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The recent experimental observation of dissipation-induced structural instability provides new opportunities
for exploring the competition mechanism between stationary and nonstationary dynamics [N. Dogra et al.,
Science 366, 1496 (2019)]. In that study, two orthogonal quadratures of cavity field were coupled to two
different Zeeman states of a spinor Bose-Einstein condensate (BEC). Here we propose a scheme to couple
two density-wave degrees of freedom of a BEC to two quadratures of the cavity field. Different from previous
studies, the light-matter quadratures coupling in our model is endowed with a tunable coupling angle. Apart
from the uniform and self-organized phases, we unravel a dynamically unstable state induced by the cavity
dissipation. Interestingly, the dissipation defines a particular coupling angle, across which the instabilities
disappear. Moreover, at this critical coupling angle, one of the two atomic density waves can be independently
excited without affecting one another. It is also found that our system can be mapped into a reduced three-
level model under the commonly used low-excitation-mode approximation. However, the effectiveness of this
approximation is shown to be broken by the dissipative nature of some special system parameters, hinting
that the low-excitation-mode approximation is insufficient in capturing some dissipation-sensitive physics. Our
work enriches the quantum simulation toolbox in the cavity-quantum-electrodynamics system and broadens the
frontiers of light-matter interaction.
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I. INTRODUCTION

The dissipative quantum many-body system lies at the
heart of diverse branches of physics such as statistical me-
chanics, condensed-matter physics, and quantum optics [1].
Compared to its equilibrium analog, a system exposed to dis-
sipation is even harder to understand due to the somewhat un-
controlled environment couplings. Fortunately, with the rapid
improvement of both experimental and theoretical techniques,
lots of exciting progress in this realm has been made [2–20].
It has been shown that the interplay between coherent and
dissipative dynamics can lead to many novel phenomena. Ex-
amples include nonequilibrium transition [2–12], interaction-
mediated laser cooling [13,14], topological effects [15], dy-
namical new universality classes [16–18], and the multista-
bility of quantum spins [19,20]. Among various realizations
of the dissipative system, coherently driven atomic gases
inside optical cavities have emerged as a uniquely promising
route [5,17,21–49]. On the one hand, photons leaking from the
cavity not only provide a convenient way to probe the atomic
state but also open a controlled channel for the collective
dissipative dynamics [50–57]. On the other hand, the scattered
cavity photons feed back on the atomic degrees of freedom
and effectively impose a dynamic potential [29–33], which
favors a unitary evolution of atoms. The competition be-
tween the coherent and dissipative processes in this composite
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system are fairly responsible for interesting nonequilibrium
collective dynamics and exotic steady states.

Recently, plenty of noticeable effects induced by the
driven-dissipative nature of the atom-cavity system have
been uncovered both experimentally [55–64] and theoret-
ically [65–72]. The light-matter interaction considered by
these studies has been, however, mostly limited to the cou-
pling between an atomic density mode and a single quadrature
of cavity fields, which loses potential physics rooted in the
cooperative interplay among multiple light quadratures. Actu-
ally, the combined action of the two orthogonal quadratures
may have major impacts on spin systems [73,74]. For exam-
ple, it has been predicted that the simultaneous coupling be-
tween quantum spins and the two orthogonal quadratures of a
radiation field can lead to anomalous multicritical points [19].
Along the same research direction, some judicious experi-
ments impose this type of coupling on two different Zeeman
states of a spinor Bose-Einstein condensate (BEC) [54,75],
demonstrating that the competition between coherent and dis-
sipative processes can even trigger a structural instability [54].
This progress further advances a series of relevant theoretical
works [76–78]. Nevertheless, given that the quadrature oper-
ator of light is characterized by a phase factor representing
a rotation angle (dubbed the coupling angle) in the phase
space [79], these studies focus on only the orthogonal light-
atom coupling case where the coupling angle is frozen to
π/2, leaving the interaction mechanism arising from a more
generic coupling angle largely unexplored. This encourages
us to raise the following fundamental questions: (i) What new
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physics may emerge from the light-matter interaction if the
involved quadratures of the radiation field can be tuned via
the coupling angle? (ii) What is the role of dissipation in such
a system?

In this paper, we address these questions by studying a
driven-dissipative BEC-cavity system. We propose an experi-
mental scheme in which two density-wave degrees of freedom
of the BEC are coupled to two quadratures of the cavity field.
In contrast to previous proposals, here the two quadratures of
the cavity field carry a coupling angle θ which, together with
their respective pump strengths, can be feasibly controlled in
experiment.

Apart from the uniform and self-organized phases, we
unravel a dynamically unstable state induced by the cavity
dissipation. By adiabatically eliminating the cavity field, we
show that the dissipation defines a particular coupling angle
θc, across which the instabilities completely disappear. More
importantly, when the coupling angle equals θc, one of the two
density modes can be independently excited without affecting
the other. Going beyond the adiabatic elimination, the normal
phase becomes unstable. The instabilities coming from the
nonadiabaticity, however, turn out to be negligible for typical
parameters in the current experiments. It is also found that
our system can be mapped into a reduced three-level model
under the commonly used low-excitation-mode approxima-
tion. However, we show the dissipative nature could break the
effectiveness of the three-level model for some parameters,
hinting that the low-excitation-mode approximation may be
questionable in capturing some dissipation-sensitive physics.

This work is organized as follows. In Sec. II, we describe
the proposed system configuration and present the Hamilto-
nian. In Sec. III, we present the mean-field approach used
in calculating the phase diagrams. In Sec. IV, we calculate
the phase diagrams for the closed system. In Sec. V, we
carry out a stability analysis and characterize the effects of
dissipation on the system. In Sec. VI, we show the steady-state
phase diagrams for the driven-dissipative system. In Sec. VII,
we go beyond the adiabatic elimination by including the
dynamics of the cavity fluctuations. In Sec. VIII, we map the
system into a reduced three-level model using the three-mode
approximation. We discuss the experimental implementation
in Sec. IX and summarize in Sec. X.

II. SYSTEM

As illustrated in Fig. 1(a), we consider a BEC prepared
inside an optical cavity and driven by a pair of orthogonally
polarized lasers. The BEC is assumed to be a cigar shape
(with length L) elongated along the x direction, which we take
as the quantization axis. The two driving lasers, which are
frequency degenerate but have independently tunable phases
and amplitudes, copropagate along the x direction, forming
a generic elliptically polarized single beam before impinging
on the atoms. After propagating through the BEC, this laser
beam is then back reflected from a mirror and traverses the
BEC a second time. A polarization-sensitive phase retarder
is placed in between the mirror and the BEC, imparting an
additional phase shift between the two orthogonally polarized
back-forward propagating fields. The incident lasers with the
same polarizations couple the electronic ground state |0〉 of
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FIG. 1. (a) Schematic illustration of the considered setup. A
quasi-1D BEC is illuminated by a pair of orthogonally polarized
lasers that is back reflected by a mirror. The phase retarder sitting
in between the mirror and the BEC produces polarization-dependent
optical lengths for traversed laser lights and thereby imparts an
additional phase shift between the two back-forward propagating
light fields. (b) The atomic level scheme. The atoms are simul-
taneously driven by the cavity field (orange dashed arrows) and
the counterpropagating lasers (gray solid arrows). (c) Sketch of the
field distribution in the phase space responsible for different cavity
quadratures.

the atoms to two excited states |1〉 and |2〉 with Rabi fre-
quencies �1 and �2, respectively. The optical cavity, whose
main axis is arranged perpendicular to the long axis of the
BEC, singles out a specific quantization mode and typically
enhances its interaction with the atoms. The selected cavity
mode simultaneously mediates the transitions |0〉 ←→ |1〉
and |0〉 ←→ |2〉 with coupling strength gc [see Fig. 1(b)].
The cavity frequency ωc is close to that of the driving lasers
ωp, both of which are detuned far below the atomic transition
frequency ωa, i.e., |�a| ≡ |ωp − ωa| � �1,2. Adiabatically
eliminating the excited states yields the Hamiltonian of the
atom-cavity system,

Ĥ = −h̄

(
�c − Ng2

c

�a

)
â†â +

∫
ψ̂†(x)Ĥaψ̂ (x)dx, (1)

where �c = ωp − ωc is the cavity dutuning, and Ng2
c/�a is a

constant optical potential per photon with N being the atom
number. The single-particle Hamiltonian density is obtained
as (see Appendix A for details)

Ĥa = − h̄2

2m

∂2

∂x2
+ h̄η1 cos(kx)(â + â†)

+ h̄η2 sin(kx)(âeiθ + â†e−iθ )

+ h̄V1 cos2(kx) + h̄V2 sin2(kx). (2)

Here ψ̂ (x) is the matter wave-field operator for the atomic
ground state, â is the annihilation operator of the cavity
photon, and k is the wave vector of the driving lasers.
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We have introduced the driving-field-induced lattice depth
V1(2) = �2

1(2)/�a and the effective cavity-pump strength
η1(2) = �1(2)gc/�a. The photon loss with rate κ is included
in the model via a master equation of the form ∂t ρ̂ =
−i/h̄[Ĥ, ρ̂] + L̂ρ̂, where the Lindblad operator acts as L̂ρ̂ =
κ (2âρ̂â† − â†âρ̂ − ρ̂â†â). In the following discussion, we
neglect the last two terms of Eq. (2) by assuming V1 ≈ V2 for
simplicity. This assumption does not affect the main results of
this paper.

As a noteworthy feature of the system, two out-of-phase
atomic density waves, cos(kx) and sin(kx), are respectively
coupled to two quadratures of the cavity field. The relative
coordinate of the two cavity quadratures is controlled by a
coupling angle θ , which quantifies a rotation of the field
distribution in phase space [see Fig. 1(c) for illustration]. We
emphasize that the pump strength and coupling angle are both
competing parameters that determine the interplay between
the two atomic density waves.

In general, the Hamiltonian (2) possesses a Z2 symmetry
representing its invariance under the transformation â −→ −â
and x −→ x + λ/2, with λ = 2π/k. Of particular interest is
the special case θ = π/2, where the original Z2 symmetry
turns into a Z(1)

2 ⊗ Z(2)
2 double discrete symmetry [73], which

is composed of two other transformations:

(â + â†, iâ − iâ†, x)T1−→(−â − â†, iâ − iâ†,−x + λ/2),

(â + â†, iâ − iâ†, x)T2−→(â + â†,−iâ + iâ†,−x).

This symmetry is further enhanced if both θ = π/2 and η1 =
η2 are satisfied. In this case, the Hamiltonian is invariant
under the simultaneous spatial transformation x −→ x + X
and the cavity-phase rotation â −→ âe−ikX , which yields a
continuous U(1) symmetry associated with the freedom of an
arbitrarily chosen displacement X . In the spirit of Landau’s
theory, it is anticipated that the aforementioned symmetries
should be spontaneously broken by corresponding phase tran-
sitions. However, the dissipative nature plays a subtle role in
the presented system, which prohibits the steady-state phase
transitions associated with the enhanced Z(1)

2 ⊗ Z(2)
2 and U(1)

symmetries. This is because (i) the Z(1)
2 ⊗ Z(2)

2 symmetry
owned by the Hamiltonian is explicitly broken by the Lind-
blad operator and (ii) the dissipation induces an extra phase
shift for the cavity photons, preventing the arbitrariness of
the value of X , which therefore makes the U(1) symmetry
breaking impossible. The physics demonstrating these points
will be detailed in the subsequent sections.

It is worth noting that, moreover, fixing θ = π/2 but
keeping η1 and η2 as freely controlled parameters is equiv-
alent to setting η1 = η2 without any constraint on θ . To
see this clearly, let us set θ = π/2 and reparametrize the
effective cavity-pump strengths by η1 = η cos(ϕ/2) and η2 =
η sin(ϕ/2). The single-particle Hamiltonian (2) therefore
reads

Ĥa = − h̄2

2m

∂2

∂x2
+ h̄η cos(ϕ/2) cos(kx)(â + â†)

+ h̄η sin(ϕ/2) sin(kx)(iâ − iâ†)

+ h̄V1 cos2(kx) + h̄V2 sin2(kx). (3)

Moving into a new gauge by using the transformations a −→
aeiϕ/2 and x −→ x − λ/8, the Hamiltonian (3) exactly repro-
duces the form of Eq. (2),

Ĥa = − h̄2

2m

∂2

∂x2
+ h̄η cos(kx)(â + â†)

+ h̄η sin(kx)(âeiϕ + â†e−iϕ )

+ h̄V1 cos2(kx) + h̄V2 sin2(kx), (4)

where η1 = η2 = η and ϕ plays the role of θ . In this sense,
when setting θ = π/2 (or, equivalently, η1 = η2), our model
shares some similarities with those in Refs. [54,75,76]. How-
ever, as will be shown, letting both θ and η1,2 be controllable
parameters, the proposed model accommodates more interest-
ing physics which is out of the reach of previous proposals.

III. MEAN-FIELD APPROACH

In the thermodynamic limit, it is a good approximation to
neglect the quantum correlation between light and matter and
thereby treat them as classical variables. At this mean-field
level, the system is described by a set of coupled equations
for the cavity-field amplitude 〈â(t )〉 = α(t ) = |α(t )|eiφ(t ) and
atomic condensate wave function 〈ψ̂ (x, t )〉 = √

Nψ (x, t ) =√
Nn(x, t )eiτ (see Appendix B),

i
∂

∂t
α = (−δc − iκ )α + Nη1�1 + Nη2e−iθ�2, (5)

i
∂

∂t
ψ =

[
− h̄

2m

∂2

∂x2
+ η1 cos(kx)(α + α∗)

+ η2 sin(kx)(αeiθ + α∗e−iθ )

]
ψ, (6)

where δc = �c − Ng2
c/�a is the effective cavity detuning,

and �1 ≡ ∫
n(x) cos(kx)dx and �2 ≡ ∫

n(x) sin(kx)dx re-
spectively represent the occupations of the two out-of-phase
density modes, which we identify as order parameters. The
last two terms of Eq. (5) account for the cavity photon
generation rates. Note that these two terms respectively come
from the coherent scattering between the pump field and
different atomic density modes, giving rise to distinct cavity
photons. That is, the term proportional to η1 excites only
one quadrature of the cavity photons, whereas the other term
contributes another quadrature which is characterized by a
rotation of θ in the phase space. It should be noticed that these
two quadratures of cavity field are basically nonorthogonal
to each other except for θ = π/2. The back action of the
photon scattering on the atomic matter wave is reflected on
the terms proportional to cos(kx) and sin(kx) in Eq. (6). These
terms generate a space-dependent optical potential which has
a periodicity of λ.

As we are interested in the steady state of the system, we
self-consistently solve Eqs. (5) and (6) by setting ∂tα = 0
and i∂tψ = μψ , where μ is the chemical potential of the
condensate. It is clear that, if either one of the pump strengths
η1 and η2 is set to zero, the system reduces to the conventional
transversely pumped BEC inside a cavity, whose physics
has been widely investigated both theoretically [5,49,50] and
experimentally [28–30]. In that case, by increasing the pump
strength, a “superradiant phase transition” from a state with
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FIG. 2. Steady-state phase diagrams for closed systems (κ = 0)
with (a) θ = π/2 and (b) θ = π/5 when δc/ωR = −300.

no photon inside the cavity to a state with the appearance
of a macroscopic cavity field, takes place. Richer phenomena
emerge if both η1 and η2 are turned on. To understand these
aspects comprehensively, we first present the result of a closed
system (κ = 0) and then inspect the impacts of finite photon
dissipation.

IV. PHASE DIAGRAM FOR THE CLOSED SYSTEM

Figure 2 plots the phase diagrams for the dissipationless
(κ = 0) BEC-cavity system as a function of η1 and η2. We
first pay attention to the orthogonal coupling case, θ = π/2
[see Fig. 2(a)], considering its particular symmetry. According
to the values of η1 and η2, the steady state is identified as
four different quantum phases. Specifically, when both η1

and η2 are below a critical value ηc = √−δcωR/2N (see
Sec. V for the derivation), the cavity mode is empty, and the
density of the condensate remains uniform with �1 = �2 =
0, corresponding to the normal phase (NP). For η1 > ηc and
η1 > η2, the BEC is driven into a self-organized density-wave
state characterized by �1 �= 0 and �2 = 0, which we denote
as density wave I (DW I). Similarly, for η2 > ηc and η2 >

η1, we achieve another density-wave state characterized by
�1 = 0 and �2 �= 0, which is termed density wave II (DW
II). Here DW I and DW II are essentially symmetry-broken
states which respectively break the Z(1)

2 and Z(2)
2 symmetries.

A more interesting case is η1 = η2 > ηc, where both density
modes are exited with �1 �= 0 and �2 �= 0, and we name
this phase a mixed density wave (MDW). Since in this case
the cavity-field phase φ can spontaneously take any arbitrary
value between zero and 2π , the continuous U(1) symmetry is
broken.

As phase diagrams for any θ �= π/2 resemble each other
(they distinguish themselves solely by minor modifications of

the phase boundaries), we take θ = π/5 to be a representative
example. As shown in Fig. 2(b), the NP is located within
a zone encircled by a smooth phase boundary. For points
{η1, η2} outside this zone, we have �1 �= 0 and �2 �= 0,
corresponding to the MDW. This picture persists for any
coupling angle with θ �= π/2, implying that a discrepancy
from θ = π/2 introduces a coupling between the two density
modes cos(kx) and sin(kx) and thus excludes the emergence
of both DW I and DW II. In other words, the only allowed
phase transition is the one from the NP to the MDW.

By further investigating the discontinuities of the order
parameters, we find the transition from DW I to DW II is of
first order, while the transitions between any two other phases
are of second order.

V. STABILITY ANALYSIS

We start to investigate the more appealing driven-
dissipative properties by incorporating a nonzero photon-loss
rate κ into the model. Since any potential dissipation-induced
instability cannot be fully captured by solely solving the
equations of motion, we prefer to carry out a stability
analysis around the trivial solution (ψ ≡ 1/

√
L, α = 0)

before presenting the final phase diagram. To this end, we
work on the dispersive limit, say, (|δc|, κ ) � (ωR,

√
Nη1,2),

with ωR = h̄k2/2m being the recoil frequency, which allows
us to adiabatically eliminate the cavity field by equating the
field amplitude α with its steady-state value α = (Nη1�1 +
Nη2e−iθ�2)/(δc + iκ ) = R exp(iχ )(Nη1�1 + Nη2e−iθ�2).
Note here R = 1/

√
δ2

c + κ2 and we have introduced the
dissipation-induced phase shift χ = arctan(κ/δc) [54]. Under
this adiabatic approximation, the coupled equations of motion
reduce to a single one,

i
∂

∂t
ψ =

{
− h̄

2m

∂2

∂x2
+ 2h̄Nη1 cos(kx)

δ2
c + κ2

[cos(θ )δcη2〈sin(kx)〉

− sin(θ )κη2〈sin(kx)〉 + δcη1〈cos(kx)〉]

+ 2h̄Nη2 sin(kx)

δ2
c + κ2

[cos(θ )δcη1〈cos(kx)〉

− sin(θ )κη1〈cos(kx)〉 + δcη2〈sin(kx)〉]
}
ψ, (7)

where the symbol 〈· · ·〉 stands for the average over the
single-atom wave function, 〈ψ | · · · |ψ〉. We then effect a
small fluctuation from the stationary state ψ0: ψ (x, t ) =
e−iμt/h̄[ψ0(x) + δψ (x, t )]. Inserting this Ansatz into Eq. (7)
and neglecting higher-order correlations, we obtain an equa-
tion linearized in δψ ,

i
∂

∂t
δψ =

(
− h̄

2m

∂2

∂x2
− μ

h̄

)
δψ + 2η1 cos(kx)

δ2
c + κ2

{cos(θ )δcη2[〈δψ | sin(kx)|ψ0〉 + 〈ψ0| sin(kx)|δψ〉]

− sin(θ )κη2[〈δψ | sin(kx)|ψ0〉 + 〈ψ0| sin(kx)|δψ] + δcη1[〈δψ | cos(kx)|ψ0〉 + 〈ψ0| cos(kx)|δψ〉]}ψ0

+ 2η1 cos(kx)

δ2
c + κ2

{cos(θ )δcη2[〈δψ | cos(kx)|ψ0〉 + 〈ψ0| cos(kx)|δψ〉] + sin(θ )κη2

× [〈δψ | cos(kx)|ψ0〉 + 〈ψ0| cos(kx)|δψ〉] + δcη2[〈δψ | sin(kx)|ψ0〉 + 〈ψ0| sin(kx)|δψ〉]}ψ0. (8)
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We further assume the fluctuation evolves in the form
δψ (x, t ) = δψ+(x)e−iωt/h̄ + δψ∗

−(x)eiω∗t/h̄, where ω = ν −
iγ is a complex parameter, with ν and γ being the oscillation
frequency and damping rate, respectively. Equation (8) is then
recast in matrix form, ωv = Mv, where v =(δψ+, δψ−)T and

M =
(

H0/h̄ + �∗ �

−� −H0/h̄ − �∗

)
, (9)

with � = �+I+ + �−I− and �∗ = �+I+∗ + �−I−∗.
In the matrix (9), H0 = −h̄2/2m∂2

x − μ, �+ = N{2η2
1

cos(kx)δcψ0 + 2η1η2 sin(kx)[cos(θ )δc + sin(θ )κ]ψ0}/(δ2
c +

κ2), �− = N{2η2
2 sin(kx)δcψ0 + 2η1η2 cos(kx)[cos(θ )δc −

sin(θ )κ]ψ0}/(δ2
c + κ2), and I± (I±∗) is an integral operator

defined as I±ξ = ∫ λ

0 ψ0(x) cos(kx − π/4 ± π/4)ξdx/λ

[I±∗ξ = ∫ λ

0 ψ∗
0 (x) cos(kx − π/4 ± π/4)ξdx/λ]. Assuming

uniform condensate distribution (ψ0 ≡ 1/
√

L), the definition
of the integral operators I± and I±∗ indicates that only
the Fourier components cos(kx) and sin(kx) couple to the
fluctuations, which motivates us to search for solutions in the
form

δψ+ = 1
2 [(δψ1

+ + δψ1
−) cos(kx) + (δψ2

+ + δψ2
−) sin(kx)],

δψ− = 1
2 [(δψ1

+ − δψ1
−) cos(kx) + (δψ2

+ − δψ2
−) sin(kx)].

Under the basis of v′ = (δψ1
+, δψ1

−, δψ2
+, δψ2

−) T, it is
straightforward to write the dynamical matrix as

M =

⎛
⎜⎝

0 ωR 0 0
ωR + ζ1 0 ω+ 0

0 0 0 ωR

ω− 0 ωR + ζ2 0

⎞
⎟⎠, (10)

where ω+ = 2Nη1η2R cos(θ + χ ), ω− = 2Nη1η2R cos(θ −
χ ), ζ1 = 2Nη2

1R cos(χ ), and ζ2 = 2Nη2
2R cos(χ ). Note

that for later convenience, the entries are intentionally
parametrized in terms of χ and R instead of the more familiar
κ and δc. Here ζ1 and ζ2 act as energy shifts, whereas ω+
and ω− denote the cavity-mediated couplings between the two
density modes. From the definition of ω±, it is clear that the
couplings are generated by the nonorthogonal coupling angle
θ ( �= π/2) and the photon dissipation χ ( �= 0 ). That said,
the role of dissipation is even more particular since it makes
the two couplings asymmetric (ω+ �= ω−) and even have
opposite signs (ω+ω− < 0), hinting at potential dissipation-
induced instabilities, as will be described below.

By solving the characteristic equation Det(M − ωI4×4) =
0, the spectrum of M is readily obtained as

ω = ±
√

ω0ωR ± ωR

2

√
4ω+ω− + (ζ1 − ζ2)2, (11)

with ω0 = ωR + (ζ1 + ζ2)/2. The zero-frequency (ω = 0) so-
lution of Eq. (11) yields the threshold pump strengths above
which the uniform distributed atomic gases self-organize into
density waves. Especially for κ = 0 and θ = π/2, the two
pump strengths decouple, and we get a simple critical value
ηc = √−δcωR/2N . A state becomes dynamically unstable if
ω acquires both a positive imaginary part and a nonzero real
part. By inspecting the expression of Eq. (11), the relation
satisfying this requirement is found to be 4ω+ω− + (ζ1 −
ζ2)2 < 0, which, after a substitution of system parameters,

FIG. 3. (a) The real and imaginary parts of the eigenvalues ω

as a function of λ1 for λ2/ωR = 2, κ/ωR = 200, and δc/ωR =
−300. The results are obtained from Eq. (11). (b) The positive
branch of the imaginary part of the eigenvalues ω (blue dots), along
the transverse cut line,

√
Nη2 = 2ωR − √

Nη1, depicted by the red
dotted line in Fig. 5(a). The results are obtained by diagonalizing
the 6 × 6 dynamical matrix including cavity-field fluctuations for
κ/ωR = 5, 15, 50, 1000, 6000 and δc/ωR = −1.5κ . It can be seen
that as the adiabatic limit is approached, the eigenvalues reduce to
the results given by Eq. (11) (red solid lines).

results in the following simple form:

sin2(ϕ) >
cos2(χ )

sin2(θ )
, (12)

with ϕ = 2 arctan(η2/η1) as we have defined in Sec. II. Notice
that for this case, the imaginary part of the eigenvalues always
comes in pairs constituted by negative and positive branches,
which represent damping and amplification, respectively [see
Fig. 3(a)]. It is the appearance of the positive branch, namely,
the amplified excitation, that renders the NP unstable. The
instability is characterized by the loss of a stationary steady
state. In fact, a state which falls into the unstable regime
responds to initially small fluctuations by undamped limit-
cycle oscillations [54,76,77].

It can be found from Eq. (12) that, for a closed system
(χ = 0), we have cos2(χ )/ sin2(θ ) ≡ 1/ sin2(θ ) � 1, which
invalidates the inequality in Eq. (12) all the time. This implies
that the dissipation plays the key role in the appearance of the
instability, which is in contrast to some standard cavity-BEC
systems [5,47–49]. There, the impacts of dissipation are qual-
itatively minor since only the phase-transition point is altered,
without major modification of the phase diagram. Additional
crucial knowledge we can infer is that the unstable region
in the phase diagram is feasibly controlled by the coupling
angle θ . Actually, tuning θ such that sin2(θ ) < cos2(χ ), the
instability completely disappears, meaning the whole phase
diagram is fully stabilized irrespective of η1 and η2. The
equality sin2(θ ) = cos2(χ ) defines a critical point separating
a fully stable regime and a regime with possible instability
[see Fig. 4(a), for example]. Conversely, the unstable region
is maximally enlarged when θ = π/2, which is nothing but
the orthogonal coupling case realized in Refs. [54,75]. From
this point of view, embedding a tunable coupling angle in
the light-matter interaction, our proposal offers possibilities to
either enhance or weaken the dissipation-induced instability in
a controlled manner.
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NP

UST UST MDWNP

DW I

DW II

(a) (b)

FIG. 4. Steady-state phase diagrams in the rescaled parameter
space {θ/π, ϕ/π} for (a)

√
Nη/ωR = 10 and (b)

√
Nη/ωR = 30

when κ/ωR = 200 and δc/ωR = −300. Region UST represents a
dynamically unstable phase, and the black dashed lines are de-
fined by sin2(θ ) = cos2(χ ), which determines the critical coupling
angle θc.

VI. STEADY-STATE QUANTUM PHASES FOR
THE DRIVEN-DISSIPATIVE SYSTEM

It is the right stage to explore the quantum phases system-
atically. Figure 5 depicts the steady-state phase diagrams for
several representative coupling angles (more phase diagrams
and their comparison with cases for the closed system are
discussed in Appendix C). We first focus on the orthogonal
coupling case θ = π/2. As shown in Fig. 5(a), the phase
diagram is dramatically distinct from its equilibrium analog
[see Fig. 2(a)]. An immediate observation is that DW I and
DW II predicted in Fig. 2(a) are mixed into a MDW due
to the dissipative coupling. Moreover, the expected U(1)
symmetry-broken phase transition for η1 = η2 vanishes, and
a considerably large region of dynamical instability (UST),
enclosed by the critical curves defined by sin2(ϕ) = cos2(χ )

FIG. 5. Steady-state phase diagrams for the dissipative system,
determined by the equations of motion (5) and (6) and a stability
analysis, for varying coupling angles with (a) θ = π/2, (b) θ = π/5,
(c) θ = −χ + π/2 ≈ 4.12, and (d) θ = χ + π/2 ≈ −0.98 when
κ/ωR = 200 and δc/ωR = −300. In (a), the blue dashed lines are
defined by sin2(ϕ) = cos2(χ ).

(the blue dashed lines), emerges. As an additional inference,
the equal-coupling case (i.e., η1 = η2) is sensitive to the
dissipation, so much so that any infinitely small κ leads to
an instability.

The physics behind this can be well understood in a semi-
classical picture. Treating quantum operators classically, we
express the total single-particle energy as E = −(h̄2/2m)∂2

x +
E (x), where the self-consistent potential is given by

E (x) = 2|α|η1 cos(φ) cos(kx) − 2|α|η2 sin(φ) sin(kx).

The onset of the self-organization is triggered by the period-
icity of E (x), attracting more atoms to its minima, where the
equation ∂xE = 0 applies. This links the position coordinate
with the cavity phase via

tan(kx) = − tan
(ϕ

2

)
tan(φ). (13)

On the other hand, the steady-state solution of the cavity
amplitude reads α = NR eiχ [η1 cos(kx) − iη2 sin(kx)], pro-
ducing

tan(φ) = sin(χ ) − cos(χ ) tan(ϕ/2) tan(kx)

cos(χ ) + sin(χ ) tan(ϕ/2) tan(kx)
. (14)

The existence of a solution for Eqs. (13) and (14) requires
sin(ϕ) > cos(χ ), which agrees with the result obtained from
the stability analysis. This picture also explains the absence
of the U(1) symmetry breaking for the case η1 = η2 [i.e.,
tan(ϕ/2) = 1] since the dissipation-induced phase shift χ

imposes an extra constraint on the degree of freedom of φ

through Eq. (14), which makes it frozen at a specific value
instead of taking a random number from zero to 2π .

Along this reasoning, it is expected that phase diagrams
for other coupling angles should be qualitatively similar,
saying the self-organized phase cannot be anything but the
MDW [see Fig. 5(b), for example]. However, an intriguing
phenomenon occurs when situating θ at the critical points
described by sin2(θ ) = cos2(χ ) (i.e., θ = θc = ±χ ± π/2),
as shown in Figs. 5(c) and 5(d). Considering the duality of
Figs. 5(c) and 5(d), let us take θ = −χ ± π/2 as an example.
In this case, the phase diagram exactly recovers the skeleton
of that in Fig. 2(a), where a closed system with θ = π/2
operates. That is to say, the whole phase diagram is divided
into three different regions, {η1 � η̃c, η2 � η̃c}, {η1 > η̃c,
η1 > η2}, and {η2 > η̃c, η2 > η1}, with a redefined critical
pump strength η̃c = ηc/ sin(θ ). Nevertheless, the major dif-
ference lies in the region (η2 > η̃c, η2 > η1) where the MDW
supersedes the DW II, and the first-order transition presented
in Fig. 2(a) becomes second order here. As complements,
Figs. 4(a) and 4(b) show phase diagrams in the θ -ϕ plane

for different pump strengths η ≡
√

η2
1 + η2

2, from which the
particularity of θc becomes clearer. These results look a bit
counterintuitive since both the nonorthogonal coupling and
the cavity dissipation are apt to mix the two density modes.
Our finding shows that the dissipation defines a particular
coupling angle θc = ±χ ± π/2, in which the two mixing
elements cooperate and somehow counteract each other.

Let us give a description of this exotic behavior. Ob-
serving only the Fourier components cos(kx) and sin(kx) of
a fluctuation of the condensate wave function can excite a
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nonzero cavity field, we construct a trial initial wave function
ψ (x, 0) = √

1/L + ε1
√

2/L cos(kx) + ε2
√

2/L sin(kx), with
|ε1,2| � 1 [49]. Propagating ψ (x, 0) by one iteration step
of the imaginary time �τ (τ = it), we have ψ (x,�τ ) =√

1/L + δψ (x,�τ ), where

δψ (x,�τ ) = {ε1 − [2NR cos(χ − θ )η1η2ε2 + ωRε1

+ 2NR cos(χ )η2
1ε1]�τ }

√
2

L
cos(kx)

+ {
ε2 − [

2NR cos(χ + θ )η1η2ε1 + ωRε2

+ 2NR cos(χ )η2
2ε2

]
�τ

}√ 2

L
sin(kx). (15)

Under the basis of v′′ = (
√

2/L cos(kx),
√

2/L sin(kx)),
Eq. (15) can be formulated in the matrix form, δψ(x,�τ ) =
(δψ1(x,�τ ), δψ2(x,�τ ))T = �(ε1, ε2)T, where

� =
(

1 − D1�τ N−�τ

N+�τ 1 − D2�τ

)
, (16)

with D1,2 = 2NR cos(χ )η2
1,2 + ωR and N± = −2NR cos(χ ±

θ )η1η2. Inserting θ = −χ + π/2 into � and diagonalizing
it, we get two eigenvalues �̃1 = 1 − [2NR cos(χ )η2

1 +
ωR]�τ and �̃2 = 1 − [2NR cos(χ )η2

2 + ωR]�τ , whose
eigenvectors respectively read v1 = (1, 0)T and v2 =
( − 2η1η2 sin(χ )/(η2

1 − η2
2 ), 1)T. Utilizing �̃1,2 and v1,2,

it is straightforward to obtain the wave function at n�τ ,

ψ (x, n�τ )

=
√

1

L
+ ε2

√
2

L

[
sin(kx) − 2η1η2 sin(χ )

η2
1 − η2

2

cos(kx)

]
�̃n

2

+ ε′
1

√
2

L
cos(kx)�̃n

1, (17)

where ε′
1 = ε1 + 2η1η2 sin(χ )/(η2

1 − η2
2 )ε2 and n can be any

integer number. In Eq. (17), �̃1,2 < 1 (�̃1,2 > 1) represents
decay (amplification) of corresponding modes, leading to the
normal (self-organized) state in the long-time limit. Notice
that the second line of Eq. (17) involves a term proportional
to sin(kx) − 2η1η2 sin(χ )/(η2

1 − η2
2 ) cos(kx); it thus becomes

evident that for η1 > η̃c and η2 < η̃c (namely, �̃1 > 1 and
�̃2 < 1), only the cosinelike density wave ∝ cos(kx) emerges
(DW I), while for η2 > η̃c and η1 < η̃c (namely, �̃1 < 1
and �̃2 > 1), both density waves are simultaneously excited
(MDW). We emphasize that the above derivation is mainly
based on a perturbation assumption, which works only around
the weak-excitation regime; it should therefore not be strange
that the present framework is not able to precisely predict the
phase boundary between DW I and MDW.

For completeness, we give diagrams of the order parame-
ters �1 and �2, from which one obtains the phase diagrams
of Figs. 2 and 5, in Appendix D.

VII. BEYOND ADIABATIC ELIMINATION

Up to now, the discussion has been restricted to the adi-
abatic limit where fluctuations of the cavity amplitude are
omitted. We now go beyond the adiabatic approximation by

including the dynamics of the cavity fluctuations δα and δα∗
(see Appendix E). By doing this, we get a 6 × 6 dynami-
cal matrix whose spectrum cannot be expressed analytically.
The numerical diagonalization of this matrix suggests that
the nonadiabaticity exerts no influence on the self-organized
phase but makes the NP unstable for all θ �= 0,±π . This
arises from the observation that a nonzero, positive imaginary
part of the eigenvalues appears throughout the NP except
for θ = 0,±π . Figure 3(b) depicts the imaginary part of the
these eigenvalues for some different δc and κ . We find that
approaching the adiabatic limit (|δc|, κ ) � (ωR,

√
Nη1,2), the

results reduce to that given by Eq. (11).

VIII. THREE-MODE APPROXIMATION FOR THE BEC

Following the commonly used two-mode approxima-
tion [27–29], the matter field in our model can be spanned
by, minimally, three Fourier modes within the single recoil
scattering limit,

ψ̂ (x) =
√

1

L
[ĉ0 + ĉ1

√
2 cos(kx) + ĉ2

√
2 sin(kx)], (18)

where ĉ0, ĉ1, and ĉ2 are bosonic annihilation operators for
the corresponding modes. It is more convenient to introduce
the collective three-level operator �̂i j = ∑N

k=1 |i〉k〈 j|k with
atomic states {|0〉k, |1〉k, |2〉k} (k = 1, 2, . . . , N ). The opera-
tors �̂i j fulfill the U(3) algebra commutation relations [�̂i j ,
�̂kl ] = δ jk�̂il − δil�̂k j . By invoking a generalized-Schwinger
representation [80], �̂i j = ĉ†

i ĉ j (i, j = 0, 1, 2), the Hamilto-
nian (1) in the three-mode subspace reads

Ĥ = −h̄δcâ†â − h̄ωR�̂00 + h̄μ1√
N

(�̂01 + �̂10)(â + â†)

+ h̄μ2√
N

(�̂02 + �̂20)(âeiθ + â†e−iθ ), (19)

with the collective coupling strength μ1,2 = η1,2

√
2N/2. It is

easy to check that the symmetry property here follows that in
the Hamiltonian (1). Especially, when μ1 = μ2 and θ = π/2,
the emergent U(1) symmetry is characterized by a conserved
quantity Ĉ = â†â + i(�̂12 − �̂21), satisfying [Ĉ, Ĥ ] = 0. The
effective Hamiltonian (19) describes a single-mode quantized
light field interacting with three-level atoms, whose transition
channels, |0〉 ←→ |1〉 and |0〉 ←→ |2〉, are coupled by differ-
ent quadratures of light [see Fig. 6(a)].

The quantum phases for this model are classified by the
expectation values of �̂11 and �̂22, whose roles are the
same as those of �1 and �2, respectively. Similarly, the phase
diagram is straightforwardly obtained by exploiting the steady
state of the equations of motion, ih̄∂t 〈�̂i j〉 = 〈[�̂i j, Ĥ]〉 and
ih̄∂t 〈â〉 = 〈[â, Ĥ]〉 − ih̄κ〈â〉 (see Appendix F for details).
While for most parameters we are interested in, the solutions
are in accordance with the results obtained by directly solving
Eqs. (5) and (6), a remarkable exception appears when tuning
the coupling angle to the critical values θc = ±χ ± π/2. In
this case, the three-level model predicts only two possible
phases: NP and MDW, as shown in Fig. 6(b). This sharply
contrasts with Figs. 5(c) and 5(d), which are plotted based on
the solutions for Eqs. (5) and (6). As a matter of fact, provided
the photon dissipation is incorporated, the three-level
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NP

MDW

(a) (b)

FIG. 6. (a) Three-level atoms interact with different quadra-
tures of a single-mode quantized light field via transition channels
|0〉 ←→ |1〉 and |0〉 ←→ |2〉. (b) Phase diagram for the effective
model under three-mode approximation. The parameters are the
same as those in Fig. 5(c).

model always excludes the emergence of DW I and DW
II. This finding provides an interesting example in which the
effectiveness of the three-mode approximation is radically
broken by the dissipative nature. It is thus a hint that the
effective model under low-excitation-mode approximation
may be insufficient in capturing certain physics when the
dissipation starts to play a role. We leave the exploration of
its microscopic origin to future work.

IX. EXPERIMENTAL CONSIDERATION

In the proposed experiment, the two driving lasers can
be respectively chosen as left- and right-circularly polarized.
Accordingly, the atomic internal ground and excited states
are hyperfine Zeeman states with magnetic levels mF = 0 and
mF = ±1, respectively. Given this, a promising candidate for
the phase retarder is the Faraday rotator [81], which can im-
part an arbitrary phase difference between lasers with opposite
circular polarization. Therefore, the realization of the cosine-
like and sinelike density coupling in the Hamiltonian (2) is
achieved by properly varying the magnetic field in the Faraday
rotator such that the imparted phase difference between the
two backreflected circularly-polarized lasers is locked to π/2.
Moreover, the coupling angle θ can be feasibly controlled by
simply tunning the initial phase difference of the two incident
lasers (see Appendix A). While the experiment technique
to directly distinguish the two density patterns cos(kx) and
sin(kx) has been developed [58,59], a more convenient way is
to exploit the one-to-one correspondence between the cavity
phase φ and the atomic density wave order parameters �1,2.
In recognition of this, the goal to identify different density
waves is mapped into detecting the cavity phase, which can be
readily accomplished by using a heterodyne detection system
analyzing the light field leaking from the cavity [53–55,82].

We then provide a brief estimation of the system parame-
ters based on the current experimental conditions with 87Rb
atoms [31,55,75,76]. For laser wavelength λ near 780 nm, the
recoil frequency ωR is estimated to be ∼10 kHz. The number
of trapped atoms, which is on the order of N ∼ 104, appears
to be practical [31,75]. The atomic detuning can be chosen as
�a ∼ 100 GHz [55], and the parameters (|�1,2|, |g|, |�c|, κ )
are on the order of a few megahertz. Thus, the condition
for the adiabatic elimination of the excited atomic levels,
say, |�a| � (|�1,2|, |g|, |�c|), is well satisfied. Under this
parameter setting, the collective coupling strengths

√
Nη1

and
√

Nη2 can be widely tuned, ranging from zero to the
order of megahertz, implying the self-organization condition
η1(η1) � ηc is achievable. Furthermore, by properly setting
the Rabi frequencies and cavity detuning, it is easy to place
the system in the adiabatic limit of the cavity field [(|δc|, κ ) �
(ωR,

√
Nη1,2)].

X. CONCLUSIONS

In summary, we have proposed an experimental scheme
in which two density-wave degrees of freedom of the BEC
are coupled to two quadratures of the cavity field. Different
from previous studies, here the coupling angle between the
two quadratures is experimentally tunable, leading to different
physics emerging from nonorthogonal quadratures coupling
between light and matter. For a closed system without dissi-
pation, the two atomic density modes can be excited, respec-
tively, by varying the pump strength and coupling angle. This
gives rise to four possible quantum phases, all of which are
shown to be stable against fluctuations. The cavity dissipation,
however, plays a significant role in determining the steady-
state phase diagram. For one thing, it induces a novel unstable
region above the normal phase. For the other, it defines a par-
ticular coupling angle across which the system exhibits some
properties resembling its equilibrium analog. While additional
antidampings may be generated by the nonadiabaticity of
the cavity field, which renders the normal phase unstable, it
turns out to be negligibly small for typical parameters in the
current experiments. Moreover, for some special parameters,
the commonly used low-excitation-mode approximation is
shown to be questionable for our model due to the dissipative
nature of the system.

Note added in proof. Recently, we became aware of Ref.
[83], where a first-order structural phase transition was ob-
served by exploiting a similar light-matter coupling scheme.
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APPENDIX A: EFFECTIVE HAMILTONIAN

In this Appendix, we provide the detailed derivation of
Hamiltonian (1) in the main text. We start by considering the
coupling of internal states of a single atom, as illustrated in
Fig. 1(b) in the main text. The Hamiltonian can be decom-

posed as Ĥ = Ĥ0 + ←−̂
HI + −→̂

HI , where

Ĥ0 = ωcâ†â +
∑
j=1,2

ω j | j〉〈 j| + p̂2

2m
+ VR(r), (A1)

←−̂
HI = −1

2

∑
j=1,2

[
←−
� j (x)e−iωpt |0〉〈 j| + gcâ|0〉〈 j| + H.c.], (A2)

−→̂
HI = −1

2

∑
j=1,2

[
−→
� j (x)e−iωpt |0〉〈 j| + gcâ|0〉〈 j| + H.c.], (A3)

with the Rabi frequencies
←−
� j (x) = � j exp[i(kx + ϑ j + θ j )]

and
−→
� j (x) = � j exp[−i(kx + ϑ j − θ j )]. Note that Ĥ0 is the
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free Hamiltonian and
←−̂
HI (

−→̂
HI ) represents the light-matter

interaction contributed by the incident (back-reflected) pump-
ing lasers. In the Hamiltonians (A1)–(A3), p̂2/2m and VR(r)
are the kinetic energy and transverse trapping potential, re-
spectively, and ω j denotes the eigenfrequency of the atomic
state | j〉 ( j = 1, 2). The field operator â describes the an-
nihilation of a cavity photon with the frequency ωc. The
transitions |0〉 ↔ |1〉 and |0〉 ↔ |2〉 are, respectively, driven
by two orthogonally polarized pumping lasers with the Rabi
amplitudes �1 and �2. H.c. denotes the Hermitian conju-
gation. Since the BEC is arranged to be orthogonal to the
cavity axis, the atom-cavity coupling gc is space independent.
We emphasize that the phase of the incident (back-reflecting)
laser mediating the transition |0〉 ↔ | j〉 is given by θ j + ϑ j

(θ j − ϑ j). Therefore, the phase shift imparted by the phase
retarder for the corresponding transition is 2ϑ j .

We introduce a time-dependent unitary transformation,
Û (t ) = exp[i(

∑
j=1,2 | j〉〈 j| + â†â)h̄ωpt], under which the

Hamiltonian Ĥ becomes

Ĥ = −�câ†â + p̂2

2m
+ VR(r) −

∑
j=1,2

(
�| j〉〈 j| +

←−
� j (x)

2
|0〉〈 j|

+
−→
� j (x)

2
|0〉〈 j| + gâ|0〉〈 j| + H.c.

)
, (A4)

where �c = ωp − ωc is the cavity detuning and �a = ωp −
ω1 ≈ ωp − ω2 denotes the detuning between pumping lasers
and atomic eigenfrequencies. We work in the limit of large
detuning |�a| � (|�1,2|, |g|, |�c|), which allows us to adia-
batically eliminate the excited states |1〉 and |2〉. The resulting
effective Hamiltonian is given as

Ĥ = −(�c − g2
c/�a)â†â + p̂2

2m
+ VR(r)

+ h̄�1gc

�a
cos(kx)(â + â†)

+ h̄�2gc

�a
cos(kx + ϑ )(âeiθ + â†e−iθ )

+ h̄�2
1

�a
cos2(kx) + h̄�2

2

�a
cos2(kx + ϑ ). (A5)

Note that in writing Hamiltonian (A5), a gauge with ϑ2 = ϑ ,
θ2 = θ , and ϑ1 = θ1 = 0 has been chosen. To describe the
dynamics of N atoms, we extend the single-particle Hamil-
tonian (A5) to the second-quantized form, i.e.,

Ĥ = −h̄δcâ†â +
∫

d3r�̂
†
(r)

[
p̂2

2m
+ V̂R(r) + h̄�1gc

�a

× cos(kx)(â + â†) + h̄�2gc

�a
cos(kx + ϑ )(âeiθ + â†e−iθ )

+ h̄�2
1

�a
cos2(kx)+ h̄�2

2

�a
cos2(kx + ϑ )

]
�̂(r), (A6)

where δc = �c − Ng2
c/�a and �̂(r) denotes the field operator

for annihilating an atom at position r. We further assume
VR(r) is strong enough that the atomic motion in the trans-
verse direction is frozen to the ground state. This enables
us to integrate out the transverse degrees of freedom using
�̂(r) =

√
2/πρ2ψ̂ (x) exp[−(y2 + z2)/ρ2], where ρ is a trans-

verse characteristic length. The simplified one-dimensional
Hamiltonian thus reads

Ĥ = −h̄δcâ†â +
∫

d3xψ̂†(x)

[
− h̄2

2m

∂2

∂x2

+ h̄η2 cos(kx + ϑ )(âeiθ + â†e−iθ )

+ h̄η1 cos(kx)(â + â†) + h̄V1 cos2(kx)

+ h̄V2 cos2(kx + ϑ )

]
ψ̂ (x), (A7)

where V1,2 = �2
1,2/�a and η1,2 = �1,2gc/�a. By setting ϑ =

π/2, Eq. (A7) reduces to Hamiltonian (1) in the main text.

APPENDIX B: MEAN-FIELD EQUATIONS

The Heisenberg equations of the photon annihilation oper-
ator â and the matter wave-field operator ψ̂ (x) are derived by
using the Hamiltonian Ĥ,

i
∂

∂t
â = 1

h̄
[â, Ĥ] = (−h̄δc − ih̄κ )â + η1�̂1 + η2e−iθ �̂2,

(B1)

FIG. 7. Phase diagrams with δc/ωR = −300 and different �θ , where �θ = θ − π/2. The top and bottom panels correspond to κ/ωR =
200 and κ/ωR = 0, respectively.
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FIG. 8. Order parameters |�1| and |�2| for (a1) and (a2) κ/ωR = 0, θ = π/2, (b1) and (b2) κ/ωR = 0, θ = π/5, (c1) and (c2) κ/ωR =
200, θ = π/2, (d1) and (d2) κ/ωR = 200, θ = π/5, (e1) and (e2) κ/ωR = 200, θ = 4.12, and (f1) and (f2) κ/ωR = 200, θ = −0.98, with
δc/ωR = −300. The shaded areas in (c1) and (c2) indicate the absence of stationary steady-state solutions.

i
∂

∂t
ψ̂ (x) = 1

h̄
[ψ̂ (x), Ĥ] = 1

h̄
Ĥaψ̂ (x), (B2)

where �̂1 = ∫
d3xψ̂†(x) cos(kx)ψ̂ (x) and �̂2 =∫

d3xψ̂†(x) sin(kx)ψ̂ (x). Note that we have added the
cavity decay rate κ in Eq. (B1). Replacing the quantum field
operators â and ψ̂ (x) by their averages 〈â(t )〉 = α(t ) =
|α(t )|eiφ(t ) and 〈ψ̂ (x, t )〉 = √

Nψ (x, t ) = √
Nn(x, t )eiτ ,

respectively, we get the mean-field equations (5) and (6) in
the main text.

APPENDIX C: MORE PHASE DIAGRAMS

As plotted in Fig. 7, we provide more phase diagrams
to show the contrast between the dissipative (top panel) and
dissipationless (bottom panel) systems.

APPENDIX D: DIAGRAMS OF THE ORDER PARAMETERS

Figure 8 shows the steady-state solutions of order parame-
ters �1 and �2 with the same parameters as those in Figs. 2
and 5, obtained by numerically solving Eqs. (5) and (6).
In these phase diagrams, Figs. 8(a1)–8(b2) correspond to
Figs. 2(a) and 2(b), and Figs. 8(c1)–8(f2) correspond to

Figs. 5(a)–5(d). It should be noticed that, within the shaded
area in Figs. 8(c1) and 8(c2), the system loses stationary
steady-state solutions but features limit-cycle oscillations in
the long-time limit.

APPENDIX E: STABILITY ANALYSIS BEYOND
ADIABATIC ELIMINATION

We go beyond adiabatic elimination by incorporating the
dynamics of the cavity fluctuations δα and δα∗. We as-
sume ψ (x, t ) = e−iμt/h̄[ψ0(x) + δψ (x, t )] and α(t ) = α0 +
δα, where ψ0(x) and α0 are the steady-state solution of
Eqs. (5) and (6) in the main text. The equations of motion
linearized in δψ and δα read

ih̄
∂

∂t
δψ− =

(
− h̄2

2m

∂2

∂x2
− μ

)
δψ + ψ0η1 cos(kx)(δα + δα∗)

+ψ0η2 sin(kx)(δαeiθ + δα∗e−iθ ), (E1)

ih̄
∂

∂t
δα = Nη1

∫
dx cos(kx)(ψ∗

0 δψ + ψ0δψ
∗)

+ Nψ0η2

∫
dx cos(kx)(ψ∗

0 δψ + ψ0δψ
∗)e−iθ

× (−h̄δc − ih̄κ )δα. (E2)
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Following the strategy employed in Sec. V, we substitute the Ansätze δψ (x, t ) = δψ+(x)e−iωt/h̄ + δψ∗
−(x)e−iω∗t/h̄ and δα(t ) =

δα+e−iωt/h̄ + δα∗
−eiω∗t/h̄ into Eqs. (E1) and (E2) and obtain

h̄ωδψ+ =
(

− h̄2

2m

∂2

∂x2
− μ

)
δψ+ + ψ0η1 cos(kx)(δα+ + δα−) + ψ0η2 sin(kx)(δα+eiθ + δα−e−iθ ), (E3)

h̄ωδψ− =
(

h̄2

2m

∂2

∂x2
+ μ

)
δψ− − ψ0η1 cos(kx)(δα+ + δα−) − ψ0η2 sin(kx)(δα+eiθ + δα−e−iθ ), (E4)

h̄ωδα+ = Nη1

∫
dx cos(kx)(ψ∗

0 δψ+ + ψ0δψ−) + Nη2

∫
dx sin(kx)(ψ∗

0 δψ+ + ψ0δψ−)e−iθ + (−h̄δc + ih̄κ )δα+, (E5)

h̄ωδα− = −Nψ0η1

∫
dx cos(kx)(ψ∗

0 δψ+ + ψ0δψ−) − Nη2

∫
dx sin(kx)(ψ∗

0 δψ+ + ψ0δψ−)e−iθ + (h̄δc − ih̄κ )δα−. (E6)

These equations can be recast in the matrix form ωf = Mf , with f =(δψ+, δψ−, δα+, δα−)T and

M =

⎛
⎜⎜⎝

Hk − μ 0 ψ0(K1(x) + K2(x)eiθ ) ψ0(K1(x) + K2(x)e−iθ )
0 −Hk + μ −ψ0(K1(x) + K2(x)eiθ ) −ψ0(K1(x) + K2(x)e−iθ )

N (η1I+∗ + η2e−iθI−∗) N (η1I+ + η2e−iθI−) −δc + iκ 0
−N (η1I+∗ + η2e−iθI−∗) −N (η1I+ + η2e−iθI−) 0 δc − iκ

⎞
⎟⎟⎠, (E7)

where K1(x) = η1 cos(kx), K2(x) = η2 sin(kx), and Hk = −(h̄2/2m)∂2
x is the kinetic energy.

Using the trivial solution [ψ0(x) = 1/
√

L, α0 = 0] and the Ansätze δψ± = δψ
(1)
± cos(kx) + δψ

(2)
± sin(kx), the dynamical

matrix takes the following 6 × 6 form:

M̃ =

⎛
⎜⎜⎜⎜⎜⎝

ωR 0 0 0 η1 η1

0 −ωR 0 0 −η1 −η1

0 0 ωR 0 η2eiθ η2e−iθ

0 0 0 −ωR −η2eiθ −η2e−iθ

Nη1/2 Nη1/2 Nη2e−iθ /2 Nη2e−iθ /2 −δc + iκ 0
−Nη1/2 −Nη1/2 −Nη2eiθ /2 −Nη2eiθ /2 0 δc − iκ

⎞
⎟⎟⎟⎟⎟⎠. (E8)

The eigenvalues ω of M̃ are the solutions of the sixth-order characteristic equation Det(M − ωI6×6) = 0, namely, the
solutions of[(

δcωR + 2Nη2
1

)
ωR + δcω

2
][(

δcωR + 2Nη2
2

)
ωR + δcω

2
] = (ω + iκ )2

(
ω2

R − ω2
)2 + 4ω2

RN2η2
1η

2
2 cos2(θ ). (E9)

APPENDIX F: STEADY-STATE QUANTUM PHASES FOR THE EFFECTIVE THREE-LEVEL MODEL

In this Appendix, we describe the methods for obtaining the phase diagram of the effective three-level model in more detail.
Choosing state |0〉 as a reference, we apply the generalized Holstein-Primakoff transformation [84,85] to rewrite the operators
�̂i j as

�̂00 = N −
∑
i=1,2

b†
i bi, (F1)

�̂12 = b†
1b2, (F2)

�̂s0 = b†
s

√
N −

∑
i=1,2

b†
i bi (s = 1, 2), (F3)

where b†
i and bi are bosonic operators. In order to construct a mean-field theory, the bosonic operators are assumed to be

composed of their expectation value and a fluctuation operator, i.e.,

a = α + δa, b1 = β1 + δb1, b2 = β2 + δb2, (F4)

where α = 〈a〉, β1 = 〈b1〉, and β2 = 〈b2〉 are complex mean-field parameters. According to Eq. (F4), the operators �̂i j can be
expanded as

�̂00 = N p − β1δb†
1 − β2δb†

2 − β∗
1 δb1 − β∗

2 δb2 + O(δb1,2)2,

�̂12 = β∗
1 β2 + β2δb†

1 + β1δb†
2 + O(δb1,2)2,

�̂i0 =
√

N pδb†
i + √

pβ∗
2 + O(δb1,2)2(i = 1, 2),

�̂ii = |βi|2 + βiδb†
i + β∗

i δbi + O(δb1,2)2 (i = 1, 2),
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where p =
√

1 − |β2
1 | − |β2

2 |. In terms of the mean-field parameters α and βi (i = 1, 2), the semiclassical equations of motion,

ih̄∂t 〈�̂i j〉 = 〈[�̂i j, Ĥ]〉 and ih̄∂t 〈â〉 = 〈[â, Ĥ]〉 − ih̄κ〈â〉, are derived as

i
∂

∂t
β1 = −ωRβ1 − μ1(α + α∗)(|β1|2 − N )√

p
− μ2(αeiθ + α∗e−iθ )β∗

2 β1√
p

, (F5)

i
∂

∂t
β2 = −ωRβ2 − μ2(α + α∗)(|β2|2 − N )√

p
− μ1(αeiθ + α∗e−iθ )β∗

1 β2√
p

, (F6)

i
∂

∂t
α = (−δc − iκ )α + μ1

√
p(β1 + β∗

1 ) + μ2
√

pe−iθ (β2 + β∗
2 ). (F7)

In the same manner as in Sec. V of the main text, the stability of the steady-state solutions of Eqs. (F5)–(F7) is determined by
analyzing the linearized fluctuation equations, iḟT = MTfT, with fT=(δψ+, δψ−, δα+, δα−)T and

MT

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−� − iκ 0 μ1
√

p μ1
√

p μ2
√

pe−iθ μ2
√

pe−iθ

0 � + iκ −μ1
√

p −μ1
√

p −μ2
√

peiθ −μ2
√

peiθ

−B∗
1(−θ ) −B∗

1(θ ) ωR − �∗
1 −2μ1β

∗
1 �(0) −μ1β

∗
2 �(0) − μ2β

∗
1 �(θ ) −μ1β

∗
2 �(0)

B1(θ ) B1(−θ ) 2μ1β1�(0) −ωR + �1 μ1β2�(0) + μ2β1�(θ ) μ1β2�(0)

−B∗
2(−θ ) −B∗

2(θ ) −μ2β
∗
1 �(θ ) −μ1β2�(0) − μ2β

∗
1 �(θ ) ωR − �∗

2 −2μ2β
∗
1 �(θ )

B2(θ ) B2(−θ ) μ1β
∗
2 �(0) + μ2β1�(θ ) μ2β1�(θ ) 2μ2β1�(θ ) −ωR + �2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(F8)

Here �(θ ) = [α exp(iθ ) + α∗ exp(−iθ )]/
√

p, B1(θ ) = [μ1(|β1|2 − p) + μ2β
∗
1 β2 exp(iθ )]/

√
p, B2(θ ) = [μ2(|β2|2 − p) +

μ1β
∗
2 β1 exp(iθ )]/

√
p, �1 = 2μ1β1�(0) + μ2β2�(θ ), and �2 = μ1β1�(0) + 2μ2β2�(θ ). From Eqs. (F5)–(F8), the mean-field

parameters characterizing different quantum phases can be uniquely determined.
The solutions in the case of θ = π/2 and κ = 0 are summarized as follows. First, for (μ1, μ2) < μc, with μc = √−δcωR/2 ≡

ηc

√
2N/2, both 〈�̂11〉 and 〈�̂22〉 vanish, which defines the NP. Second, for μ1 > μc and μ1 > μ2, we have 〈�̂11〉/N = (4μ2

1 +
δcωR)/8μ2

1 and 〈�̂22〉/N = 0. This means that the atoms start populating state |1〉, which corresponds to DW I. Third, for μ2 >

μc and μ2 > μ1, we obtain 〈�̂22〉/N = (4μ2
2 + δcωR)/8μ2

2 and 〈�̂11〉/N = 0, indicating state |2〉 is occupied. This corresponds
to DW II. Last, for μ1 = μ2 > μc, the values of 〈�̂11〉 and 〈�̂22〉 are determined by the equation 〈�̂11〉/N + 〈�̂22〉/N = (4μ2

1,2 +
δcωR)/8μ2

1,2, signaling both |1〉 and |2〉 can be populated, and thus, the MDW is realized.
Notice that analytical solutions for more generic parameters are not available. However, it can still be straightforwardly

found that the mean-field parameters satisfying β1β2 = 0 and β1 + β2 �= 0 could by no means be a steady-state solution of
Eqs. (F5)–(F7), except for the case of θ = π/2 and κ = 0. This implies that, at least under the framework of the three-mode
approximation, DW I and DW II cannot exist for any other parameter settings.
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