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Quantum collapse in three and two dimensions (3D and 2D) is induced by attractive potential ∼ − r−2.
It was demonstrated that the mean-field (MF) cubic self-repulsion in the 3D bosonic gas suppresses the
collapse and creates the missing ground state (GS). However, the cubic nonlinearity is not strong enough to
suppress the 2D collapse. We demonstrate that the Lee-Hung-Yang (LHY) quartic term, induced by quantum
fluctuations around the MF state, is sufficient for the stabilization of the 2D gas against the collapse. By means
of numerical solution of the Gross-Pitaevskii equation including the LHY term, as well as with the help of
analytical methods, such as expansions of the wave function at small and large distances from the center and the
Thomas-Fermi approximation, we construct stable GS, with a singular density ∼r−4/3 but convergent integral
norm. Counterintuitively, the stable GS exists even if the external potential is repulsive, with the strength falling
below a certain critical value. An explanation to this finding is given. Along with the GS, singular vortex states
are produced too, and their stability boundary is found analytically. Unstable vortices spontaneously transform
into the stable GS, expelling the vorticity to the periphery.
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I. INTRODUCTION AND THE MODEL

The quantum collapse, alias “fall onto the center” [1], is
a well-known phenomenon in quantum mechanics: nonexis-
tence of the ground state (GS) in three- and two-dimensional
(3D and 2D) Schrödinger equations with attractive potential

U (r) = −(U0/2)r−2, (1)

where r is the radial coordinate, and positive U0 is the strength
of the pull to the center. Note that, under the action of
potential (1), classical particle of mass M performs motion
with angular frequency

ω =
√

U0/Mr−2 (2)

along a circular orbit with arbitrary radius r.
In 3D the collapse occurs when U0 exceeds a finite critical

value [(U0)coll = 1/4 in the notation adopted below], while in
two dimensions (U0)coll = 0, i.e., the 2D collapse happens at
any U0 > 0. In both 3D and 2D cases, the potential represents
attraction of a particle (small molecule), carrying a permanent
electric dipole moment, to a central charge, assuming that the
local orientation of the dipole is fixed by the minimization of
its energy in the external field [2]. In addition to that, in the 2D
case the same potential (1) may be realized as the attraction of
a magnetically polarizable atom to a thread carrying electric
current (e.g., an electron beam) transversely to the system’s
plane, or the attraction of an electrically polarizable atom to
a uniformly charged transverse thread. Other 2D settings in
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Bose-Einstein condensates (BECs) under the action of similar
fields were considered in Refs. [3,4].

A fundamental issue is regularization of the setting, aim-
ing to create a missing GS. One solution was proposed in
Refs. [5–7], which replaced the original quantum-mechanical
problem by one based on a linear quantum field theory. A
solution of the latter model produces a GS, but it does not
answer a natural question, what the size of the GS is for
given parameters of the setting, such as U0 and mass of the
quantum particle M. In fact, the solution defines the GS size
as an arbitrary spatial scale, which varies as a parameter of the
respective quantum-field renormalization group.

Another solution was proposed in Ref. [2], replacing the
3D linear Schrödinger equation by the Gross-Pitaevskii (GP)
equation [8] for a gas of the dipole particles pulled to the
center by Coulomb potential (1), and stabilized by repulsive
interparticle interactions. Furthermore, in the mean-field (MF)
approximation which, in particular, assumes the interaction
of the dipole moment of each particle with the electrostatic
field created, as per the Poisson equation, by all other dipoles,
the dipole-dipole interactions between the particles amount
to an extra local cubic term, added to the contact repulsive
interaction [2]. As a result, it was found that, in the framework
of the MF approximation, the three-dimensional GP equation
creates the missing GS for arbitrarily large U0. The size of this
GS is fully determined by parameters of the physical system
(U0, M, the scattering length of the interparticle interactions,
and the number of particles N), being approximately a few
micrometers for typical values of the physical parameters.
Furthermore, beyond the bounds of the MF consideration, it
was demonstrated that, in terms of the many-body quantum
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theory, treated by means of the variational Monte Carlo
method, the GS, strictly speaking, does not exist in the same
setting (the collapse is still possible), but the interplay of the
pull to the center and interparticle repulsion gives rise to a
metastable state, which, for a sufficiently large N , is virtually
tantamount to the GS, being separated from the collapsing
state by a tall potential barrier [9]. Subsequently, the mean-
field GS was also found in the 3D gas of dipole molecules
embedded in a strong uniform electric field, which reduces
the underlying symmetry from spherical to cylindrical [10],
and in the two-component 3D gas [11], see also a brief review
in Ref. [12].

The situation is more problematic in 2D, as the usual self-
defocusing cubic nonlinearity, which represents the two-body
interatomic repulsion in the MF approximation [8], is not
strong enough to suppress the collapse and create the GS.
The problem is that the MF wave function �(r), produced by
the respective GP equation, gives rise to the density |�(r)|2,
diverging ∼r−2 at r → 0, in 3D and 2D alike, as this form of
the solution is supported by the balance between the kinetic
energy, pulling potential, and cubic terms in the GP equation.
Then, in terms of the integral norm,

N = (2π )D−1
∫ ∞

0
|�(r)|2rD−1dr, (3)

where D = 3 or 2 is the dimension, the density singularity
∼r−2 is integrable in 3D, while it gives rise to a logarithmic
divergence in 2D:

N ∼ ln
(
r−1

cutoff

)
, (4)

where rcutoff is the cutoff (smallest) radius. The analysis of
the GP equation readily demonstrates that a self-repulsive
nonlinear term stronger than cubic, i.e., |�|α−1� with α > 3,
gives rise to the asymptotic form of the density

|�(r)|2 ∼ r−4/(α−1). (5)

Thus, any value α > 3 provides convergence of the 2D in-
tegral norm, given by Eq. (3) with D = 2. In 3D, Eqs. (5)
and (3) demonstrate that the critical value of the repulsive-
nonlinearity power, which also entails the logarithmic diver-
gence [cf. Eq. (4)], is α = 7/3 (it is relevant to mention that
α = 7/3 corresponds to the effective repulsion in the density-
functional model of the Fermi gas [13–16]).

Thus, a solution for the regularization of the 2D setting
may be offered by the quintic defocusing nonlinearity [2],
with α = 5. The quintic term accounts for three-body re-
pulsive interactions in the bosonic gas [17,18], although an
essential difficulty in the physical realization of the latter
feature is the fact that three-particle collisions give rise to
effective losses, by kicking out particles from BEC to the
thermal halo [19–21].

Recently, much interest was drawn to the formation of
quasi-2D and 3D self-trapped states in BEC in the form of
“quantum droplets,” filled by an effectively incompressible
binary condensate, which is considered as an ultradilute quan-
tum fluid. This possibility was predicted in the framework of
the 3D [22] and 2D [23–25] GP equations which include the
Lee-Huang-Yang (LHY) corrections to the MF approximation
that represent effects of quantum fluctuations around the MF
states [26]. The binary structure of the underlying condensate

is essential because the nearly complete cancellation between
the intercomponent MF attraction and intracomponent repul-
sion (which may be adjusted by means of the Feshbach-
resonance technique [27]) makes it possible to create stable
droplets through the balance of the LHY-induced higher-order
(quartic) self-repulsion and the relatively weak residual MF
attraction, accounted for by the cubic term. The so predicted
quantum droplets were created with quasi-2D (oblate) [28,29]
and fully 3D (isotropic) [30,31] shapes in a mixture of two
different spin states of 39K atoms, as well as in a heteronuclear
mixture of 41K and 87Rb atoms [32]. Furthermore, it was
theoretically predicted that 2D [33–35] and 3D [36] droplets
with embedded vorticity have their well-defined stability re-
gions too. The LHY effect also helps to create stable 3D
droplets in single-component BECs with long-range inter-
actions between atoms carrying magnetic dipole moments,
as was demonstrated experimentally and studied in detail
theoretically [37–41], although dipolar-condensate droplets
carrying embedded vorticity are unstable [42].

The objective of the present work is to make use of the
LHY effect for the stabilization of the GS in the quasi-
2D bosonic gas pulled to the center by potential (1). This
possibility is essential because, as said above, the alternative,
in the form of the quintic self-repulsion, is problematic in
the real BEC setting. The underlying full (3D) GP equation,
including the LHY-induced quartic defocusing term, is written
in physical units as [22]

ih̄
∂�

∂t
= − h̄2

2M
∇2� + V (r)� + 4π h̄2δa

M
|�|2�

+ 256
√

2π h̄2

3M
a5/2|�|3�, (6)

where � represents equal wave functions of two components
of the binary BEC, V (r) is the general trapping potential,
a > 0 is the scattering length of interparticle collisions, which
induce the cubic MF self-repulsion in each component, δa ≷
0, with |δa| � a, represents the small disbalance of the inter-
component attraction and intracomponent repulsion, and the
last term in Eq. (6) is the LHY correction to the MF equation.
It is relevant to mention that, in principle, the same equation,
with δa replaced by a, is valid for a single-component self-
repulsive BEC. However, without the nearly full cancellation
of the MF interactions, the LHY correction is negligibly weak,
therefore it will not provide the efficient stabilization sought
for.

The reduction of Eq. (6) to the 2D form, with coordinates
(x, y), under the action of very tight confinement applied in the
z direction, was elaborated in Ref. [23], leading to an effective
cubic nonlinearity with an extra logarithmic factor,

(nonlin)2D ∼ |�|2 ln
(|�|2/�2

0

)
�, (7)

which is attractive and repulsive at |�|2 < �2
0 and |�|2 > �2

0 ,
respectively, where �2

0 corresponds to the density determined
by the equilibrium between the MF and LHY interactions,
that, in physical units, is n0 = (25π/215)(δa/a)2a−3 [22].
However, this limit case corresponds to extremely strong
confinement in the z direction, with the transverse size a⊥ �
ξ , where the healing length, corresponding to the equilibrium
density, is estimated as ξ = (32

√
2/3π )(a/|δa|)3/2a ≈
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5(a/|δa|)3/2a. Then, typical experimentally relevant
parameters [28–31] yield ξ 
 30 nm. On the other hand,
an experimentally relevant transverse-confinement length
is a⊥ ∼ 0.6 μm [28], implying relation a⊥ � ξ , which is
opposite to the above-mentioned necessary one. Thus, it is
relevant to reduce Eq. (6) to the 2D form, keeping the same
nonlinearity as in Eq. (6). In this connection we note that, as
straightforward analysis demonstrates, the modified nonlinear
term (7), corresponding to the ultratight confinement, is
insufficient to create a GS with a convergent norm in
2D, yielding the density singularity |�|2 ∼ r−2/ ln (r−1)
at r → 0, hence the two-dimensional integral (3) is still
diverging, although extremely slowly: N ∼ ln [ln (r−1

cutoff )],
cf. Eq. (4). On the other hand, the reduction of the full 3D
problem to the 2D approximation is relevant as long as the
radial size of the resulting bound state R exceeds a⊥ by
an order of magnitude (or greater). It is expected that the
predicted stable states will have R ∼ 10 μm (see below),
which justifies the latter assumption.

To complete the derivation of the effective 2D equation, we
first rescale three-dimensional Eq. (6), measuring the density,
length, time, and the trapping potential, respectively, in units
of (36/25)n0, ξ , τ ≡ (M/h̄)ξ 2, and h̄/τ :

i
∂�

∂t
= −1

2
∇2� + σ |�|2� + |�|3� + V (r)�, (8)

where σ = ±1 is the sign of δa, and the potential is a sum of
the above-mentioned term (1) and the transverse-confinement
one (1/2)a−4

⊥ z2. In this notation the above-mentioned critical
strength of the pulling potential in the linearized version
of the 3D equation (8) is (U0)coll = 1/4. Then the 3D →
2D reduction is performed by means of the standard sub-
stitution [43,44] �(x, y, z, t ) = ψ (x, y, t ) exp (−z2/2a2

⊥), fol-
lowed by the averaging of Eq. (8) in the transverse direction.
Finally, with the help of additional rescaling, ψ → (2/

√
5)ψ ,

(x, y) → (
√

5/25/4)(x, y), and t → (5/25/2)t , the effective
two-dimensional GP equation, written in terms of the polar
coordinates (r, θ ) in the (x, y) plane, is cast in the form of

i
∂ψ

∂t
= − 1

2

(
∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+ 1

r2

∂2ψ

∂θ2

)
− U0

2r2
ψ

+ σ |ψ |2ψ + |ψ |3ψ, (9)

which includes the pulling-to-the-center potential (1). This
equation conserves, along with norm

N =
∫∫

|ψ (x, y)|2dxdy, (10)

cf. Eq. (3), the Hamiltonian

H =
∫∫ [

1

2

(
|∇ψ |2 − U0

r2
|ψ |2 + σ |ψ |4

)
+ 2

5
|ψ |5

]
dxdy,

(11)

and the angular momentum

Lz = i
∫∫

∂ψ∗

∂θ
ψdxdy, (12)

where ∗ stands for the complex conjugation.
It is also relevant to consider the case when the balance

between the intercomponent attraction and intracomponent re-

pulsion makes it possible to set δa = 0, the entire nonlinearity
originating from the LHY term, cf. Ref. [45]. The respective
2D equation (produced by an obviously different rescaling)
takes the form of Eq. (9) with σ = 0. In fact, this case is the
most fundamental one, as the suppression of the 2D collapse
and formation of the GS is provided by the quartic term, while,
in any case, the cubic term plays a minor role.

The rest of the paper is organized as follows. In Sec. II we
produce analytical results, which are based on the asymptotic
consideration of Eq. (9) for stationary solutions in the form
of the GS and vortex states, as well as for small perturbations
which determine their stability. Analytical considerations also
make use of the Thomas-Fermi (TF) approximation, which
produces accurate results in the case of σ = 0. Numerical
findings, produced by systematic simulations of Eq. (9), are
summarized in Sec. III. They demonstrate that the zero-
vorticity states are completely stable, in agreement with the
conjecture that they represent the system’s GS, while the
vortical modes feature an instability boundary (which is pre-
dicted in an exact analytical form in Sec. II). Unstable vortices
(roughly speaking, those existing in the case of relatively
small U0) spontaneously develop spiral motion of the vortex’
pivot from the center to periphery, which eventually leads
to replacement of the unstable vortex by the stable GS. A
counterintuitive finding is that the stable zero-vorticity GS can
be found even in the interval of −4/9 < U0 < 0, where the
central potential is (weakly) repulsive. An explanation of this
fact is given too. The paper is concluded by Sec. IV.

II. ANALYTICAL CONSIDERATIONS

A. Asymptotic forms of the solutions

Stationary solutions to Eq. (9) with chemical poten-
tial μ and integer vorticity (orbital quantum number) l =
0, 1, 2, . . . , are looked for as

ψ (r, t ) = exp (−iμt + ilθ )u(r), (13)

with real radial function satisfying the equation

μu = −1

2

(
d2u

dr2
+ 1

r

du

dr
+ Ul

r2
u

)
+ σu3 + u4, (14)

where we define

Ul ≡ U0 − l2. (15)

The asymptotic form of the solution to Eq. (14) at r → 0 is

u =
[

1

2

(
Ul + 4

9

)]1/3

r−2/3 − σ
9Ul + 4

27Ul + 16
+ O(r2/3). (16)

The singularity of the asymptotic solution (16), ∼r−2/3, with
the power which is determined by the balance between the
LHY quartic term and the attractive potential, and does not
depend on l and σ , is weak enough to secure the convergence
of the integral norm (3) at r → 0. It is worthy to note that,
as seen in Eq. (16), the expansion of the solution at r → 0 is
performed in powers of r2/3.

Obviously, solutions to Eq. (14) may be localized at r →
∞ for μ < 0. Then, in the case of σ = 0, a simple corollary
of Eq. (14) is an exact scaling relation which shows the
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dependence of the solution on |μ|:
u(r; μ) = |μ|1/3u(|μ|−1/2r; μ = −1). (17)

Furthermore, the substitution of this expression in Eq. (3)
yields an exact scaling relation for the norm of the 2D state, at
σ = 0:

N (μ) = |μ|−1/3N (μ = −1). (18)

We note that this relation satisfies the anti-Vakhitov-Kolokolov
(VK) criterion dN/dμ > 0, which was proposed as a neces-
sary stability condition for trapped modes supported by the
defocusing nonlinearity [46] (the VK criterion proper states
that dN/dμ < 0 is necessary for the stability of self-trapped
modes in the case of focusing nonlinearity [47,48]). Below,
we demonstrate that the GS family is completely stable in the
present model.

Asymptotic expression (16) suggests substitution

ψ (r, θ, t ) ≡ r−2/3ϕ(r, θ, t ), u(r) ≡ r−2/3χ (r), (19)

which transforms Eqs. (9) and (14) into

i
∂ϕ

∂t
= −1

2

[
∂2

∂r2
− 1

3r

∂

∂r
+ (U0 + 4/9)

r2
+ 1

r2

∂2

∂θ2

]
ϕ

+ σ
|ϕ|2ϕ
r4/3

+ |ϕ|3ϕ
r2

, (20)

μχ = −1

2

[
d2χ

dr2
− 1

3r

dχ

dr
+ (Ul + 4/9)

r2
χ

]
+ σ

χ3

r4/3
+ χ4

r2
.

(21)

Accordingly, the asymptotic form (21) of the solution at
r → 0 is replaced by a singularity-free expansion,

χ (r;Ul , σ ) =
[

1

2

(
Ul + 4

9

)]1/3

− σ
9Ul + 4

27Ul + 16
r2/3 + O(r4/3).

(22)

The first correction to the leading term in this expansion
vanishes in the case of σ = 0 (no MF nonlinearity). Then, it
follows from Eq. (21) that the expansion is replaced by

χ (r;Ul , σ = 0) =
[

1

2

(
Ul + 4

9

)]1/3(
1 + 2μ

3Ul
r2

)
+ O(r4),

(23)

which is valid for Ul > 0. In the interval of

−4/9 < Ul < 0 (24)

(the meaning of this interval is explained below), the quadratic
term in Eq. (23) is valid too, but in that case it is not a
leading correction, as Eq. (22) admits a stronger one, const ·
rβ , with β = 2/3 + √

16/9 + 3Ul < 2, while const remains
indefinite, in terms of the expansion at r → 0. Exactly at
Ul = 0, Eq. (23) is replaced by

χ (r;Ul = σ = 0) =
(

2

9

)1/3[
1 + 3μ

4
r2 ln

( r0

r

)]
+ · · · ,

(25)

where constant r0 is also indefinite.
The asymptotic form of the solution, given by Eq. (22), is

meaningful if it yields u(r) > 0 [otherwise, the derivation of

Eq. (14) from Eq. (9) is irrelevant], i.e., for Ul > 0, as well
as for weakly negative values of the effective strength of the
central potential belonging to interval (24), which implies

l2 − 4/9 < U0 � l2. (26)

For the vortex states, with l � 1, condition (26) means, in
any case, U0 > 0, but for the GS, with l = 0, Eq. (26) admits
negative U0 with sufficiently small absolute values, viz., 0 �
−U0 < 4/9. In the limit of U0 + 4/9 → +0, further analysis
of Eq. (21) yields the following asymptotically exact solution,
which does not depend on σ :

[χ (r)]Ul +4/9→0 =
√

3�(1/3)

π

[ |μ|
4

(
Ul + 4

9

)]1/3

× r2/3K2/3(
√

2|μ|r), (27)

where �(1/3) ≈ 2.68 is the value of the Gamma function,
and K2/3 is the standard modified Hankel’s function (alias the
modified Bessel function of the second kind). The substitution
of this expression and one defined by Eq. (19) in Eq. (3) (with
D = 2) yields the respective result for the norm:

NUl +4/9→0 = �2(1/3)√
3

(Ul + 4/9)2/3

(2|μ|)1/3 . (28)

Note that this result agrees with the general scaling rela-
tion (18).

While the existence of the bound state under the combined
action of the repulsive potential and dominating defocusing
quartic nonlinearity is a counterintuitive finding, it is closely
related to the previously known fact that the 2D nonlin-
ear Schrödinger equations with the repulsive nonlinear term
|u|p−1u supports localized solutions with a singular asymp-
totic form,

u ≈
[

1

2

(
4

(p − 1)2 + U0

)]1/(p−1)

r−2/(p−1) (29)

at r → 0 [49] (here Eq. (29) takes into account the presence
of the potential with strength U0 in Eq. (14), which was not
included in Ref. [49]). It is seen that this singular state exists
at 0 < −U0 < 4/(p − 1)2, and the integral which defines its
norm converges at r → 0 for p > 3, including the case of
the quartic nonlinearity, with p = 4. This result, which was
originally obtained as a formal one [49], may be understood,
in terms of the physical realization, as an effect created by
an additional delta-functional attractive potential, which is
concentrated on a sphere of a vanishingly small radius ρ:

Uδ = − lim
ρ→0

[εδ(r − ρ)], ε ≡ (p − 1)−1ρ−1. (30)

This potential, added to the model, becomes “invisible” in the
limit of ρ → 0 in Eq. (30), being screened by the singular
profile of the pinned state [50]. This consideration explains
the possibility of the existence of the bound state which is not
supported by any apparent factor pulling the wave function
to the center. Note that the “charge” of the invisible poten-
tial Q ≡ 2πρε = 2π/(p − 1) remains finite in the limit of
δ → 0. In similar 1D and 3D settings, the screened charge is,
respectively, diverging or vanishingly small, Q1D ∼ ρ−1 and
Q3D ∼ ρ [50], see also a brief review of the topic in Ref. [51].
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In the limit of r → ∞, the asymptotic form of the solution
to Eq. (21) is

χ (r) ≈ χ0r1/6 exp(−
√

2|μ|r), (31)

where χ0 is an arbitrary constant (in terms of the asymptotic
form at r → ∞), and μ must be negative. An approximate
global interpolation for the solution may be produced by
combining asymptotic forms (22) and (31):

χinterpol(r) =
[

1

2

(
Ul + 4

9

)]1/3

exp(−
√

2|μ|r). (32)

Of course this is a coarse approximation, as it postulates
a wrong power of the pre-exponential factor at r → ∞ [0
instead of 1/6, see Eq. (31)], and ignores any effect of term u3

in Eq. (14). The calculation of norm (3) with the approximate
solution given by Eq. (32) produces the respective analytical
expression,

Ninterpol(μ) = 2π

∫ ∞

0
u2

interpol(r)rdr

= π�(2/3)
(Ul + 4/9)2/3

(4|μ|)1/3 (33)

[where �(2/3) ≈ 1.354 is the value of the Gamma function],
which also agrees with scaling (18). In the limit of Ul +
4/9 → 0, the difference between the approximate value of
the norm, given by Eq. (33), and the asymptotically exact
result (28) amounts to a factor ≈0.81.

B. Vortex states and their stability

Usually the presence of integer vorticity l � 1 implies that
the amplitude vanishes at r → 0 as rl , which is necessary
because the phase of the vortex field is not defined at r = 0.
However, the indefiniteness of the phase is also compatible
with the amplitude diverging at r → 0. In the linear equation,
this divergence has the asymptotic form of the standard Neu-
mann’s (alias singular Bessel’s) cylindrical function Yl (r) ∼
r−l , which makes the respective 2D state unnormalizable
(i.e., physically irrelevant) for all values l � 1. However, in
the present system Eq. (16) demonstrates that the interplay
of the central potential and quartic nonlinearity reduces the
divergence to the level of r−2/3, for any l , thus maintaining the
normalizability of the states under the consideration, similar
to what was found in Ref. [2], where the quintic repulsive non-
linearity kept the singularity in another form which secured
the convergence of the 2D integral norm (3), u(r) ∼ r−1/2.

Stationary solutions for vortex modes, as produced by
Eq. (21), are not essentially different from the GS ones, as
the presence of vorticity l affects only the effective potential
strength defined by Eq. (15). Real difference between the
states with l = 0 and l � 1 is revealed by the analysis of their
stability. To this end, it is necessary to derive the linearized
Bogoliubov–de Gennes (BdG) equations for eigenmodes of
small perturbations, with arbitrary integer azimuthal index m
and instability growth rate λ (which may be complex), added
to the stationary states. It is natural to perform this analysis
in terms of Eq. (20), which makes it possible to eliminate
the singular factor r−2/3 from the perturbations. Thus, the

perturbed solution is looked for in the usual form [52],

ϕ(r, θ, t ) = exp(−iμt + ilθ )[χ (r) + v1(r) exp(λt + imθ )

+ v∗
2 (r) exp(λ∗t − imθ )], (34)

where χ (r) is a solution of Eq. (21). The substitution of
this in Eq. (9) and linearization with respect to perturbation
amplitudes v1,2 leads to BdG equations in the radial form:

iλv1 = −1

2

[
d2

dr2
− 1

3r

d

dr
+ U0 − (l + m)2 + 4/9

r2

]
v1

+ σ
χ2

0

r4/3
(2v1 + v2) + χ3

0

2r2
(5v1 + 3v2),

−iλv2 = −1

2

[
d2

dr2
− 1

3r

d

dr
+ U0 − (l − m)2 + 4/9

r2

]
v2

+ σ
χ2

0

r4/3
(2v2 + v1) + χ3

0

2r2
(5v2 + 3v1). (35)

The instability driven by the perturbation eigenmode with
m � 2 splits the vortex in m fragments, while the eigenmode
with m = 1 is a dipole perturbation which drives spontaneous
drift of the vortex’ pivot from the original position [53]. By
solving the eigenvalue problem based on Eq. (35), one can
find the spectrum of instability growth rates λ, and thus dis-
tinguish stable solution as those for which all the eigenvalues
are imaginary.

It is relevant to consider the form of eigenmodes produced
by Eqs. (35) at r → 0. In this limit solutions are looked for as

v1,2(r) = v
(0)
1,2rγ , (36)

where γ may be complex, and v
(0)
1,2 are constants. Relevant

eigenmodes may not be singular at r → 0, as a singular mode,
assuming very large local values, is incompatible with the
linearization procedure. Thus, relevant are values of γ with
Re(γ ) > 0.

On the substitution of expression (36) in Eq. (35), the
condition of the cancellation of singular terms ∼r−2 leads to
the following quadratic equations for γ (either of them must
hold):

γ 2 − 4

3
γ − 3χ3(r = 0) − m2 ∓

√
4l2m2 + 9χ6(r = 0) = 0,

(37)

where χ (r = 0) is given by Eq. (22):

χ3(r = 0) = 1
2

(
U0 − l2 + 4

9

)
(38)

[recall this expression is relevant if it yields χ3(r = 0) > 0,
i.e., U0 > l2 − 4/9], and Eq. (38) is used to eliminate U0 from
Eq. (37). Note that, in the lowest asymptotic approximation,
the solution at r → 0 is not affected by terms ∼σ in Eq. (35).

In the case of l = 0 (the GS with no vorticity), Eq. (37)
simplifies to the following pair of equations:

γ 2 − 4
3γ − 6χ3(r = 0) − m2 = 0, (39)

γ 2 − 4
3γ − m2 = 0. (40)

It is obvious that each Eq. (39) and (40) produces one root
γ > 0 and one γ < 0, only the former one being relevant, as
said above. In the case of the underlying vortex state, with
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l2 � 1, Eq. (37) with the top sign in front of the square root
leads to the same conclusion. On the other hand, Eq. (37) with
the bottom sign gives rise to two relevant roots (instead of
the single one), with Re(γ ) > 0, when the free term in the
corresponding quadratic equation (37) for γ is positive, i.e.,

3χ3(r = 0) + m2 <
√

4l2m2 + 9χ6(r = 0). (41)

Furthermore, the substitution of expression (38) in Eq. (41)
leads to the following condition:

U0 < (U0)crit = 1
3

(
7l2 − m2 − 4

3

)
. (42)

Equation (42) never holds for the GS, with l = 0. On the
other hand, for l2 � 1, the largest area in which Eq. (42)
holds corresponds to m = ±1 (the eigenmode of the drift
perturbation):

U0 < (U0)crit = (7/9)(3l2 − 1). (43)

Finally, for the practically important case of l = 1, which we
consider below, Eq. (43) reduces to

U0 < (U0)(l=1)
crit = 14/9. (44)

Note also that Eq. (42) formally holds for all l2 � 1 and m =
0. However, the above derivation is irrelevant for m = 0.

Thus, if condition (42) holds, Eq. (35) gives rise to ad-
ditional eigenmodes whose eigenvalues may (or may not)
be unstable. As shown in the following section, a numerical
solution of the BdG equations (35), confirmed by direct
simulations of perturbed evolution of the vortex modes in the
framework of Eq. (20), corroborates the conjecture that, in
the region defined by Eq. (44), the vortices with l = 1 are
unstable against spontaneous onset of the outward drift of
the vortex’ pivot, and ones with l = 2 are unstable too in the
region defined by Eq. (43) with l = 2. Up to the accuracy
of the numerical data, U0 = 14/9 is indeed identified as the
stability boundary for the vortex modes with l = 1.

C. The Thomas-Fermi (TF) approximation

Another analytical method is offered by the TF approxima-
tion, which amounts to dropping the derivatives in Eq. (21),
assuming U0 � 1, irrespective of the value of |μ| (in fact, it
is shown below that the approximation may produce relevant
results even when U0 is not very large). This simplification
yields an explicit approximate solution in the case of σ = 0
(if the nonlinearity is furnished solely by the LHY term):

χTF(r) =
{

[(Ul + 4/9)/2 − |μ|r2]1/3, at r < r0 ≡ √
(Ul + 4/9)/(2|μ|),

0, at r > r0,
(45)

for μ < 0. In the limit of r → 0, Eq. (45) yields the same
exact value of χ (r = 0) = [(Ul + 4/9)/2]1/3 as given by
Eq. (16). On the other hand, the TF approximation predicts
a finite radius r0 of the GS, neglecting the exponentially
decaying tail at r → ∞, cf. Eq. (31).

Furthermore, the TF approximation given by Eq. (45)
makes it possible to calculate the corresponding N (μ) depen-
dence for the GS family:

N (σ=0)
TF (μ) = 2π

∫ r0

0
[r−2/3χTF(r)]2rdr = C

Ul + 4/9

|μ|1/3
, (46)

where a numerical constant is C ≡ π
∫ 1

0 (x−2 − 1)2/3
xdx ≈

3.80, cf. Eq. (33). Note that, similar to Eq. (33), this re-
sult complies with Eq. (18), and at Ul = 0 the compari-
son of approximate values given by Eqs. (33) and (46) is
{Ninterpol(μ)/N (σ=0)

TF (μ)}|Ul =0 ≈ 0.92.
It is relevant to mention that TF radius r0 keeps the same

value, as given by Eq. (45), in the presence of the MF
defocusing cubic term with σ = 1 in Eq. (14), although the
shape of the GS is more complex. In this case, the asymptotic
form of the respective N (σ=1)

TF (μ) dependence at μ → −∞ is
the same as given by Eq. (46), while in the limit of μ → −0
the analysis produces a different result, with a much weaker
singularity:

N (σ=1)
TF (μ) ≈ (π/2)Ul ln(1/|μ|). (47)

Although this dependence N (μ) is different from that given
by Eq. (18) in the absence of the cubic term (σ = 0), Eq. (47)
also agrees with the anti-VK criterion.

Even in the case of the focusing sign of the MF term, cor-
responding to σ = −1 in Eq. (14), the LHY-induced quartic
nonlinearity is able to stabilize the condensate against the
combined action of the MF self-attraction and pull to the
center. In this case, the TF approximation, applied to Eq. (14),
cannot be easily resolved to predict uTF(r), but it produces an
inverse dependence, for r as a function of u:

r2 = (Ul/2)(−μ − u2 + u3)−1 (48)

[Eq. (14) is easier to use for this purpose than Eq. (21)]. Then,
looking for a maximum of expression (48), which is attained
at umax = 2/3, it is easy to find the corresponding size of the
TF state:

r (σ=−1)
0 = Ul

2(|μ| − 4/27)
, (49)

which, in turn, suggests that the GS exists in the case of σ =
−1, provided that |μ| exceeds a threshold value,

|μ| > (|μ|)thr = 4/27. (50)

Pursuant to Eq. (49), the norm diverges at μ → −4/27 as

N ≈ 2π
(
r (σ=−1)

0

)2
u2

max = 2π

9

U 2
l

(|μ| − 4/27)2 . (51)

Finally, we note that, in the absence of any potential
(U0 = 0), the interplay of the cubic self-attraction and quartic
repulsion may readily create stable multidimensional soli-
tons, including ones with embedded vorticity l = 1 [36]. The
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FIG. 1. (a) The radial profile of a (stable) numerically found
GS and its TF and interpolation counterparts, produced by
Eqs. (21), (45), and (32), respectively, with σ = 0, U0 = 2, and
μ = −1. The total norm of the numerical, TF, and interpolation
solutions are, severally, Nnum = 10.34, NTF = 9.28, and Ninterpol =
4.86. (b) The global shape of the numerically generated solution.

analytical predictions obtained in this section are compared
below to their numerically found counterparts in Figs. 1–5.

III. NUMERICAL RESULTS

A. Stable ground-state (GS) solutions

Stationary solutions of Eq. (21) were produced by means
of the Newton’s iteration method. Stability of stationary so-
lutions was identified by means of the numerically solved
linearized eigenvalue problem for small perturbations, based
on Eq. (35). As said above, the stability condition is that all
eigenvalues λ must have zero real parts. Then, the so predicted
(in)stability was verified by direct simulations of underlying
equation (9). The simulations were run by means of the
split-step Fourier-transform method [52], implemented with
the help of the Runge-Kutta numerical scheme. An absorber,
installed at edges of the integration domain, was employed to
prevent reflection of the emitted radiation, without affecting
the mode under consideration. To this end, the size of the
domain was always taken to be much larger than the mode’s
scale, and it was checked that the results were not affected by
the size. The analysis was performed for the model including
the cubic self-defocusing or focusing term, i.e., with σ = ±1
in Eq. (9), as well as for the most fundamental case of σ = 0,
when the nonlinearity is provided solely by the LHY effect.

First, Fig. 1 displays a typical example of the stable GS,
obtained as a numerical solution of Eq. (21) with σ = 0,

FIG. 2. The same as in Fig. 1, but for U0 = 10 and without
showing the interpolation given by Eq. (32), which is irrelevant in
this case. The norms of the numerical and approximate solutions are
Nnum = 41.05, NTF = 39.68.

FIG. 3. Examples of numerically found stable GS solutions of
Eq. (21) for l = 0, U0 = 3, μ = −0.8, and σ = 1, 0, and −1.
The respective norms are N (σ = 1) = 11.7, N (σ = 0) = 15.41, and
N (σ = −1) = 24.62.

U0 = 2, and |μ| = 1, along with its analytical counterparts,
produced by the TF approximation and by the interpolating
approximation (32), for the same μ, as per Eqs. (45) and (32),
respectively. It is seen that the approximations are not accurate
in this case. In particular, the TF solution is relatively close
to the numerical counterpart only in its central core, because
condition U0 � 1 does not hold in this case. The discrepancy
in the total norm, calculated as per Eqs. (3) and (46) for
the numerically exact and TF solutions, is (N − NTF)/N ≈
10% [it is smaller than it may seem in Fig. 1(a) because
relation (19) suppresses the contribution of the region of larger
r, where the TF approximation is wrong].

Furthermore, Fig. 2 displays the GS, along with the corre-
sponding TF approximation, for sufficiently large U0 = 10. It
is seen that, as expected, the TF solution is virtually identical
to the numerical one at r < r0 ≈ 2. 24, see Eq. (45), while the
decaying tail is ignored by TF. In this case, the discrepancy in
the total norm is (N − NTF)/N ≈ 3.3%.

The effect of the MF cubic term of either sign, repulsive
(σ = 1) or attractive (σ = −1), on the shape of the GS is
illustrated by Fig. 3. At r = 0, all the three shapes converge
to a common value χ (r = 0) ≈ 1.20, exactly as predicted by
Eq. (22).

FIG. 4. (a) Radial profiles of stable GS modes, produced by the
numerical solution of Eq. (21), and by interpolation (32), in the
presence of the repulsive potential, with U0 = −0.4, at μ = −0.8,
without and with the MF repulsive or attractive cubic term (σ = 0
and σ = 1 or −1, respectively). The corresponding values of the
norm are N (σ = 1) = 0.41, N (σ = 0) = 0.45, and N (σ = −1) =
0.52, the interpolating approximation giving N ≈ 0.36, pursuant to
Eq. (33). (b) Confirmation of the stability of the GS mode in direct
simulations, in the case of σ = 1.
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FIG. 5. Dependencies N (μ) for stable GS solutions with U0 =
−0.4, and N (μ) for U0 = 1.5, 3.0, 5.0, which correspond, respec-
tively, to the repulsive and attractive central potential. To plot the
curve for U0 = −0.4, values of N are multiplied by 10, as the actual
values of the norm are too small in this case. (a) and (b) The
system which does or does not include the repulsive or attractive
cubic term (σ = 0 and 1,−1, respectively). In (a), the numerical
results are compared to the analytical ones, predicted by the TF
approximation, as per Eq. (46) [except for the case of U0 = −0.4,
where the TF approximation is irrelevant; however, in this case the
analytical prediction given by the interpolating approximation, in the
form of Eq. (33), completely overlaps with the numerically generated
curve]. In (b), the numerically generated curves are compared for
σ = 1 and −1. (c) A zoom of the plot from (b) at small values of |μ|,
with the aim to show the proximity to the threshold value (|μ|)thr =
4/27 ≈ 0.15 for σ = −1, as predicted in the TF approximation by
Eq. (50) (see further comments, concerning this point, in the text). In
all panels, the definitions in the notation boxes, running from top to
bottom, pertain to curves from top to bottom.

The above counterintuitive prediction of the GS solutions
existing in the presence of the repulsive potential, with U0

belonging to interval (24), is confirmed by numerical results.
As an example, Fig. 4 displays stable GSs which were found,
in the numerical form, at U0 = −0.4, taken close to the
edge of the interval U0 = −4/9, for all the three essential
values σ = 0 and ±1 of the coefficient in front of the MF
cubic repulsive term. The figure shows that the interpolating
approximation, generated by Eq. (32), is quite accurate in this
case, while the MF cubic term produces a weak effect on the
solution. As for the TF approximation (45), it does not apply
to U0 < 0.

Families of the GS solutions are characterized by the
corresponding dependencies N (μ). These results are summa-
rized in Figs. 5(a) and 5(b) for the 2D system without and
with the MF repulsive or attractive cubic term σ = 0 and
σ = ±1, and for several values of strength U0 of the central
potential (including both U0 > 0 and U0 < 0). In particular,
the MF cubic term produces a more considerable effect with

the increase of U0, which is naturally explained by the fact
that the solution’s amplitude is larger for larger U0, as per
Eqs. (22), (32), and (45). The N (μ) curves produced by the
TF approximation pursuant to Eq. (46) are compared to their
numerical counterparts in Fig. 5(a). As mentioned above,
the accuracy of the TF approximation essentially improves
with the increase of U0. On the other hand, the interpolating
approximation produces poor accuracy at U0 > 0, but for
U0 = −0.4 this approximation is virtually identical to the
numerical counterpart.

Figure 5(c) confirms that, in the presence of the attractive
cubic term (σ = −1), the GS exists at |μ| > (|μ|)thr, as pre-
dicted by the TF approximation in Eq. (50). Up to the accuracy
of the numerical results, the threshold value of |μ| is indeed
4/27, in agreement with Eq. (50). This finding is explained
by the fact that, as it follows from Eq. (49), the width of
the GS diverges in the limit of |μ| → (|μ|)thr, hence in this
limit the spatial derivatives in Eq. (14) become negligible, and
the TF approximation becomes asymptotically exact. Strictly
speaking, N (μ) steeply diverges in the limit of |μ| → 4/27,
according to Eq. (51), but it is difficult to plot the curves very
close to the threshold, as the bound states become extremely
broad in this limit.

Concerning the stability, both the computation of eigenval-
ues for small perturbations and direct simulations of perturbed
evolution demonstrate complete stability of the fundamental
(GS) solutions at all values of U0, both positive ones and
negative values belonging to interval (24), and at all (negative)
values of μ. As an illustration, Fig. 4(b) demonstrates the
stability of the GS in the counterintuitive case of the repulsive
central potential, with U0 = −0.4. The stability does not
depend either on the presence of the MF cubic term, being
equally valid for σ = 0 and ±1. Note also that the anti-VK
stability criterion dN/dμ > 0 holds for all N (μ) curves in
Fig. 5.

B. Vortex modes

As mentioned above, the stationary shape of vortex modes,
given by Eq. (13) with l � 1, is actually the same as for the
GS with l = 0, the difference amounting to replacement of
U0 by Ul as per Eq. (15). A typical example of the vortex
solution with U0 = 1.53 and l = 1 is displayed in Fig. 6 [as
it follows from Eqs. (21) and (15), its amplitude profile is
the same as that of the GS with U0 = 0.53]. This value of

FIG. 6. The amplitude structure of an (unstable) vortex mode
with l = 1 in Eq. (13), numerically generated for σ = 0, U0 = 1.53,
and μ = −1: (a) The radial profile and (b) the global shape. The total
norm of the vortex mode, computed as per Eq. (19), is N ≈ 4.58.
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FIG. 7. The instability development of the vortex mode with l =
1 which is shown in Fig. 6. (a) The trajectory of spontaneous motion
of the vortex’ CM [see Eq. (52)], initiated by the drift instability, at
the initial stage of the evolution. The arrow indicates the direction of
the motion along the trajectory. (b) The evolution of the total angular
momentum, defined as per Eq. (12), gradually consumed by the edge
absorber, illustrates the spontaneous transformation of the unstable
vortex into a stable ground state.

U0 is chosen in the instability region, close to its boundary
predicted by Eq. (44), (U0)(l=1)

crit ≈ 1.56 [see also Fig. 7(a)
below].

Differently from the GS, vortex modes are only partially
stable, as demonstrated by values of the eigenvalues for small
perturbations, produced by the numerical solution of BdG
equations (35), and by direct simulations of Eq. (20) alike. We
have performed a systematic stability analysis for the vortex
modes with l = 1, in the case of σ = 0 [no MF cubic term in
Eq. (9)]. First, it was found that, up to accuracy of the numer-
ically accumulated data, all eigenvalues have zero real parts
at U0 > 14/9, and, in exact agreement with Eq. (44), pairs of
unstable eigenvalues appear at U0 < 14/9. Also in agreement
with the above derivation, the respective eigenmodes of small
perturbations correspond to m = ±1 in Eq. (42), i.e., they are
dipole modes, which initiate spontaneous drift of the vortex’
pivot off the central point. An illustration of the resulting
instability development is provided by Fig. 7(a), which shows
that the drift instability triggers motion of the center of mass
(CM) of the vortex mode along the spiral trajectory, the CM’s
location being defined as

{xCM, yCM} = 1

N

∫∫
{xCM , yCM}|ψ (x, y)|2dxdy, (52)

where N is the total norm defined by Eq. (10). Eventually
the pivot will be ousted to the periphery, thus effectively
converting the unstable vortex mode into a stable GS with
zero vorticity. In the case of U0 > 14/9, the simulations
demonstrate that a perturbed vortex with l = 1 is a stable
mode which stays at the central position (not shown here in
detail).

In the course of the simulations, a large part of the initial
norm is consumed by the absorber (emulating losses due to
outward emission of small-amplitude matter waves, in the
indefinitely extended system). In particular, the evolution of
the unstable vortex displayed in Fig. 7(a) leads to its trans-
formation into a residual GS with norm N = 1.88 (≈41% of
the initial value) and chemical potential μ ≈ −95, which is
completely different from the initial value μ = −1. Taking
into regard that the transformation l = 1 → l = 0 implies

the replacement of Ul=1 = U0 − l2 = 0.53 by U0 = 1.53, see
Eq. (15), it is worthy to note that the TF approximation,
given by Eqs. (46) with μ = −95, yields a close value of
the norm, N (σ=0)

TF (μ) ≈ 1.65, even if U0 = 1.53 is not a large
value.

The spontaneous transformation of the vortex mode into
the GS implies decay of the mode’s angular momentum Lz

defined by Eq. (12). In the extended system, the momentum
would be lost with emitted matter waves, while in the present
setting it is gradually eliminated by the edge absorber. The
dependence of Lz on time, corresponding to the evolution of
the unstable vortex in Fig. 7(a), is shown in Fig. 7(b).

The spiral motion displayed in Fig. 7(a) represents only an
initial stage of the evolution (in the notation adopted in Fig. 7,
the time interval displayed in this figure is t = 7). At large
times, when the vortex’s pivot will be lost in the periphery,
the CM will eventually return to the central position. In a
fully conservative system, the CM would rather orbit the
center, cf. Eq. (2), but in the present setting the effective
dissipation induced by the absorber makes the return to the
center possible.

It is relevant to mention too that, as it follows from Eq. (42),
the vortex mode with l = 1 may become unstable against the
perturbation with m = 2, i.e., against spontaneous splitting
in two fragments, at still smaller values of the pull strength,
viz., U0 < 5/9. In this work we did not aim to detect this,
apparently weaker, instability, in the simulations. Lastly, for
l = 2 Eq. (43) predicts a much larger drift-instability region
U0 < 77/9. This instability of the double vortex can be easily
detected in the simulations (not shown here in detail).

IV. CONCLUSION

While it was recently demonstrated that the quantum
collapse, caused by the potential of attraction to the center
∼−r−2, can be suppressed by the cubic repulsive MF (mean-
field) nonlinearity in 3D bosonic gases, making it possible to
restore the otherwise missing GS (ground state), the cubic
self-repulsion is not sufficiently strong to stabilize the gas
in the effectively 2D setting. We have demonstrated that the
effective quartic repulsion, induced by the LHY (Lee-Huang-
Yang) effect, i.e., the correction to the MF theory produced
by quantum fluctuations, provides the minimum strength of
nonlinearity sufficient for the stabilization of the 2D gas under
the action of the same attractive central potential. As a result,
the stable GS is created, with a singular but integrable density
pattern. The results are obtained in the numerical form, as
well as by means of analytical methods, based on the use of
asymptotic expansions of the wave functions at r → 0 and
r → ∞, and TF (Thomas-Fermi) approximation. A counter-
intuitive finding, an explanation to which is given, is that the
stable GS exists even in the case when the central potential is
repulsive, provided that its strength does not exceed a critical
value. In addition to the completely stable GS, partly stable
singular vortex states are constructed too, and their stability
boundary is found in an exact form. The pivot of an unstable
vortex spontaneously drifts away from the center along a
spiral trajectory, the vortex being eventually replaced by a
stable GS. An estimate of the underlying physical parameters,
which correspond to the realization of the model in the form
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of the gas of particles carrying permanent electric dipole
moments, pulled to the central charge, demonstrates that the
radial size of the restored GS may be R ∼ 10 μm, with the
expected number of particles ∼105.

As an extension of the present analysis, it may be inter-
esting, in particular, to analyze a setting with two mutually
symmetric attraction centers, a challenging possibility being

prediction of spontaneous breaking of the symmetry in the GS
pinned to the pair of the centers.
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