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Biselective pulses for large-area atom interferometry
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We present designs for the augmentation “mirror” pulses of large-momentum-transfer atom interferometers
that maintain their fidelity as the wave-packet momentum difference is increased. These biselective pulses,
tailored using optimal control methods to the evolving bimodal momentum distribution, should allow greater
interferometer areas and hence increased inertial measurement sensitivity, without requiring elevated Rabi
frequencies or extended frequency chirps. Using an experimentally validated model, we have simulated the
application of our pulse designs to large-momentum-transfer atom interferometry using stimulated Raman
transitions in a laser-cooled atomic sample of 85Rb at 1 μK. After the wave packets have separated by 42
photon recoil momenta, our pulses maintain a fringe contrast of 90%, whereas, for adiabatic rapid passage and
conventional π pulses, the contrast is less than 10%. Furthermore, we show how these pulses may be adapted to
be robust to laser intensity variations between pulses and to suppress the detrimental off-resonant excitation that
limits other broadband pulse schemes.
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I. INTRODUCTION

Atom interferometers [1] reverse the optical interferometry
roles of light and matter by using pulses of laser light to
split, redirect, recombine, and interfere with atomic mat-
ter waves, allowing the precise measurement of gravita-
tional fields [2–4], inertial motions [5–7], and more esoteric
fields [8,9] to which optical interferometers would have little
or no sensitivity.

Most atom interferometers for inertial sensing use
Bragg [10] or Raman [11,12] transitions driven by counter-
propagating laser pulses as the beam splitters and mirrors
that split and direct the atomic wave packets. The two-photon
recoil accompanying these stimulated scattering processes
imparts a momentum difference of 2h̄k between the two in-
terferometer paths, where k is the single-photon wave number.
As with an optical interferometer, the measurement sensitivity
depends upon the spatial area enclosed. This is proportional
to the momentum separation and can hence be increased by
using additional mirror pulses, known as augmentation pulses,
to impart further impulses to the atomic wave packets forming
a large momentum transfer (LMT) interferometer [13].

In practice, inhomogeneities such as variations in beam
intensity and atomic velocity reduce the fidelity of the
augmentation pulses. The accrued effect of such imperfec-
tions limits the fringe visibility and can reverse the LMT
sensitivity gains [13–15]. Cooling the atoms or filtering
their velocity distribution can improve the initial fidelity at
the expense of a weaker signal, but a velocity spread is
inevitable in LMT interferometry because of the increas-
ing momentum separation introduced between the primary
interfering arms. Techniques such as increasing the Rabi
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frequency [16] and employing beam-shaping optics [17] in-
crease the experimental complexity and power requirements
of the interferometer.

High-order Bragg diffraction pulses [10,18,19] and Bloch
oscillations within optical lattices [20–22] can impart mul-
tiphoton recoils with a single pulse and have allowed in-
terferometry with wave packets separated by as much as
408h̄k [23,24]. However, both techniques require subrecoil
cooling or velocity selection [25,26], limiting the signal-
to-noise ratio. Furthermore, Bloch oscillations require long
pulses that can constitute a considerable fraction of the total
interferometer duration and are therefore sensitive to laser
intensity and wave-front inhomogeneities [23].

An alternative approach is to seek robust Raman augmen-
tation pulses that retain high fringe visibility for large momen-
tum separations while enabling the use of large thermal atomic
samples and electronic state readout adopted by many inertial
sensor prototypes [27,28]. Composite [29,30] and adiabatic
rapid passage (ARP) [31] Raman pulses have been used to
achieve momentum splittings of 18h̄k [14] and 30h̄k [15],
respectively. Both these techniques can increase the velocity
acceptance of the augmentation pulses at the expense of an
increase in pulse duration, but in practice fringe visibility was
lost after four to seven augmentation pulses.

We previously used optimal control techniques [32,33]
to design robust high-fidelity pulses for small-momentum-
transfer interferometry [34,35]. In this paper, we address
Raman LMT by designing “biselective” pulses that offer high
fidelity for two ranges of velocity that track the atoms in the
two arms of the LMT interferometer, allowing high fringe
contrast to be maintained for larger interferometer areas.
We compare our pulses with conventional composite pulses
and ARP through simulations using a previously validated
approach [15,30,35] and consider an extension to reduce
unwanted double diffraction [36,37].
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FIG. 1. Atomic state trajectories (left) as a function of position within an LMT interferometer sequence showing the case where the beam-
splitter and mirror operations are extended by a sequence of four augmentation pulses (18h̄k trajectory). The initial momentum distribution
(right), represented by the red shaded region, is separated into two arms. The momentum distribution seen by each pulse throughout the LMT
sequence for 85Rb atoms with a Maxwell-Boltzmann temperature of ∼1 μK is shown by the blue shaded regions on the right. As more pulses
are added to increase the interferometer area, the separation in the resonance conditions for the arms begins to exceed the velocity acceptance
of a π pulse, shown in the bottom right for a Rabi frequency of 200 kHz.

Our method is a departure from previous approaches in
which the same robust pulse was used for every augmentation
pulse in the interferometer sequence, ultimately limiting the
achievable momentum splitting to the velocity acceptance of
the pulse. The technique has general applicability because
many interferometer arrangements are already set up to im-
plement similar modulation sequences and, as the algorithm
optimizes tolerance of variations, the designs do not depend
critically upon experimental parameters.

II. LMT ATOM INTERFEROMETERS

Figure 1 shows the space-time diagram of a typical Raman
LMT interferometer. While the standard π/2-π -π/2 inter-
ferometer sequence produces a momentum splitting between
the interferometer arms of h̄keff , where keff = 2k is the ef-
fective wave vector of the atom optics, a greater momen-
tum splitting can be achieved by augmenting the mirror and
beam-splitter pulses with additional pulses with alternating
wave vectors [13]. These augmentation pulses are designed
to transfer atomic population between two internal states and
increase the momentum splitting between the wave packets
in the interferometer. By extending the beam-splitter opera-
tion by N augmentation pulses, the momentum splitting may

be increased to (2N + 1)h̄keff , increasing the intrinsic phase
sensitivity of the interferometer.

However, this increased splitting also introduces differen-
tial Doppler shifts between the interfering arms, quantized in
multiples of the two-photon recoil shift δrecoil = h̄k2

eff/2m, that
depend on the atomic mass m. Indeed, this is automatic since
the Doppler shift and inertial sensitivity have the same ori-
gin. For the nth augmentation pulse (n = 1, 2, 3, . . . , N), the
arms of the interferometer have Raman resonance conditions
separated by 4nδrecoil [14,38,39] (for Raman transitions on
the 85Rb D2 line, δrecoil ≈ 2π × 15.4 kHz). The distribution
of detunings for the nth augmentation pulse may thus be
visualized as two Gaussian distributions, corresponding to
the Maxwell-Boltzmann temperature of the atomic source,
separated in frequency space by 4nδrecoil. As illustrated in
Fig. 1, the augmentation pulses are efficient only as long as
this split distribution fits within the velocity acceptance of
the pulses. For conventional π pulses this can span just a
few recoil momenta, fundamentally limiting the momentum
transfer achievable before fringe visibility is lost [13,14].

Many composite and shaped pulses have been developed in
the field of nuclear magnetic resonance (NMR) spectroscopy
to improve the control of nuclear spins in the presence of
experimental inhomogeneities. Composite pulses [29] replace
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single rectangular pulses with sequences of pulses of vary-
ing durations and phases. The overall effect of the pulse
sequence is to replicate the operation of a single pulse, but
with an increased tolerance of unwanted variations in cou-
pling strength, detuning from resonance, or both. Dunning
et al. [30] investigated the potential fidelity improvements
various established composite pulses might bring in atom
interferometry compared with rectangular π pulses. Of the
pulses tested, the WALTZ pulse [40], a relatively short three-
step robust state-transfer pulse, had the highest fidelity and
velocity acceptance. Similarly, Butts et al. [14] employed
WALTZ to improve the contrast in an LMT interferometer,
doubling the sensitivity.

An alternative class of robust pulses is known as frequency-
swept adiabatic rapid passage. ARP can transfer the atomic
population between the states of a two-level atom with high
efficiency [15,31,41,42]. During an ARP pulse, the driving-
field frequency is swept slowly through resonance such that
the atomic state follows the evolution of the field and may
be moved with high precision anywhere on the surface of
the Bloch sphere [43]. In this picture, the quantum state
vector precesses about an instantaneous rotation axis, the field
vector, defined by the amplitude, detuning, and phase of the
driving field. For ARP to be efficient, the pulse must satisfy a
condition of adiabaticity: the motion of the field vector on the
Bloch sphere must be slower than the rate at which the atomic
state precesses about it [31]. The simplest example of ARP is
the linear frequency chirp, where the pulse amplitude, or Rabi
frequency, is fixed and the laser detuning is swept linearly
through resonance. This pulse can be efficient and robust,
but it is necessarily long in comparison to rectangular and
composite pulses, thereby increasing the risk that coherence
is lost through spontaneous emission.

By allowing the pulse amplitude to vary, various schemes
have been developed which outperform the linear frequency
chirp [44–48]. These pulses have high efficiency and robust-
ness, maintaining adiabaticity while reducing pulse duration.
An example is the tanh/tan ARP pulse [47], where the fre-
quency sweep follows a tangential function of time and the
pulse amplitude follows a hyperbolic tangential function of
time. The tanh/tan pulse was implemented in a large-area
atom interferometer by Kotru et al. [15] increasing the inter-
ferometer contrast over that obtained using simple π pulses
and achieving a momentum splitting of 30h̄k in a 9 μK 133Cs
atomic sample.

Although ARP can obtain impressive population transfer
efficiency, with a detuning bandwidth that increases with the
pulse duration, its potential utility in interferometry is limited
by the dynamic phase imprinted on the diffracting wave pack-
ets and the variation in effective time origin [31,38,39,42].
The dynamic phase depends on the optical intensity, and
rapid dephasing is therefore inevitable when the atom cloud
expands through variations in laser intensity. In practice
this effect is limited because ARP pulses applied in quick
succession approximately cancel the dynamic phase, but it
leads to a trade-off between longer and theoretically more
efficient pulses and dephasing caused by imperfect dynamic
phase cancellation when the beam quality is nonideal [15].
There is therefore a need for pulses which match or improve
upon ARP in terms of state transfer efficiency but which are

robust to temporal variations in the Rabi frequency during the
interferometer sequence.

LMT interferometry requires augmentation pulses that pro-
vide efficient population transfer across the atom cloud and
throughout the sequence. To maintain sensitivity and prevent
loss of fringe visibility, the interferometer sequence itself
should impart the same phase to all atoms, and all atoms
should have the same sensitivity to the external influence
being measured. Pulses need not satisfy these conditions
individually, provided that subsequent cancellation achieves
them for the sequence as a whole. ARP pulses, for example,
have detuning-dependent effective time origins and dynamic
phases which can be canceled by a later pulse provided there
is no variation in optical intensity.

III. OPTIMAL CONTROL TECHNIQUES

Robust pulses may be generated with optimal control tech-
niques [49,50] by dividing a pulse into discrete time slices and
treating the phase and/or amplitude of each slice as control
parameters that may be adjusted to optimize the fidelity of a
desired optimization.

In a typical Raman atom interferometer, two-photon transi-
tions are driven by lasers far from single-photon resonance so
that the intermediate level can be adiabatically eliminated to
leave an effective two-level system between stable states |g〉
and |e〉. The atom optics then effect a rotation of the quantum
state on the surface of the Bloch sphere for this basis at a rate

�̃R =
√

�2
R + δ2, about an axis (the field vector)

� = �R cos(φL )x̂ + �R sin(φL )ŷ + δẑ, (1)

determined by the relative laser phase φL, the two-photon Rabi
frequency on resonance �R, and the Raman detuning

δ = (ω1 − ω2) − ωeg + δDoppler + δrecoil (2)

that includes terms for the two-photon recoil shift δrecoil =
h̄k2

eff/2m and the Doppler shift δDoppler = keff · p/m, which
depends on the initial momentum p of each atom in the
interferometer. ω1,2 are the laser frequencies, and ωeg is the
frequency splitting of the levels |g〉 and |e〉. This rotation can
be written in terms of a propagator

Û =
(

C∗ −iS∗
−iS C

)
(3)

acting on the (|g〉, |e〉) basis, where C and S are the “continu-
ing” and “scattering” amplitudes, defined as [51]

C ≡ cos(�̃Rτ/2) + i(δ/�̃R) sin(�̃Rτ/2),

S ≡ eiφL (�R/�̃R) sin(�̃Rτ/2). (4)

The conventional beam-splitter and mirror pulses of atom
interferometry have a fixed amplitude and phase, and the
durations of the interactions are set so that, on resonance, they
perform π/2 and π rotations, respectively. Composite and
ARP pulses depend on varying the pulse parameters �R(t ),
φL(t ), and δ(t ) as a functions of time t so that, for a given
atom, the rotation axis and rate change during the pulse.

The action of such a pulse on the quantum state can be
evaluated efficiently by dividing the pulse into discrete time
steps of duration dt , with the propagator for an entire pulse
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given by the time-ordered product of propagators for each
slice, calculated according to Eq. (3). A pulse is then described
by piecewise constant wave forms �R(t ), φL(t ), and δ(t ) that
constitute a finite number of control parameters. Upon defin-
ing a suitable fidelity, such as a measure of how accurately
a given initial state |ψ (t = 0)〉 is driven to a target |ψT〉 by
the pulse, optimal wave forms may be found using numerical
routines from optimal control theory. In this work we focus on
producing pulses with optimized phase and amplitude profiles
φL(t ) and �R(t ).

One efficient and popular quantum control algorithm,
originally developed for NMR applications, is gradient as-
cent pulse engineering, or GRAPE [32]. GRAPE computes
derivatives of the pulse fidelity with respect to the control
parameters without the need for computationally expensive
finite-differencing methods and can be used in conjunction
with the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) quasi-Newton method [33]. By computing the
gradient and estimating the Hessian of the fidelity landscape
and provided local maxima with low-fidelity are avoided, the
algorithm can find an optimum solution efficiently.

We consider the following two possible fidelities for aug-
mentation pulses:

Fsquare = |〈e|Û |g〉|2, (5)

Freal = Re(〈e|Û |g〉). (6)

Both of these fidelities, if maximized, will yield pulses that
efficiently transfer population from one basis state to the other,
the essential requirement of an augmentation pulse. If the
fidelities are averaged over an ensemble of detunings and a
range of Rabi frequencies, the resulting pulse will be made
robust to these specific errors. Maximizing Fsquare leads to
pulses where the phase of the overlap 〈e|Û |g〉 is unimportant
but the quantum state is rotated by 180◦ from pole to pole
on the Bloch sphere. Conversely, maximizing Freal leads to
pulses where the phase of the overlap 〈e|Û |g〉 is well defined.

If the phase of the overlap 〈e|Û |g〉 varies from pulse to
pulse across an atomic sample in an LMT sequence, the
resulting interference fringes can be washed out when the
contributions from each atom in the cloud are averaged at the
end of the interferometer. Provided the Rabi frequency does
not change much between augmentation pulses, these phases
approximately cancel in LMT interferometers, but if the Rabi
frequency varies temporally throughout the interferometer,
rapid dephasing can occur. This is readily observed with ARP,
which requires a high degree of cancellation in the phase
factors introduced by each pulse in the sequence [15,39,42].
Optimizing Freal for a range of Rabi frequencies will mean the
phase of the overlap 〈e|Û |g〉 remains fixed even if the coupling
strength varies within that range. Therefore, we expect Freal

to yield augmentation pulses that are insensitive to dephasing
caused by temporal changes in the Rabi frequency due, for
example, to noisy beam intensity profiles and/or the ballistic
expansion of the atom cloud.

IV. BISELECTIVE RAMAN PULSES

For the nominal three-pulse π/2-π -π/2 interferometer, the
Raman detunings arise from the velocity components parallel

to the Raman beam axis and hence the temperature of the
atomic cloud. As the sequence is extended by augmentation
pulses with alternating effective wave-vector directions, the
resonant frequencies of each interferometer arm separate due
to the imparted photon momentum (shown on the right-hand
side of Fig. 1). This means the detuning distribution splits in
two and continues to separate as more momentum is imparted.
Optimal control can optimize a pulse for any assumed velocity
distribution [52]. We use this feature to design “biselective”
pulses, tailored to yield efficient population transfer only in
the frequency ranges occupied by the primary interferometer
arms. By optimizing each pulse in the sequence individually,
as opposed to employing a single augmentation pulse design
throughout the interferometer [13–15], we can therefore take
advantage of the fact that their transfer efficiency in the
frequency space in between the two arms is unimportant. This
allows biselective pulses to be shorter than ARP, composite,
or optimized shaped pulses of the equivalent efficiency.

A LMT interferometer of “order” N includes a total of
4N augmentation pulses in order to separate and recombine
interferometer arms whose momenta differ by (2N + 1)h̄keff ,
resulting in a corresponding increase in phase sensitivity,
although the separation is often also quoted for Raman in-
terferometers in units of the single-photon recoil momentum
h̄k ≈ h̄keff/2. In a LMT interferometer with optimized bise-
lective pulses, each of the 4N augmentation pulses will be one
of N individually optimized pulses indexed n = 1, 2, . . . , N ,
concatenated in the manner shown in Fig. 1 and optimized
to be resonant with two Doppler momentum distributions
centered about δ = ±2nδrecoil.

We express the biselective fidelity for the nth augmentation
pulse as

FA
n =

∑
δ,�R∈Ln

F (δ,�R) +
∑

δ,�R∈Un

F (δ,�R), (7)

where F = Freal, square is the single-atom augmentation pulse
fidelity [Eqs. (5) and (6)] and Ln and Un are the ensembles rep-
resenting the atomic frequency distributions of the lower and
upper arms during the nth augmentation pulse, respectively. In
order to normalize the fidelity such that the maximum value
is unity, we divide Eq. (7) by the number of detunings and
amplitude errors included in the entire ensemble.

We compose the detuning ensembles for the lower and
upper interferometer arms for the nth augmentation pulse
from two uniform discrete distributions centered at ±2nδrecoil.
The ensembles used in the optimization should represent the
velocity distribution of the atoms. However, in order to reduce
computation time we approximate the true distribution using
two uniform distributions each with a sample size of 20. The
range spanned by each distribution is given by four standard
deviations of detuning arising from the velocity distribution
along the Raman beam axis, which we assume follows a
Maxwell-Boltzmann distribution.

Our LMT pulses are individually optimized, which as-
sumes there are no correlations in residual errors between
pulses. However, it may be possible to develop alternative
measures of performance which reflect the fidelity of the
entire interferometer and allow pulses within a sequence to be
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FIG. 2. Biselective phase-modulated augmentation pulses optimized with the phase-sensitive fidelity Freal for a temperature of 1 μK.
The resulting phase profiles for the n = 1, 4, 7, 10 augmentation pulses are shown in the left panel. The right panel shows the simulated
transfer efficiency of each biselective pulse (blue solid curve), the ARP tanh/tan pulse of equivalent length (orange dashed curve), and the
WALTZ composite pulse (purple dotted curve) as a function of the Raman detuning. The corresponding detuning distributions seen by each
augmentation pulse for the primary interferometer arms are shown by the shaded regions. The range of detunings included in each optimization
is shown by the hatched regions.

optimized cooperatively [53], for example, by compensating
each other’s imperfections.

An alternative approach to achieve biselectivity involves
concatenating two inversion pulses with the appropriate fre-
quency shifts to address each interferometer arm separately.
While this makes the individual optimizations simpler, the
resulting pulses are longer, give different velocity classes
different pulse origins, and lose fidelity as the classes begin to
overlap. A simple superposition of the two components would
cure the problems of length and origin, but not overlap, and
requires amplitude modulation in addition [54].

The concept of biselective pulses for LMT interferometry
bears resemblance to the technique of band-selective pulses in
NMR spectroscopy [54–57], where pulses have been designed
to excite or invert nuclear spins within single- or multiple-
frequency bands but suppress the response of spins outside
the desired frequency range. Typically, these pulses require
smooth wave forms because the response at large resonance
offsets is determined by the Fourier transform of the pulse
shape [58]. As a result, composite pulses, which are composed
of concatenated sequences of constant amplitude pulses with
discrete phase shifts, lead to non-negligible excitation far off
resonance.

The suppression of the action of a pulse outside a specific
frequency range may be useful in interferometer geometries
where, for example, the counterpropagating Raman beams
are obtained by retroreflection of a single beam with both
Raman frequencies and there are necessarily four frequency
components that may interact with the atom cloud. When
there is no acceleration of the atoms along the beam axis,
then double-diffraction interferometry schemes can be em-
ployed that make use of all of the frequency components
simultaneously [36,37]. However, in vertically orientated,
ground-based atom interferometers, the Doppler shift caused
by gravitational acceleration is commonly used to isolate
a single frequency pair by shifting the other pair off reso-
nance [14]. However, broadband pulses such as composite or
ARP pulses often have nonzero transfer efficiency at large
detunings [38,58], meaning one must wait longer to ensure
negligible excitations from the off-resonant pair, costing time
which may otherwise be used to enhance the sensitivity.

By directly suppressing the transfer efficiency outside a
specific range of frequencies, such off-resonant excitation
with broadband pulses may be avoided. We achieve this sup-
pression of unwanted excitation by modifying our biselective
pulse fidelity [Eq. (7)], adding the following penalty term
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which represents the suppression band of detunings where the
transfer efficiency should be minimized:

Fsuppress =
δmax∑

�R,δ=δmin

|〈g|Û |g〉|2 +
−δmax∑

�R,δ=−δmin

|〈g|Û |g〉|2. (8)

Here, δmin,max represent the initial and final Raman detuning
values for the two suppression bands.

V. RESULTS

We have optimized phase-modulated, constant-amplitude,
biselective augmentation pulses with GRAPE for LMT inter-
ferometers of orders up to and including N = 10, correspond-
ing to a momentum separation of 42h̄k. We have performed
the optimizations using both the phase-insensitive fidelity
Fsquare and the phase-sensitive fidelity Freal and have inves-
tigated their performance through simulation of the resulting
interferometer contrast in a laser-cooled sample of 85Rb at
1 μK. In all optimizations, the time step of the pulses was
25 ns, and the effective Rabi frequency was 200 kHz, meaning
the duration of a rectangular π pulse tπ should be 2.5 μs in the
absence of any detuning or amplitude error. The pulses were
optimized for an atomic temperature of 1 μK and a range of
amplitude errors of ±10% the effective Rabi frequency. The
length of the augmentation pulses was fixed to be 4tπ . This
duration allowed for a sufficiently good pulse to be obtained
when using both fidelities, although optimizing Freal typically
requires a longer pulse to reach an equivalent fidelity to the
phase-insensitive case. The initial guess for the phase profile
of the pulses was, in each case, a sequence of random phases.
We keep the pulse amplitude constant when optimizing the
biselective fidelity FA

n [Eq. (7)] because allowing the ampli-
tude to vary does not lead to a higher terminal fidelity in this
case.

The NMR spin simulation software suite for MATLAB,
SPINACH [59], and its optimal control module were modified
to optimize biselective pulses using the L-BFGS GRAPE
method [33]. Each pulse optimization was set to terminate
following 300 iterations or when either the norm of the fidelity
gradient became smaller than 10−7 or the norm of the step size
dropped below 10−3.

The resulting wave forms, optimizing the fidelity Freal, are
shown in Fig. 2 for pulses tailored to the velocity distributions
expected for the n = 1, 4, 7, and 10 augmentation pulses of
the LMT sequence. Efficient population transfer is achieved in
each case. Interestingly, smooth and symmetrical wave forms
are found despite there being no constraint on symmetry or
wave-form smoothness included in the optimization.

Figure 3 shows the phase profile and simulated transfer
efficiency of the n = 10 augmentation pulse when the fidelity
Fsquare is instead optimized. Results are also shown for the
WALTZ composite pulse and the tanh/tan ARP pulse with
durations of 4tπ and 8tπ . The corresponding detuning dis-
tributions for the upper and lower interferometer arms are
also shown as shaded regions. Whereas the efficiencies of
the WALTZ and ARP augmentation pulses are limited by the
finite-velocity acceptances, the biselective pulse is tailored
for the split momentum distribution of the two primary in-
terferometer arms, allowing it to achieve a higher efficiency
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FIG. 3. (a) Phase profile and (b) simulated transfer efficiency
for the n = 10 biselective pulse found optimizing the fidelity Fsquare

(blue solid line). (c) The transfer efficiency for the ARP tanh/tan
pulse (orange dashed line for duration 4tπ and green dot-dashed
line for duration 8tπ ) and the WALTZ pulse (purple solid line). The
detuning distributions of the two primary interferometer arms, corre-
sponding to a temperature of 1 μK during the n = 10 augmentation
pulse, are shown by shaded regions. The hatched regions represent
the bands of detuning where the transfer efficiency is maximized
using GRAPE.

than a tanh/tan ARP pulse of twice its duration. Many of the
profiles found by optimizing Fsquare have a strong parabolic
component corresponding to a frequency chirp, although we
are far from the adiabatic regime, and some include a π -phase
step near the temporal midpoint: we find that this combination
alone gives the main features but does not produce the flat
regions of high efficiency achieved using optimal control. All
the pulses found by optimizing Freal are time symmetric.

A. LMT contrast

We have simulated LMT interferometers of different LMT
orders and compared the performance using our biselec-
tive augmentation pulses with that using rectangular π and
tanh/tan ARP augmentation pulses. The contrast in each case
is averaged over a thermal distribution of atoms and a uniform
distribution of Rabi frequencies that is either kept temporally
constant (to represent a nonuniform laser intensity distribu-
tion) or else varied from pulse to pulse (to represent the
motion of atoms across such a distribution). Following the ap-
proach taken by Kotru [38], only the primary interfering paths
are included in the calculation to reduce computation time.
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FIG. 4. Simulated interferometer contrast for a cloud of 85Rb at 1 μK as a function of momentum separation for different pulse sequences.
The contrast is numerically averaged over Raman detunings due to a velocity distribution corresponding to a temperature of 1 μK and (a) a
uniform distribution of static Rabi rate errors of ±10% or (b) a random temporal variation of Rabi rate errors of ±10% from pulse to pulse.
Contrast values for biselective GRAPE pulses found with fidelities Fsquare and Freal (blue dotted line with diamonds and red solid line with
diamonds, respectively) are shown. The results for π augmentation pulses (black dotted line with rectangles) and the tanh/tan ARP pulse
(dashed orange line with circles) are also shown.

The simulation results for an atomic temperature of
1 μK are shown in Fig. 4. To meaningfully compare the
performance of the GRAPE biselective pulses with ARP, the
total duration of the sequences is kept the same. GRAPE
biselective pulses far outperform basic rectangular π pulses
and tanh/tan ARP pulses of equivalent duration. When no
thermal expansion is modeled, the dynamic phase cancellation
of the ARP pulses is perfect, meaning the reduction in con-
trast with increasing LMT order is purely due to the limited
velocity acceptance of the pulses as the arms separate in
detuning. For the ARP contrast to match that achievable with
biselective pulses, the ARP pulse duration must be increased,
thus increasing the susceptibility to spontaneous emission (not
modeled currently) and dynamic phase dephasing [15]. This
highlights one key advantage of our adaptive approach.

If the Rabi frequency varies from pulse to pulse for dif-
ferent atoms, the dynamic phase imprinted on the atoms by
ARP is not canceled in the interferometer, meaning different
atoms obtain different phases and the interference is washed
out. Although ARP pulses have a velocity acceptance which
increases with pulse duration, longer ARP pulses become
more susceptible to errors in dynamic phase cancellation [15].

When the Rabi rate is instead varied randomly between
pulses in the simulation—within the ±10% interval for which
the pulses are optimized—to emulate noise in the Raman
beam intensity profile [Fig. 4(b)], the biselective pulses found
optimizing the phase-sensitive fidelity Freal are able to main-
tain significantly higher contrast than other pulse sequences.
This is because the phase variation of the wave packets is
minimized with respect to variations in the Rabi frequency.
This is not the case with pulses found using Fsquare or ARP,
and the contrast is significantly reduced in such cases. While
we vary the Rabi frequency randomly from pulse to pulse,
the resilience to the variations is quite general and would
extend to systematic changes in Rabi frequency throughout
the interferometer due to, for example, expansion of an atom
cloud within a Gaussian beam.

We have repeated the biselective optimization and contrast
simulation for a hotter atomic temperature of 5 μK and for a
longer pulse duration of 5tπ . The results are summarized in
Table I. We also show the results for the WALTZ composite
pulse and a phase-modulated pulse obtained using GRAPE
maximizing Fsquare for a large range of detunings centered on
resonance. This nonselective pulse was optimized following
the procedure outlined in [34]. Longer pulses can achieve
higher terminal fidelities, and using the phase-sensitive fi-
delity Freal requires a longer duration than Fsquare to reach an
equivalent terminal fidelity. This is shown most clearly when
optimizing for the hotter cloud. There is no guarantee that we
have found the global maximum for each choice of duration
and temperature. Even so, pulses were found which outper-
form the composite and ARP alternatives tested. Although,
for a given pulse duration, the phase-insensitive fidelity yields
the highest expected interferometer contrast, phase-sensitive
biselective pulses are expected to provide robustness to Rabi
rate variations throughout the interferometer and therefore
may still be the best choice in practice.

B. Suppression of off-resonant excitation

When the Doppler shift from gravitational acceleration is
used to discriminate between retroreflected frequency pairs in
vertically orientated interferometers, off-resonant excitations
from broadband atom optics can lead to unwanted double
diffraction. For example, following a 10-ms drop time [14],
the resonance conditions of the two frequency pairs will
shift by 2gkeff × 10 ms ≈ 500 kHz for 85Rb, where g is the
local gravitational acceleration. Conventional robust pulses
can result in a nonzero transfer at comparable detunings
(Fig. 5), potentially leading to double diffraction if the un-
wanted frequency pair has not been shifted far enough from
resonance [14,38].

We have optimized biselective pulses which suppress the
transfer efficiency outside the detuning bands of interest using
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TABLE I. Simulated contrast values at temperatures of 1 and 5 μK for different momentum separations with no Rabi frequency variation
between pulses. The π , WALTZ, and Fsquare nonselective pulses are previous results with either defined (π , WALTZ) or previously chosen
(nonselective) durations. The results for the ARP and biselective pulses are presented for two different durations. Bold values indicate the
best-performing pulse at each temperature.

Length 1 μK Contrast 5 μK Contrast

Pulse T/tπ 10h̄k 26h̄k 42h̄k 10h̄k 26h̄k 42h̄k

π 1 0.50 0.35

WALTZ 3 0.73 0.51 0.00 0.72 0.41 0.00

Fsquare nonselective 4 0.92 0.72 0.38 0.85 0.67 0.34

4 0.95 0.62 0.06 0.88 0.52 0.04

ARP 5 0.96 0.79 0.19 0.90 0.69 0.15

4 0.91 0.78 0.69 0.79 0.43 0.22

Freal biselective 5 0.95 0.87 0.82 0.85 0.60 0.50

4 0.97 0.92 0.90 0.83 0.64 0.57

Fsquare biselective 5 0.96 0.94 0.93 0.89 0.81 0.76

a suitable modification of our biselective fidelity [Eq. (8)].
Figure 5 shows the preliminary results. In order to achieve a
good level of suppression at large detunings we have found it
necessary to allow both the phase and amplitude of the pulse
to vary in the optimization procedure. We have also added
penalties in the optimization to limit the maximum intensity
during the pulse and enforce smooth wave forms [60].

VI. CONCLUSIONS

We have presented an optimized Raman pulse scheme for
the augmentation pulses in large-area atom interferometry,
whereby individually tailored Raman pulses found using opti-
mal control techniques maintain resonance with the diverging
wave packets as the Raman detuning increases between the
interferometer arms. We optimize our biselective pulses to

provide maximum state transfer while minimizing variation
in the interferometer phase across the atomic ensemble. The
pulses can be made robust to large spatial and temporal
variations in the Rabi rate, potentially allowing LMT interfer-
ometry in nonideal experimental environments such as those
with warmer atom clouds and inhomogeneous laser beam
fronts. Our simulations show that our pulses can maintain
contrast at significantly higher momentum splittings than
interferometers that have employed the best augmentation
pulses demonstrated to date, including the WALTZ composite
pulse and the tanh/tan adiabatic rapid passage pulse, whose
finite velocity acceptances limit the LMT momentum range.

For large LMT orders, our pulses can be consider-
ably shorter than ARP or composite equivalents of the
same efficiency, reducing the susceptibility to spontaneous
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FIG. 5. (a) and (c) The phase and amplitude profiles for two biselective pulses maximizing Fsquare. The dashed blue curve shows the case
where no suppression of off-resonant excitation is included in the optimization, and the solid red curve shows the case where off-resonant
excitation is suppressed. (b) The transfer efficiency of these two pulses as a function of detuning and (d) the transfer efficiency of the WALTZ
and tanh/tan pulses. The diagonally hatched regions coinciding with the shaded detuning distributions show the optimization bands of detuning
during the n = 8 augmentation pulse. The outer hatched regions show the range of the detunings for which the state transfer is suppressed
(δmin, δmax = 500, 2500 kHz). The response is unconstrained outside the hatched regions.
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emission which, although assumed to cause negligible de-
coherence in our simulations, can be significant in some
experiments [13,15,61] where, for instance, the single-photon
detuning of the Raman lasers is kept lower than the ground-
state hyperfine splitting in order to null differential light
shifts [62]. In such cases the relative improvements of bis-
elective pulses with respect to equal-duration ARP pulses
are unaffected and, in fact, using pulses that optimize the
phase-sensitive fidelity Freal could allow such interferometers
to suppress spontaneous emission by operating further from
single-photon resonance [63].
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APPENDIX: NUMERICAL MODEL

We model 85Rb atoms undergoing Raman transitions as
two-level systems, described by the basis states |g, p〉 and
|e, p + h̄keff〉 with corresponding time-dependent amplitudes
cg,e(t ). Pulses are described by propagators of the form given
by Eq. (3) and are given by time-ordered products of the
propagators for individual slices in the case of shaped and
composite pulses, where the amplitude, detuning (frequency),
and phase may be varied for each step.

The basis states for each pulse in an LMT sequence
vary. For example, during the initial π/2 pulse the basis
is |g, p〉 , |e, p + h̄keff〉, but for the first augmentation pulse
(where the wave vector is reversed) the upper arm has a
basis described by the states |g, p + 2h̄keff〉, |e, p + h̄keff〉,
and the lower arm has a basis described by the states |g, p〉,
|e, p − h̄keff〉. This means the resonance conditions are sepa-
rated for the two interferometer arms by 4δrecoil. Furthermore,
to reduce computation time, only the amplitudes following
the two primary interferometer arms are included in the
calculation, as shown in Fig. 6. This is a good assumption
when the pulses providing the large-momentum transfer are
efficient or when there is no interference from atoms that have
not followed the primary interferometer paths [38].

We simulate how the interferometer contrast is affected by
the atomic temperature and variations in the Rabi rate across
the atom cloud. In order to do this, we draw a sample of atomic
velocities (and hence Raman detunings) from a Maxwell-
Boltzmann distribution for 85Rb at a given temperature and a
uniform distribution of Rabi frequencies in the range ±10%
of the intended Rabi rate. Alternatively, the Rabi rate may

FIG. 6. Diagram of the first half of an N = 1 LMT pulse se-
quence, shown up to the central mirror pulse, indicating how the
momentum and atomic state vary in each arm of the interferom-
eter during the sequence. The resonant Raman frequency depends
upon the pair of states coupled at each stage. “A” represents an
augmentation pulse. Single and double arrows represent the internal
states |g〉 and |e〉, respectively. Solid arrows represent the primary
interferometer arms, and dotted arrows represent the trajectories
which are discarded in the simulation.

be randomly varied from pulse to pulse within ±10% of
the intended Rabi rate in order to explore the robustness of
sequences to temporal variation throughout the interferometer.

The contrast following an interferometer pulse sequence
may be calculated by evolving the state amplitudes for an
atom initially in the ground internal state |g〉 by applying
the relevant pulse propagators in the correct order with the
correct Raman detunings for each pulse and interferometer
arm. Fringes were calculated for each atom in the ensemble by
repeating the evolution of the final rectangular beam splitter
and varying the phase φbs between 0 and 2π . The ensemble
average interferograms were fitted to the sinusoidal function
0.5[A + B cos(φbs + C)], where A is an offset, B is the con-
trast, and C is a possible phase shift. The effect of spontaneous
emission is not modeled at present but will ultimately limit the
achievable contrast with extended pulse sequences in LMT
interferometers.

The sweep parameters used to define the tanh/tan ARP
pulse are the same as those used by Kotru et al. [15]. The
tanh/tan ARP pulse wave forms were divided into 2500 time
steps in the simulations to ensure the piecewise constant ap-
proximation was sufficiently accurate to model the frequency
and amplitude sweep.
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