementioned
digital propagation technique. Here, we focus on two rep-
resentative examples: the SHGs of LG1

1LG2
1 and LG−1

1 LG2
1.

These correspond to special cases (i) and (ii), respectively.
Figures 3(a) and 3(b) show the observed propagation to-
mographies of the two examples (31 slices plotted using
blue curves) and their corresponding theoretical predictions
(yellow fillers), respectively. In both cases, the tomography
results are in excellent agreement with the theoretical pre-
dictions. This confirms the accuracy of the theory. Moreover,
the radial profiles of the two examples are the same at the
z0 plane but are different in the following propagation, i.e.,
one is self-imaging propagation whereas the other is not.
These observations verify the theory discussed above. Further
observations are provided in Appendix C.

IV. DISCUSSION AND CONCLUSIONS

Based on the above demonstration, now it is clear that
given a SFG pumped by two arbitrary LG modes, one can
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FIG. 3. Experimental results: (a) and (b) are propagation tomographies for the SHGs of LG1
1LG2

1 and LG−1
1 LG2

1, respectively. In the
tomographies, the transverse unit and propagation distance are given in r/wz and z/zR, respectively. The blue curves in the three-dimensional
intensity profiles and cross-sectional examples denote observed profiles. These are fitting data based on beam profiles observed upon
propagation. The original data are provided in Appendix C.

exactly simulate the spatial amplitude of the generated SHG
field using Eq. (2) or (A3) for more general SFG. Then, the
full-field selection rule in the form of Eq. (3) can be readily
obtained via projective measurement onto the LG modes.
Except for the special case shown in Fig. 1(e), the generated
SFG fields are usually not propagation-constant modes but
rather are superposition states that consist of a series of LG
modes with the same � but different p. On the basis of
relations between LG modes and other spatial eigenmodes,
one can further study the full-field transformation of other
spatial modes, such as the mode and parity transformation of
Ince-Gauss modes in parametric processes. We also addressed
the practical question of how to convert the frequency of a
high-dimensional photonic state encoded with full-field spatial
modes. According the data shown in Fig. 1(d), the key is to
achieve a radially independent transformation, which can be
excited by a flattop beam.

Our results in case (i) indicate that the interesting phe-
nomenon reported by Courtial et al. [3], i.e., observing SHG
fields are self-imaging in propagation, applies not only to
the SHG of a single pump, but also to the SHG of two
pumps that obey Eq. (5). When �1 and �2 have the same
sign, the odd-order complex coefficient aη becomes zero, and,
thus, the radial profile at the far field (except for overall
enlarging) is the same as that at the generation plane. In
case (ii), the interesting number N = 2p + |�| found in the
special SHG of LG+�

p LG−�
p can be explained by the fact

that the far-field amplitude of a SFG field can be served as
the auto- or cross-correlation function of two pump fields.
This coincidence indicates SFG can be used to study spatial
coherence between light beams with different wavelengths.

From another perspective, according to Eqs. (2) and (3), the
highest-order radial component of SHG dependents on both
the azimuthal and the radial indices of pump fields. Namely,
the principle revealed in case (ii) explained the azimuthal-
radial coupling in parametric interactions that has been found
previously [27–30]. Besides, during the peer-review period of
this paper, we found there is another parallel work confirmed
the principle of azimuthal-radial coupling in SHG [45].

To summarize, the radial modal transition of LG modes in
SFG was studied in detail both theoretically and experimen-
tally. A general solution that describes the spatial complex
amplitude of a SFG field pumped by two arbitrary LG modes
was provided. Based on this solution, a full-field selection
rule of LG modes for a given SFG can be obtained readily.
Our general results effectively explain interesting phenomena
and extend the cognition reported in previous relevant works.
More important, the theory, on one hand, provides a basis for
quantum and nonlinear optical research involving parametric
up-conversion of complex structured light; and on the other
hand, paves the way for future work on full-field transforma-
tion of spatial modes in other nonlinear interactions.
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APPENDIX A: DETAILED THEORETICAL FRAMEWORK

1. The full spatial wave function of a SFG field pumped by LG modes

The wave function of the LG mode used in simulations is given in cylindrical coordinates {r, ϕ, z} by

LG�
p(r, ϕ, z) =

√
2p!

π (p + |�|)!
1

w(z)

( √
2r

w(z)

)|�|
exp

(−r2

w2
z

)
L|�|

p

(
2r2

w2
z

)
exp

[
−i

(
kz + kr2

2Rz
+ �ϕ − iφg

)]
, (A1)

where wz = w0

√
1 + (z/zR)2, Rz = z2 + z2

R/z, and φg = (2p + |�| + 1) arctan(z/zR) denote the beam waist, the radius of
curvature, and the Gouy phase upon propagation (here zR = kw2

0/2 is the Rayleigh length), respectively, and L|�|
p (·) is the

Laguerre polynomial with mode orders p and |�|, given by L|l|
p (γ ) = ∑p

k=0 [(|�| + p)!(−γ )k]/[(|�| + k)!k!(p − k)!]. In the main
text, Eq. (A1) is abbreviated as LG�

p(r, ϕ, z) = g(r, z; k,w0, p, �)L|�|
p (γ ) exp(−i�ϕ), which corresponds to Eq. (1).

For a SFG driven by two LG modes LG�1
p1

(r0, ϕ0) with k1 and LG�2
p2

(r0, ϕ0) with k2, the wave source of the SFG field (i.e.,
nonlinear polarization) is excited by the quadratic beating field of the two LG modes with k3 = k1 + k2, given by

ESFG(r0, ϕ0) = LG�1
p1

(r0, ϕ0)LG�2
p2

(r0, ϕ0)

= 2

π

√
p1!p2!

(|�1| + p1)!(|�2| + p2)!

(
√

2r)
|�1|+|�2|

w
|�1|+|�2|
1 w

|�1|+|�2|
2

exp

[
−r

(
1

w2
1

+ 1

w2
2

)]
exp[−i(�1 + �2)]L|�1|

p1

(
2r2

w2
z

)
L|�2|

p2

(
2r2

w2
z

)
,

(A2)

where w1 and w2 denote the beam waists of two pumps. Therefore, the traveling wave equation of the SFG field ESFG(r, ϕ, z)
can be derived by using the Collins propagator with ESFG(r0, ϕ0) as the pupil function. This produces

ESFG(r, ϕ, z) = i

λz
exp(−ik3z)

∫
r0dr0

∫
dϕ0E2ω(r0, ϕ0) exp

{
− ik3

2z

[
r2

0 − 2rr0 cos(ϕ − ϕ0) + r2
]}

= 1

λz

√
2|�1|+|�2|+4i2|�1+�2|+2 p1!p2!

(|�1| + p1)!(|�2| + p2)!

1

w
|�1|+1
1 w

|�2|+1
2

α|�1+�2|

2β |�1|+|�2|+|�1+�2|+2
exp

(
− α2

4β2

)

× exp

{
−i

[
k3r2

2z
+ k3z + (�1 + �2)ϕ

]} p1+p2∑
j=0

c j
1

β2 j

( |�1 + |�2| − |�1 + �2|
2

+ j

)
!L|�1+�2|

|�1 |+|�2 |−|�1+�2 |
2 + j

(
α2

4β2

)
,

(A3)

where α = kr/z, β =
√

(1/w2
1 + 1/w2

2 ) + ik/2z, and c j denotes the coefficient of the series L|�1|
p1 (·)L|�2|

p2 (·). If we assume that w1 =
w2 = w0, by substituting m = �1 + �2 and n = (|�1| + |�2| − |�1 + �2|)/2 into Eq. (A3), we can reformulate the equation as

ESFG(r, ϕ, z) = 1

λz

√
2|�1|+|�2|+4i2|�1+�2|+2 p1!p2!

(|�1| + p1)!(|�2| + p2)!

1

w
|�1|+|�2|+2
0

α|�1+�2|

2β |�1|+|�2|+|�1+�2|+2
exp

(
− α2

4β2

)

× exp

[
−i

(
k3r2

2z
+ k3z + mϕ

)]
LSFG(r, z),

LSFG(r, z) =
p1+p2∑

j=0

c j
1

β2 j
(n + j)!L|m|

n+ j

(
α2

4β2

)
q j (z)= 1

β2 j (n+ j)!

−−−−−−−−−→
ζz= α2

4β2

p1+p2∑
j=0

q j (z)L|m|
n+ j (ζz ). (A4)

For the particular case of a type-II SHG, Eq. (A4) can be further simplified by assuming that k1 = k2. The result is
abbreviated as E2ω(r, ϕ, z) = g2ω(r, z; k3,w0, p1,2, �1,2)L2ω(r, z) exp(−imϕ) in the main text and corresponds to Eq. (2). By
projecting Eq. (A4) onto LG modes with the same azimuthal index m but different radial index η, we can obtain the full-field
selection rule with respect to the LG mode, given by E2ω(r, ϕ, z) = ∑n+ j

η=0 aηLGm
η (r, ϕ, z), i.e., Eq. (3) in the main text, where aη

denotes complex coefficients that describe the weighting factor and intramodal phase of the superposition mode. For instance, if
�1 � 0, �2 � 0 and p1 = p2 = 1, the first three complex coefficients aη (η = 0 − 2) are given by

a0 =
√

2/π
{
�1

2w1
4+ [1+ �2]w2

2
[−2w1

2+ �2w2
2
] + �1

[
w1

4 − 2(1 + �2)w1
2w2

2
]}

×�(1 + �1 + �2)/
(
w1

2 + w2
2
)2√

(�1 + �2)!,

a1 =
√

2/π (w1 − w2)(w1 + w2)
[
(1 + �1)w1

2 − (1 + �2)w2
2
]√

�(2 + �1 + �2)/
(
w1

2 + w2
2
)2

,

a2 = 2w1
2w2

2
√

�(3 + �1 + �2)/
√

π
(
w1

2 + w2
2
)2

. (A5)
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FIG. 4. Experimental details for generation of exact LG modes via phase-only SLM: (a) The dependence of the first-order diffraction
efficiency on the phase depth of the blazed grating. The blue curve denotes the theory, and the red points are observations. (b) Measured beam
waist of the Gaussian illumination light. (c) The beam profiles of the generated LG mode before and after the illumination correction. (d) The
LG mode generation phase masks before and after the illumination correction. (e) and (f) The dependence of the generation efficiency on the
beam waist of the target LG mode.

2. Far-field amplitudes of SFG fields

At the far field, i.e., z → z∞, Eq. (A4) becomes the Fourier
transform of the SFG source ESFG(r0, ϕ0) and ζz → R, which
is given by

F[ESFG(r0, ϕ0)]

=
∫ 2π

0

∫ ∞

0
ESFG(r0, ϕ0) exp[−i2πr0r cos(ϕ−ϕ0)]r0dr0dϕ0

=
√

2|�1|+|�2|+4i2|m| p1!p2!

(|�1| + p1)!(|�2| + p2)!

1

w
|�1|+|�2|+2
0

α|m|

2β |�1|+|�2|+|m|+2

× exp

(
− α2

4β2

)
exp(−imϕ)LSHG(r, z∞)

LSFG(r, z∞)

=
p1+p2∑

j=0

q jL
|m|
n+ j (ζ ) =

p1+p2∑
j=0

(
c j

1

β2 j
(n + j)!L|m|

n+ j (ζ )

)
,

(A6)

where ζ denotes a real function (ζz → R). If we further
assume that p1 = p2, the radial governing term LSFG(r, z∞)
can be further factorized as

LSFG(r, z∞)
p1=p2−−−→

{
L|�1|

p (ζ )L|�2|
p (ζ ), (for �1 × �2 � 0),

(p+n)!
p! L|m|

p+n(ζ )L0
p(ζ ), (for �1×�2<0).

(A7)

Here, the arrow symbol denotes substitution calculation. For
the particular case of a type-II SHG, Eqs. (A6) and (A7) are
abbreviated in the main text as Eqs. (4) and (5), respectively.

APPENDIX B: EXPERIMENTAL DETAILS

1. Generation of two arbitrary LG modes via phase-only SLM

The most common way to generate LG modes is using
phase-only holography where two spatial indices of a target
LG mode need to be coded into the illumination light. To
shape the azimuthal mode, a phase only make carrying a

FIG. 5. Schematic of the digital propagation imaging system.
The key components include the lenses (L1–L4), SLM, and DM.
Here, the focal lengths of L1–L4 are 100, 200, 300, and 300 mm,
respectively.
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FIG. 6. Additional results recorded by propagation tomography.

twisted phase is competent. In contrast, shaping the radial
mode via phase-only holography as performed in this experi-
ment was more difficult. This task generally requires complex
amplitude modulation.

The principle of complex amplitude modulation is based
on the dependence of diffraction efficiency on the phase
depth of a blazed grating (further details of the principle and
the corresponding MATLAB code are provided in Ref. (31).
Figure 4(a) shows the measured dependence of the SLM

(Holoeye VIS-080) used in the experiment. Based on this
dependence, one could add the intensity mask of a target LG
mode to the phase-only hologram. If a plane wave was used
as the illumination light, the principle shown above would
be enough. However, the illumination light usually offers the
TEM00 mode shown in Fig. 4(b). Therefore, the intensity
mask was corrected based on the observed Gaussian envelope
with w0 = 1.403 mm. Figure 4(c) compares the beam profiles
of the generated LG modes before and after the illumination

063805-8
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correction, and corresponding holograms are shown in
Fig. 4(d). After the correction, the generated LG mode was
in excellent agreement with the theoretical expectation of the
target mode. Finally, one must carefully select an optimal
beam-waist (wLG

0 ) where the principle should be to pursue
a high generation efficiency without exceeding the envelope
of illumination as shown in Figs. 4(e) and 4(f). For this, we
defined a fill factor n, given by wLG

0 = 1.403n. In addition,
the Rayleigh lengths of generated LG modes are defined
experimentally based on their wLG

0 ’s.

2. Digital propagation imaging system
for propagation tomography

Figure 5 shows the digital propagation imaging system
experimental apparatus. The beam size of the SHG field
generation plane was first doubled using a 4 f imaging lens
set (focal lengths: 100 and 200 mm). Then, the enlarged

generation plane was relayed to the CCD surface by another
4 f -imaging system (two 300-mm lenses). To achieve digital
propagation, a SLM for a 400-nm laser (Holoeye UV-099)
was mounted on the Fourier plane of the relay imaging
system. Further details of the principle of digital propagation
and corresponding MATLAB code are provided in Ref. [31].

APPENDIX C: ORIGINAL DATA OF PROPAGATION
TOMOGRAPHY

Here, we provide additional results recorded by propaga-
tion tomography (see Fig. 6), i.e., the radial structures of
observed SHG fields from zR = 0 to zR = 3 (left column), and
their corresponding theoretical simulations (right column).
The resolution of the tomography is 0.1 zR, i.e., 30 propaga-
tion slices from z = 0 to z = 3zR.
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