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In any form of wave propagation, strong spatiotemporal coupling appears when nonelementary three-
dimensional wave packets are composed by superimposing pure plane waves or spontaneously generated by
light-matter interaction and nonlinear processes. Ultrashort pulses with orbital angular momentum (OAM), or
ultrashort vortices, furnish a critical paradigm in which the analysis of the spatiotemporal coupling in the form
of temporal-OAM coupling can be carried out accurately by analytical tools. By generalizing and unifying
previously reported results, we show that universal and spatially heterogeneous space-time correlations occur
in propagation-invariant temporal pulses carrying OAM. In regions with high intensity, the pulse duration has
a lower bound fixed by the topological charge of the vortex and such that the duration must increase with the
topological charge. In regions with low intensity in the vicinity of the vortex, a large blueshift of the carrier
oscillations and an increase of the number of them are predicted for strongly twisted beams. We think that these
very general findings highlight the existence of a structural coupling between space and time. These results have
also applications in free-space communications, spectroscopy, and high-harmonic generation.
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I. INTRODUCTION

Since their first introduction in acoustics [1], propagation-
invariant three-dimensional wave packets have attracted a
great deal of attention because of fundamental issues, such
as superluminality [2,3] and wave-function localization [4–6],
and potential applications, for example, in telecommunica-
tions [7,8]. Solutions of wave equations evolving without
distortion were also considered in Bose-Einstein condensation
[9], linear and nonlinear optics [10,11], and more recently
in polaritonics [12,13] and hydrodynamics [14]. X waves
with orbital angular momentum (OAM) have been described
recently as solutions of Maxwell equations [15,16], and quan-
tum optical X waves [17] with OAM have been studied
for their applications in free-space multilevel transmission
systems (see [18] and references therein).

In spite of the relevance of X waves with OAM as the
first reported ultrashort vortices with diffraction-free behav-
ior, actual linear and nonlinear experiments with vortices in
ultrafast (femtosecond or attosecond) regimes employ pulsed
Laguerre-Gauss (LG) beams [19–23]. There has been increas-
ing interest in synthesizing shorter and shorter vortices of
the LG type [24–29], which in the high-intensity regime are
used to generate high harmonics and attosecond vortices with
high OAM [19–23]. From a theoretical point of view, it has
been demonstrated recently [30–32] that pulsed LG beams
with the so-called isodiffracting conditions [33] maintain a
propagation-invariant pulse temporal shape as X waves, even
if they are subject to diffraction.

Notwithstanding these many investigations, fundamental
questions regarding ultrafast X and LG vortices remain un-
solved. In recent years, a coupling between the temporal
and OAM degrees of freedom in ultrashort (few-cycle and
subcycle) pulses has been described theoretically in ultrafast
X vortices [15,16] and LG vortices [30–32]. A consequence
detailed in these works is that an arbitrarily short pulse cannot
carry an arbitrarily high OAM, but there is a lower bound to
its duration for given OAM. However, the effects of temporal-
OAM coupling in ultrashort X and LG vortices appear to
be quite different, even contradictory. The results in [15]
show that in ultrafast X vortices the carrier frequency and
the number of oscillations increase with angular momentum
and that the increase of the carrier frequency is faster than the
increase of the number of oscillations, so the pulse duration
decreases with OAM. On the contrary, Refs. [30,31] report an
absent or negligible blueshift for ultrafast LG vortices and an
increase of the pulse duration with OAM.

Here we report a general and unified treatment for both
types of ultrashort vortices with propagation-invariant pulse
shape. First we show that the two analyses are not in contra-
diction because they refer to different spatial regions of the ul-
trashort vortex. Second we unveil a very rich phenomenology
common to all ultrafast vortices with propagation-invariant
pulse shape. We distinguish the effects of the temporal-
OAM coupling depending on the model from those which
are intrinsic or “universal.” Our results have implications in
perturbative nonlinear optics and high-field, nonperturbative,
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light-matter interactions (as in high-harmonic and attosec-
ond pulse generation experiments) and in quantum optics in
the low photon regime. Indeed, in ultrafast propagation of
twisted pulses, regions of high intensity (high energetic ring)
and low intensity (central vortex core with phase singular-
ity) are present and the nature of temporal-OAM coupling
varies a great deal in these different portions of these three-
dimensional wave packets. We describe below different exper-
imentally testable features to demonstrate the heterogeneous
spatiotemporal coupling in ultrashort vortices.

II. ULTRAFAST LAGUERRE-GAUSS AND X VORTICES

We express the optical field E (r, φ, t, z), or E for short, of
an ultrafast or ultrashort vortex of topological charge l , or l
units of OAM, as the superposition of monochromatic vortex
with charge l and varying frequency. The analytical signal
complex representation [34] is

E = E (ρ, t ′)eilφ = 1

π

∫ ∞

0
dωÊω(ρ)e−iωt ′

eilφ. (1)

For ultrafast LG vortices of charge l and zero radial order,

Êω(ρ) = âωÊLG
ω (ρ) = âωD(2ωρ2)|l|/2e−ωρ2

, (2)

where âω specifies the weights or spectrum of monochromatic
LG beams, D = e−i(|l|+1) tan−1(z/zR )/

√
1 + (z/zR)2 accounts for

Gouy’s phase shift and attenuation due to diffraction spread-
ing, zR is the Rayleigh distance, c is the speed of light
in vacuum, ρ = r/

√
2zRc[1 + (z/zR)2] is a normalized ra-

dial coordinate at each propagation distance z, (r, φ, z) are
cylindrical coordinates, and t ′ = t − z/c − ρ2z/zR is a local
time that is equal to zero at the instant of arrival of the
pulse at any position (ρ, z) [30,31]. A constant value of
ρ represents the revolution hyperboloid, or caustic surface,
r = ρ

√
2zRc[1 + (z/zR)2] whose revolution axis is the z axis,

as illustrated in Fig. 1(a). According to Eqs. (1) and (2),
the pulse shape E (ρ, t ′) only depends on ρ (except for the
global complex amplitude factor D) and therefore does not
change with propagation distance z along a given revolution
hyperboloid.

For X waves, or ultrashort X vortices of topological charge
l , the optical field E (r, φ, t, z) is given by Eq. (1) with

Êω(ρ) = âωÊX
ω (ρ) = âωJl (ωρ), (3)

where Jl (x) is the Bessel function of the first kind and or-
der l , âω is the spectrum of monochromatic Bessel beams,
ρ = (sin θ/c)r, t ′ = t − (cos θ/c)z is the local time for the
superluminal propagation at speed c/ cos θ , and θ is the cone
angle. The pulse shape changes with the radius ρ, but since
X waves are diffraction-free, the pulse shape does not change
along the cylinders ρ = const coaxial with the z axis drawn in
Fig. 1(b).

For completeness and future generalizations to propagation
in linear and nonlinear media, the optical field E (r, φ, t, z)
of ultrashort X vortices satisfies the exact wave equation in
free space �E − (1/c2)∂2

t E = 0, which written in terms of
the local time reads �E = (2/c)∂2

z,t ′E . The optical field of
ultrashort LG vortices satisfies the paraxial version of the
preceding equation, also called the pulsed beam equation

FIG. 1. White curves represent sagittal sections of the revolution
hyperboloids ρ = const of (a) ultrafast LG vortices and (b) cylinders
ρ = const of ultrafast X vortices, called here caustic surfaces, along
which the pulse shape is invariant. The figures illustrate the geometry
of the fluence distribution of both types of vortices.

or paraxial wave equation for ultrashort waveforms [35–37],
obtained by neglecting the second derivative with respect
to z in the Laplace operator, i.e., �⊥E = (2/c)∂2

z,t ′E , where
�⊥ = ∂2

x + ∂2
y . The temporal-OAM coupling is a particular

spatiotemporal coupling involving the azimuthal and temporal
degrees of freedom of the wave. Coupling means here that
the azimuthal and temporal structures of the wave are not
independent as imposed by the wave equation. Spatiotemporal
couplings in the solutions of the wave equation are well
known from decades. They are usually small for few-cycle
pulses without OAM, e.g., for the fundamental pulsed Gaus-
sian beams [33], although they can be artificially enhanced
for practical purposes [38] and appear to be much more pro-
nounced with pulses carrying OAM, as described in [15,30].

Ultrafast LG and X vortices with zR and θ independent of
frequency are the only ultrafast vortices that have been de-
scribed whose temporal shape does not change on propagation
(although it changes from one radius to another). In these
two types of vortices with propagation-invariant temporal
shape, seemingly discordant temporal-OAM couplings have
been described. The different definitions and dimensions of
the normalized radial distance with the same symbol ρ for
these two types of ultrashort vortices will help us to vi-
sualize more clearly that the temporal-OAM couplings are
substantially the same. The limitation to zR and θ indepen-
dent of frequency allows us to distinguish the intrinsic and
unavoidable effects of OAM on the pulse temporal shape from
those arising from propagation in more general models. Mixed
propagation-OAM effects on pulse temporal shape in these
more general models will be investigated once pure effects of
OAM are fully understood.
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In the following we will characterize any of the above
functions of frequency, say, f̂ω, by its mean frequency

ω̄ f =
∫ ∞

0 dω| f̂ω|2ω∫ ∞
0 dω| f̂ω|2 , (4)

its Gaussian-equivalent half bandwidth

�ω f = 2

[∫ ∞
0 dω| f̂ω|2(ω − ω̄ f )2∫ ∞

0 dω| f̂ω|2

]1/2

(5)

(yielding the 1/e2 decay of | f̂ω|2 for Gaussian-like f̂ω), and
the corresponding pulse shape in the time domain

f (t ′) = 1

π

∫ ∞

0
dω f̂ωe−iωt ′

(6)

by its mean time t̄ ′
f and half duration �t f , defined in the same

way for | f (t ′)|2. The term “pulse shape” is often synonymous
with pulse (complex) envelope, but our analysis applies also
to pulses of duration below the single-cycle regime, as defined
in [39], for which the concept of envelope is physically mean-
ingless [39]. Thus, pulse shape will refer to the instantaneous
time evolution of the optical signal f (t ′). For functions that
depend also on ρ, we will specify the radius where the above
quantities are evaluated, e.g., �ωE (ρ) for the bandwidth of
Êω(ρ) at ρ or �tE (ρ) for the duration of E (ρ, t ′) at ρ.

III. TEMPORAL-OAM COUPLINGS AT THE
BRIGHT CAUSTIC SURFACE

In experiments involving nonlinear interactions, the region
in the transversal plane where the pulse energy is high is the
most relevant. Following Refs. [30,31] we consider the energy
density

E (ρ) =
∫ ∞

−∞
dt ′(ReE )2 = 1

2

∫ ∞

−∞
dt ′|E |2

= 1

π

∫ ∞

0
dω|Êω(ρ)|2, (7)

whose typical spatial distribution is shown in Fig. 1, and
analyze the pulse properties at the hyperbolic or cylindrical
caustic surface ρmax, where the energy density is maximum,
or bright caustic surface. As seen in the examples of Figs. 2(a)
and 3(a), ρmax increases monotonically with |l|.

A. Ultrafast LG vortices

A fundamental restriction on the pulse characteristics
at the bright caustic surface of all ultrafast LG vortices
has been described recently [31]. With given topological
charge l , the relative spectral bandwidth of the pulse at
the bright caustic surface necessarily satisfies the inequal-
ity �ωE (ρmax)/ω̄E (ρmax) � 2/

√|l|. More recently, the mean
frequency of the oscillations at this caustic, ω̄E (ρmax), has
been shown to coincide with the mean frequency ω̄a of the
spectrum of LG beams âω in the particular situation that âω

is chosen to be a power-exponential spectrum [30], but, as
argued below, the approximate equality ω̄E (ρmax) � ω̄a holds
with generality. Thus, in practice, all ultrafast LG vortices

FIG. 2. Ultrashort LG vortices at their bright caustic surface. In
these two examples âω = ω7.5e−3.2ω, yielding about a single-cycle
pulse in the time domain of mean frequency ω̄a = 2.5 fs−1 in the
near infrared. (a) Energy density radial profiles for l = 8 and 24. The
vertical lines are located at |l2|/2ωa, which accurately locate ρmax.
(b) and (c) Factors |âω|2 (dashed blue curve) and |ÊLG

ω (ρmax)|2 (dotted
red curve) of the spectral density |Êω(ρmax)|2 (solid black curve) at
the bright caustic. Since absolute values are irrelevant, all functions
are normalized to their peak values.

satisfy

�ωE (ρmax)

ω̄a
� 2√|l| . (8)

Since �t f �ω f � 2 for any pair f̂ω and f (t ′), the approximate
equality being reached only for Gaussian-like fω, it follows
that the duration of the pulse at the bright caustic is restricted
by �tE (ρmax) �

√|l|/ω̄E (ρmax). On account that ω̄E (ρmax) �
ω̄a, the lower bound to the pulse duration at the bright caustic
is in practice

�tE (ρmax) �
√|l|
ω̄a

. (9)

For a particular application, one may wish to fix a pulse
shape of certain characteristics at the bright caustic. The above
restrictions then impose that the topological charge of an
ultrafast vortex with such a pulse shape has the upper bound
|l| � [ω̄2

E (ρmax)�t2
E (ρmax)], where the square brackets mean

the integer part. A consequence of the dependence on l of
the lower bound to the pulse duration in the inequality (9)
is that the pulse at the bright caustic of the ultrafast LG
vortex synthesized with the same spectrum âω necessarily
broadens with increasing magnitude of the topological charge.
This temporal-OAM coupling effect was recently verified
in [30] with a particular choice of âω. These bounds settle
unavoidable limits, for example, to the velocity of information
transmission or to the number of channels in communication
systems based on ultrashort pulses carrying OAM.

An intuitive explanation of these temporal-OAM coupling
effects for ultrashort LG vortices with general âω (and that
apply also to the ultrashort X vortices considered below) is
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FIG. 3. Ultrafast X vortices at their bright caustic surface. In
these two examples âω = ω7.5e−3.2ω, as for the ultrafast LG vortices
of Fig. 2 (about a single-cycle pulse of mean frequency ω̄a =
2.5 fs−1). (a) Energy density radial profiles for l = 8 and 24. The
vertical lines are located at j′l,1/ω̄a and approximate ρmax. (b) and
(c) Factors |âω|2 (dashed blue curve) and |ÊX

ω (ρmax)|2 (dotted red
curve) of the spectral density |Êω(ρmax)|2 (black curve) at the bright
caustic. Since absolute values are irrelevant, all functions are nor-
malized to their peak values. (d) and (e) Real field and envelope of
the pulse with the spectrum âω (thin solid and dashed curves) and
of the X wave with the same spectrum and l = 8 and with l = 24 at
their bright caustic (thick solid and dashed curves). All functions are
normalized to the value at t ′ = 0.

as follows. The spectral density of the ultrafast LG vortex in
(2) is the product of |âω|2, centered about ω̄a, and |ÊLG

ω (ρ)|2,
characterized by a single maximum at ωM = |l|/2ρ2. At
arbitrary ρ these two functions of frequency do not overlap.
The energy density in Eq. (7) is maximum at ρmax because
these two functions overlap optimally at this radius, as in
the examples of Figs. 2(b) and 2(c), which implies that the
mean frequency of the ultrafast LG vortex at the bright caustic
ω̄E (ρmax) is approximately equal to ωM and to ω̄a, i.e., no
significant blueshift or redshift of the mean frequency at
the bright caustic is expected, as described in [31] for a
specific âω. The relation ω̄a � ωM = |l|/2ρ2

max provides the
approximate expression ρ2

max � |l|/2ω̄a for the location of
the bright, as verified in the examples of Fig. 2(a). At this
radius |ÊLG

ω (ρmax)|2 = |l||l|(ω/ω̄a)|l|e−|l|ω/ω̄a is an approxi-
mate Gaussian function, especially for large |l|, of Gaussian
width �ωLG(ρmax) � 2ω̄a/

√|l|. Thus, as the product of |âω|2
and |ÊLG

ω (ρmax)|2, the spectral density |Êω(ρmax)|2 cannot be
wider than |ÊLG

ω (ρmax)|2, i.e., �ωE (ρmax) � �ωLG(ρmax), or

�ωE (ρmax)/ω̄a � 2/
√|l| and �tE (ρmax) �

√|l|/ω̄a, as in the
inequalities (8) and (9). Although approximate equalities are
used in this derivation, the result is the same as the one
rigorously derived in [30]. Also, with given âω the condition
�tE (ρmax) �

√|l|/ω̄a implies that the pulse duration at the
bright caustic necessarily increases from the lowest value
�ta (for l = 0) as |l| increases, as described in [31] but for
general âω.

B. Ultrafast X vortices

Similar reasonings applied to ultrafast X vortices, or the X
wave with OAM, allowing us to conclude that temporal-OAM
couplings at their cylindrical caustic surface of maximum
energy density are qualitatively similar. In particular, there is
a lower bound to their duration.

Figure 3(a) shows two radial profiles of the energy density
featuring single maxima at certain radii ρmax that increase
with |l|. The spectral density of the ultrashort X vortex is
also the product of |âω|2 and |ÊX

ω (ρ)|2 = J2
l (ωρ), the lat-

ter characterized by an absolute maximum at ωM = j′l,1/ρ,
where j′l,1 � |l| + 0.808 69|l|1/3 is the location of the first
maximum of Jl (x) [40]. As illustrated in Figs. 3(b) and 3(c),
optimum overlapping of these two functions at the radius ρmax

of maximum energy density implies again that ω̄E (ρmax) �
ω̄X (ρmax) � ω̄a. We then do not expect a significant redshift
or blueshift of the mean frequency at the bright caustic with
respect to the value ω̄a determined by the spectrum of Bessel
beams, such as for ultrashort LG vortices [31] and at variance
with ultrashort X vortices in the neighborhood of their vortex
[15]. The relation ρmax � j′l,1/ω̄a provides an approximation
to the location of the bright caustic, as is verified in Fig. 3(a).
As the product of âω and |ÊX

ω (ρmax)|2 = J2
l (ω j′l,1/ω̄a), the

full spectral density |Êω(ρmax)|2 at the bright caustic cannot
be wider than J2

l (ω j′l,1/ω̄a), approaching it only with wider
and wider |âω|2, in which case the narrowest pulse at the
bright caustic is E (ρmax, t ′) = (1/π )

∫ ∞
0 dωJl (ωρmax)e−iωt ′

with ρmax � j′l,1/ω̄a, i.e.,

E (ρmax, t ′) = lim
ε→0

[√
(ε + it ′)2 + ρ2

max − (ε + it ′)
]|l|

πρ
|l|
max

√
(ε + it ′)2 + ρ2

max

(10)

for l > 0, and multiplied by (−1)|l| for l < 0, with ρmax �
j′l,1/ω̄a. As can be clearly seen in Fig. 4, the half duration of
the pulses in Eq. (10) is �t = ρmax; hence the minimum pulse
duration at the bright caustic of an ultrashort X vortex with l
units of OAM is ρmax � j′l,1/ω̄a. In conclusion, for any other
ultrashort X vortex

�tE (ρmax) �
j′l,1
ω̄a

� |l| + 0.808 69|l|1/3

ω̄a
� |l|

ω̄a
, (11)

the last approximate equality being valid for large |l|. Also,
the l dependence of this lower bound implies that with given
âω the pulse shape at the bright caustic must necessarily in-
crease as |l| grows; indeed, it must do so almost linearly above
a certain value of |l|. This description of the temporal-OAM
coupling effects at the bright caustic of ultrashort X vortices
complements the temporal-OAM coupling effects close to
the vortex described in [15] and its validity is tested in the
examples of Figs. 3(d) and 3(e). With the same spectrum âω of
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FIG. 4. Real field (solid curve) and modulus (dashed curve) of
minimal pulse shapes at the bright caustic of ultrafast X vortices as
given by Eq. (10) with ρmax = j ′l,1/ω̄a and ω̄a = 2.5 fs−1. Their half
duration is just ρmax.

about a single-cycle pulse (blue curves), the mean frequency
at the bright caustic does not significantly depart from ω̄a

as |l| grows (black curves), but the number of oscillations
increases with |l| so that the pulse duration is always above
j′l,1/ω̄a (vertical dashed lines). Broadening is very small for
durations �ta of a(t ′) well above the lower bound, i.e., for
�ta � j′l,1/ω̄a, but is very pronounced for �ta � j′l,1/ω̄a, as
in Figs. 3(d) and 3(e), in which case the pulse shape is an
apodized nonsingular version of the minimal pulse shape in
Fig. 4.

As a partial conclusion, the temporal-OAM coupling ef-
fects at the more energetic caustic in the only two known cases
of ultrafast vortices with propagation-invariant pulse shape
are qualitatively similar. In particular, the mean or carrier
frequency of âω (which can be identified with the frequency
of the laser source) is also the observable carrier frequency at
the bright caustic of the produced ultrafast LG or X vortex.
For ultrashort X vortices there also exists a lower bound to
their duration at their bright caustic. Temporal broadening
with increasing magnitude of the topological charge is more
pronounced for X vortices than for LG vortices because of the
respective square root [Eq. (9)] and almost linear dependence
[Eq. (11)] of the lower bound to the temporal duration.

IV. TEMPORAL-OAM COUPLINGS IN THE
NEIGHBORHOOD OF THE VORTEX

The low-intensity region close to the vortex is of interest in
quantum optics. Spectral anomalies in the vicinity of vortices
of continuous, coherent, and incoherent light were studied
in [41]. Temporal-OAM coupling effects in the vicinity of
the vortex of X waves were analyzed in detail in [15,16]. It
turns out from our analysis that these temporal-OAM coupling
effects are qualitatively the same for ultrashort LG vortices in
the proper spatial regions.

In the vicinity of the vortex, monochromatic LG beams
behave asymptotically as ÊLG

ω (ρ) � (ωρ2)|l|/2 and monochro-
matic Bessel beams as ÊX

ω (ρ) � (ωρ)|l| (aside from an ir-
relevant constant). The complete spectra are then Êω(ρ) �
âω(ωρ2)|l|/2 for ultrashort X vortices and Êω(ρ) � âω(ωρ)|l|
for ultrashort X vortices.

For the analysis below, we define

ω̄(m) =
∫ ∞

0 dω|âω|2ωm+1∫ ∞
0 dω|âω|2ωm

(12)

FIG. 5. Behavior close to the vortex. Mean frequencies of ul-
trashort LG and X vortices are shown for three different spectra
âω: power-exponential âω ∝ ωα−1/2 exp(−αω/ω̄a) with α = 14.24
(dashed blue curves), Gaussian âω ∝ exp[−(ω − ω̄a)2/�ω2

a] with
�ωa � 1 fs−1 (red dotted curves), and square âω ∝ 1 if |ω − ω̄a| <

δω and 0 otherwise, with δω � 1 fs−1 (black solid curves), all
with the same mean frequency ω̄a = 2.5 fs−1. The three spectra
correspond to single-cycle pulses a(t ′) [one oscillation in the full
width at half-maximum of the cycle-averaged intensity |a(t ′)|2] of
different shapes. The mean frequency is shown as a function of radial
distance for ultrashort (a) LG and (b) X vortices with l = 16. The
radius ρmax is almost independent of these three spectral shapes for
LG vortices and appreciably varies with spectral shape for X vortices
(vertical lines). The mean frequency is shown also in the vicinity
of the vortex ρ = ε for ultrafast (c) LG and (d) X vortices with
the above spectral shapes âω as functions of the magnitude of the
topological charge |l|.

for any natural number m, with the dimensions of a frequency.
In particular, ω̄(0) = ω̄a. It can be readily seen that the
combination ω̄(m)[ω̄(m + 1) − ω̄(m)] is the variance of the
distribution |âω|2ωm and as such is positive (except if âω con-
tains a single frequency). It then follows that ω̄(m) is a strictly
growing function of m if âω is not a monochromatic spectrum.
For all bell-shaped spectral shapes âω of interest, ω̄(m) is
a concave function of m and therefore ω̄(m + 1)/ω̄(m) ap-
proaches unity from above as m increases.

In [15] a linear increase of the mean frequency about
the vortex of ultrafast X vortices with a power-exponential
spectrum âω was predicted. Growth of the mean frequency is
a general feature, also for ultrafast LG vortices. Figures 5(a)
and 5(b) illustrate the behavior of the mean frequency as a
function of the radial distance ρ from the vortex for ultrafast
LG and X vortices with three different choices of âω, all
three corresponding to single-cycle pulses of different shapes
(power-exponential, Gaussian, and square spectra in a certain
bandwidth; see the caption for details). The mean frequency
is always seen to grow from ω̄a at the bright caustic up
to a locally constant value in the vicinity of the vortex.
Indeed, with the spectral densities |Êω(ρ)|2 � |âω|2(ωρ2)|l|
and |Êω(ρ)|2 � |âω|2(ωρ)2|l| of ultrafast LG and X vortices
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close to the vortex, the mean frequency in this region is found
to be

ω̄E (ε) = ω̄(|l|), ω̄E (ε) = ω̄(2|l|) (13)

(ε stands for ρ → 0) in the respective cases of ultrashort
LG and X vortices. Thus, for |l| > 0, ω̄E (ε) > ω̄(0) = ω̄a for
general âω, i.e., there is always a blueshift towards the vortex
center and this blueshift is more pronounced for X vortices
than for LG vortices. Small blueshifts of the carrier oscilla-
tions have been previously described, for example, for pulsed
Gaussian beams about the beam axis at the far field [42–44].
Here the on-axis blueshift is permanent along the propagation
direction and is monotonically enhanced as the magnitude of
the topological charge |l| increases, as illustrated in Figs. 5(c)
and 5(d) for the same three particular spectra of single-cycle
pulses. For spectra without a cutoff frequency, such as the
power-exponential and Gaussian spectra, the mean frequency
about the vortex grows without bound with the magnitude of
the topological charge and for spectra with a cutoff frequency
ωc grows up to it. These huge blueshifts should be observable
in experiments, e.g., with the spectral bandwidth of a single-
cycle pulse in the near infrared and topological charge |l| =
20; the mean frequency in the bright caustic is indeed in the
near infrared, but is in the visible region or in the ultraviolet
close to the vortex of ultrashort LG and X vortices.

Also in [15], a slow shortening of the pulse with increasing
|l| close to the vortex of ultrashort X vortices with power-
exponential spectra is reported, which together with the more
pronounced decrease of the mean period 2π/ω̄E (ε) results in
an increase of the number of oscillations with as |l| grows.
This effect is seen here to be almost identical for ultrashort
LG vortices with power-exponential spectra. However, it also
follows also from our analysis that pulse shortening or length-
ening is not a general temporal-OAM coupling effect, but is
dictated by the particular spectrum âω, and that the only two
general temporal-OAM coupling effects close to the vortex are
a blueshift and an increase of the number of oscillations with
|l|. In a sense, ultrafast LG and X vortices always approach a
monochromatic behavior in the vicinity of the vortex as their
topological charge increases.

Indeed, the definition of bandwidth in Eq. (5) for the
spectra Êω(ρ) of ultrafast LG and X vortices close to the
center leads to the expressions of the bandwidth

�ωE (ε) = 2
√

ω̄(|l|)[ω̄(|l| + 1) − ω̄(|l|)], (14)

�ωE (ε) = 2
√

ω̄(2|l|)[ω̄(2|l| + 1) − ω̄(2|l|)] (15)

for ultrafast LG and X vortices, respectively. As in the ex-
amples in Fig. 6(a) with the same three spectral shapes âω of
single-cycle pulses as in Fig. 5, the bandwidth close to the
vortex may increase with |l|, decrease, or reach a constant
value, the corresponding pulse durations then behaving in
reverse, as illustrated in Figs. 6(c)–6(e) for the three types of
spectral shapes. However, the relative bandwidths

�ωE (ε)

ω̄E (ε)
= 2

√
ω̄(|l| + 1)

ω̄(|l|) − 1, (16)

�ωE (ε)

ω̄E (ε)
= 2

√
ω̄(2|l| + 1)

ω̄(2|l|) − 1 (17)

FIG. 6. Behavior close to the vortex. Bandwidths and relative
bandwidths of ultrashort LG vortices are shown with the same power-
exponential (dashed blue curve), Gaussian (dotted red curve), and
square (solid black curve) spectra âω as in Fig. 5, all corresponding to
single-cycle pulses a(t ′) of the same mean frequency ω̄a = 2.5 fs−1.
(a) Bandwidth and (b) relative bandwidth as functions of the mag-
nitude of the topological charge. (c)–(e) Pulse shapes and envelopes
for l = 20 close to the vortex in the above three cases (thick black
curves), compared to the single-cycle pulses a(t ′) (thin blue curves).
Depending on the specific a(t ′), the pulse may broaden or shrink with
|l|, but the number of oscillations always grows with |l|.

for ultrafast LG and X vortices, respectively, always go to
zero with growing |l|, as in Fig. 6(b), since ω̄(m + 1)/ω̄(m)

063803-6



COUPLINGS BETWEEN THE TEMPORAL AND ORBITAL … PHYSICAL REVIEW A 101, 063803 (2020)

approaches unity with increasing m. Hence, the number N of
mean or carrier periods 2π/ω̄E (ε) in the full pulse duration
2�tE (ε), with �tE (ε) � 2/�ωE (ε) or N = �tE (ε)ω̄E (ε)/π ,
always satisfies N � (2/π )ω̄E (ε)/�ωE (ε), with the right-
hand side of the inequality growing without bound with
increasing |l|, regardless of the choice of âω. This is why
the pulse shapes close to the vortex in Figs. 6(c)–6(e) always
contain more oscillations than a(t ′), despite the pulse being
longer or shorter.

V. CONCLUSION

In this paper we have reported a unified treatment of
ultrashort vortices with propagation-invariant temporal shape
for studying the universal and diverse forms of their coupling
between the temporal and orbital angular momentum degrees
of freedom, a kind of spatiotemporal coupling peculiar to
ultrashort vortices. This study completes previous studies and
clarifies their seemingly contradictory results.

We have shown that orbital angular momentum introduces
a strong correlation between the amount of spatial twisting,
the local frequency, and the pulse duration. The coupling
manifests itself in two ways in different regions of the three-
dimensional energy distribution. In the high-intensity caustic
surface surrounding the vortex, the l-dependent lower bound
to the pulse duration previously reported for ultrashort LG
vortices holds similarly for ultrashort X vortices. As a con-
sequence, the pulse duration of both ultrashort LG and X
vortices must increase with the angular momentum. This fact

may have an impact on multilevel-OAM pulsed transmission
systems. In the low-intensity region, in the proximity of the
vortex phase singularity, we found that a blueshift with an
increase of the number of oscillations with respect to those
at the bright caustic surface occurs not only for ultrashort X
vortices, as previously reported, but also for ultrashort LG
vortices. Pulse shortening or lengthening in the vicinity of the
vortex is not a general feature of the temporal-OAM coupling,
but depends on the particular model. Higher frequencies are
then located in low-energy-density regions close to the vortex.
The local blueshift increases with the topological charge and
is larger for ultrafast X vortices than for LG vortices.

It is an open question if this remarkable space-time cor-
relation in the dark regions has fundamental implications in
quantum optics at the single-photon level or for entangled
beams. We think that the blueshift can be measured with
synthesized propagation-invariant pulses, ranging from ter-
ahertz to visible. We also believe that the frequency shift
may be evident in high-field phenomena, as in high-harmonic
generation, where the amount of angular momentum grows
with the harmonic order and where, so far, spatiotemporal
coupling effects and the internal structure of the generated
beams have been overlooked.
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