
PHYSICAL REVIEW A 101, 063624 (2020)

Mott insulator phases of nonlocally coupled bosons in bilayer optical superlattices
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We investigate the ground-state properties of a nonlocally coupled bosonic system in a bilayer optical
superlattice by considering bosons in one layer to be of soft core in nature and separately allowing two- and
three-body hard-core constraints on the other layer. We find that the presence of different constraints on bosons
in one layer influences the overall phase diagram exhibiting various Mott insulator phases at incommensurate
densities due to the presence of the superlattice potential apart from the usual Mott insulators at commensurate
densities. Moreover, the presence of two- or three-body constraints significantly modifies the Mott insulator
to superfluid phase transition points as a function of the superlattice potential. Due to the various competing
interactions, constraints, and superlattice potential, the phase diagrams exhibit significantly different features.
We obtain the complete phase diagrams by using the cluster mean-field-theory approach. We further extend
this work to a coupled two-leg ladder superlattice where we obtain similar physics using the density-matrix
renormalization-group method.

DOI: 10.1103/PhysRevA.101.063624

I. INTRODUCTION

Quantum phase transitions in systems of ultracold quantum
gases in optical lattices have revealed a host of new phenom-
ena in recent years. The rapid progress in experimental manip-
ulation of these weakly interacting systems in optical lattices
has revealed various interesting physics which was impossible
to understand using the conventional solid-state systems. One
such example is the observation of the superfluid (SF) to
Mott insulator (MI) phase transition in a three-dimensional
optical lattice [1], a phenomenon which was predicted in the
context of the Bose-Hubbard model [2,3]. The state-of-the-art
experimental setups and the flexibility to control the system
parameters in such systems have provided a new platform to
explore interesting phenomena in nature which has led to a
plethora of novel and exciting physics. While the dominant
interaction in such ultracold systems is the two-body contact
interaction, it has been shown that there exist higher-order
local interactions as well, which have non-negligible effects
on the ground-state properties [4,5]. Recently it was shown
that the leading multibody interactions, such as the three-
body interaction, can be engineered under suitable conditions
in optical lattices [6–9], which can play important roles in
discovering many-body-induced quantum phases, especially
at higher densities [10–17]. Such many-body interactions can
drastically modify the behavior of the system. For instance,
the three-body interaction can become very large, leading to
the three-body hard core constraint where no more than two
particles can occupy a single site. This feature is crucial in
studying the systems of attractive bosons in optical lattices
by preventing the collapse of bosons. These three-body con-
strained bosons (TCBs) are shown to exhibit the superfluid
to pair-superfluid phase transition in optical lattice [18]. A
similar situation is also seen in the regime of large on-site

two-body repulsion where no two bosons can simultaneously
occupy a single site. In such a situation the bosons are called
hard-core bosons (HCBs) or a Tonks gas [19].

On the other hand, long-range dipolar interactions in
atoms, molecules, and Rydberg atoms have culminated into
a completely new realm of physics where several novel phe-
nomena have been predicted and observed in recent experi-
ments such as charge-density wave phases, exotic supersolid
phases, and self-bound quantum droplets [20–24]. Interest-
ingly, these nonlocal interactions have been shown to couple
systems which are spatially separated from each other such as
the bilayer systems and two-leg ladders. In such a scenario one
can drive the two decoupled systems together with the help of
the long-range dipole-dipole interaction [25–28]. Moreover,
the bilayer systems with interlayer interactions resemble sys-
tems of two-component atomic mixtures in optical lattices.
A new area of research has evolved in the context of the
dual-species bosons, fermions, and Bose-Fermi mixtures due
to the recent advancement in cooling and trapping of binary
mixtures in experiments [29–38]. The creation and manip-
ulation of such dual-species mixtures with two completely
different species of atoms or two hyperfine states of a par-
ticular species in optical lattices to achieve strong correlations
have opened up various avenues in addressing complex many-
body systems. The presence of different types of interactions
compared to the single-species systems has made the binary
mixture a topic of great interest; as a result, several theoretical
predictions and experimental observations have been made
in various context [33,35–37,39–49]. At the same time, the
creation of optical superlattices [50,51] has proven to provide
an additional flexibility to manipulate lattice potentials and
periodicity, which results in different interesting applications.
A great deal of research has been done on optical superlat-
tices and several new phases have been predicted in theory
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FIG. 1. (a) Illustration of a bilayer superlattice having periodicity
equal to 2, showing the intralayer and interlayer interactions. (b) Pos-
sible alignment of the dipoles in this bilayer system. The inset shows
one dipole placed in the origin in such a way that it makes an angle
φ with the x and y axes and θ with the z axis. (c) Two-leg optical
superlattice with leg A and leg B containing the soft-core bosons and
constrained bosons, respectively. These two legs interact with each
other via the nonlocal interaction UAB.

and observed in experiments in various context [14,50–61].
Although various investigations have been made in systems
of ultracold quantum gases in optical superlattices, the study
of bilayer superlattices or binary mixtures in superlattices
may lead to novel phenomena. As the systems of a dual-
species mixture can be mapped to the spin systems under
proper conditions, it promises a direct connection to the
many-electron systems and magnetism [62]. One such recent
study of multicomponent bosons in optical superlattices has
predicted various gapped phases using the single-site mean-
field approximation where the bosons are assumed to be soft
core in nature and the intraspecies interactions are considered
to be of identical strength [63]. As a result, the influence of
one species of atoms on the other and vice versa is similar in
nature.

At this point we consider a bilayer bosonic system in an
optical superlattice as depicted in Fig. 1(a). The construction
of the bilayer system is in such a way that both layers are
identical to each other in terms of lattice translation and a two-
period superlattice potential is present only in the x direction.
As a result, the lattice periodicity is doubled in the x direction,
whereas in the y direction there is no change in the periodicity.
In principle, one can consider the superlattice potential in
both directions, which is expected to exhibit similar particle
dynamics in both directions. However, the choice made in this
work provides a situation where the particles tend to localize
in every alternate site due to the superlattice potential in one
direction, whereas they are free to move in the other direction.
In such a system we consider the bosons in layer A to be soft
core in nature, whereas bosons in layer B experience two- or
three-body hard-core constraint.

We assume the particles are dipolar in nature in both layers
and there exist only interlayer interactions with the intralayer
interactions being suppressed. This situation can be achieved
by orienting the dipoles in such a way that they are at magic
angles with the line joining two nearest-neighbor dipoles in

both the x and y directions of the layer. In such a scenario,
the angle made with the line joining the dipoles sitting in
two different layers is different from the magic angle result-
ing in a finite repulsive interaction which is proportional to
1 − 3 cos2 θ , as depicted in Fig. 1(b). Moreover, the distance
between the layers can also be varied to tune the interlayer
interaction. Since intralayer (contact) and interlayer (long-
range) interactions originate from different physical phenom-
ena, it is possible to tune them independently. The model
which describes such a system is the modified Bose-Hubbard
model given as

H = −t
∑

〈i, j〉,σ∈[A,B]

(a†
iσ a jσ + H.c.)

+
∑

i,σ∈[A,B]

[
Uσ

2
niσ (niσ − 1) − (μσ − λi)niσ

]

+ Wσ

6

∑
i,σ∈[A,B]

niσ (niσ − 1)(niσ − 2)

+UAB

∑
i

niAniB. (1)

Here a†
iσ (aiσ ) is the creation (annihilation) operator which

creates (destroys) a boson in layer σ (=A, B) and at site i,
niσ = a†

iσ aiσ is the number operator, and t is the hopping am-
plitude between any two nearest-neighbor sites i and j. While
Uσ represents the local two-body intralayer interactions, Wσ

represents the local three-body intralayer interactions and UAB

represents the interlayer two-body interaction. In addition, μσ

is the chemical potential and λi is the superlattice potential
in the x direction, which is 0 (λ) for odd (even) site indices,
as shown in Fig. 1(a). The two- and three-body constraints in
layer B are achieved by considering (a†)2 = 0 and (a†)3 = 0,
respectively. Note that for the HCBs in layer B, Uσ=B → ∞
and the terms associated with Uσ=B will vanish in the model
(1) due to the hard-core constraint. It should be noted that
the presence of a finite local three-body interaction mainly
modifies the superfluid to Mott insulator transition critical
points, which has been investigated in detail in other works.
Therefore, we discuss the case in which the contribution from
either the three-body and higher-order terms is neglected in
layer A. The three-body hard-core constraint is achieved by
considering W → ∞ in layer B. For a large superlattice poten-
tial each two-site unit cell can effectively behave like a single
site. In such a scenario, depending on the number of particles
in the deep site and the effective repulsive interaction, the
on-site Wannier orbitals are affected, leading to effective mod-
ification of the tunneling and on-site interaction. However, in
our calculations we do not include these modifications and
limit our analysis to the standard Bose-Hubbard model.

The rest of the paper in organized as follows. In Sec. II we
briefly discuss the method used in this work. Section III con-
tains the results and a discussion of our work. We summarize
in Sec. IV.

II. METHOD

We investigate the ground-state properties of the model
given in Eq. (1) by considering soft-core bosons in layer A
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and loading layer B with HCBs and TCBs separately in two
different scenarios. In both cases we study the phase dia-
gram of the system and obtain various gapped phases which
appear at commensurate and incommensurate densities. We
also show how the tip positions of these gapped phases or, in
other words, the gapped to gapless phase transitions behave by
changing the constraint on the bosons in layer B. To this end
we implement the cluster mean-field theory (CMFT) approach
to analyze Eq. (1). It should be noted that this problem
can also be analyzed using the simple mean-field decoupling
approximation [64], which can capture the qualitative physics
of the system. However, in order to achieve better accuracy
we employ the CMFT approach. For the models like the
one shown in Eq. (1), the CMFT method works fairly well
with less computational complexity and may approach in the
thermodynamic limit the quantum Monte Carlo results for
some specific situations [28,65,66]. In the end we investigate
the scenario for the one-dimensional case to examine the fate
of quantum phases in reduced dimension. In this regard, we
utilize the well-known density-matrix renormalization-group
(DMRG) method for the two-leg ladder model to examine the
features in one dimension.

In the CMFT method the entire system is divided into
identical clusters of a limited number of sites which can
be treated exactly and then the coupling between different
clusters is treated in a mean-field way. The accuracy of this
method improves by increasing the number of sites in the
cluster. With this approximation the original Hamiltonian of
Eq. (1) can be written as

H = HC + HMF, (2)

where HC (HMF) is the cluster (mean-field) part of the Hamil-
tonian. Here HC is the same as in Eq. (1) but is limited to
the cluster size. The hoppings between the clusters are then
approximated using the simple mean-field-type decoupling
scheme given as

a†
iσ a jσ = 〈a†

iσ 〉a jσ + a†
iσ 〈a jσ 〉 − 〈a†

iσ 〉〈a jσ 〉. (3)

Introducing the two-layer-dependent SF order parameter
ψiσ = 〈a†

iσ 〉 = 〈aiσ 〉 and using Eq. (3), we write the HMF as

HMF = −t
∑

σ,〈i, j〉
[(a†

iσ + aiσ )ψ jσ − ψ∗
iσ ψ jσ ]. (4)

In our calculation we have set t = 1 to make all the
physical quantities dimensionless. For the CMFT calculation
we use a four-site cluster which consists of two sites from
both layers. We call this a supercell in the following dis-
cussion. We define the quantities n = ∑

σ∈[A,B]

∑2
i=1 niσ and

ρ = 1
4 n, which are the total particle number and density in

one supercell to distinguish various phases. We also assume
equal chemical potentials for bosons in both layers by setting
μA = μB = μ in our calculation. By fixing the values of UA,
UB (in the case of TCBs), and UAB we compute the complete
phase diagram in the μ/t vs λ/t plane. We also consider
some specific value of λ and vary the interaction to obtain
the phase diagram as done in Ref. [63]. Further, we analyze
the system in one dimension by considering a two-leg ladder
which can be viewed as two superlattice chains coupled via
the dipole-dipole interaction. We study the model (1) by using
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FIG. 2. The CMFT phase diagram when bosons in layer A are
soft core and bosons in layer B are HCBs. Here UA = 80 and UAB =
40.

the DMRG method by considering σ as the two legs of the
ladder. In our DMRG calculation we assume system sizes up
to 100 sites and 500 density-matrix eigenstates. The cluster
and system size considered in our calculation are found to be
sufficient to capture the physics we are interested in.

III. RESULTS AND DISCUSSION

A. Hard-core constraint for bosons in layer B

In this section we discuss the case when the bosons in layer
B are hard core in nature. In the decoupled layer limit, i.e.,
UAB = 0, both layers behave as independent two-dimensional
(2D) systems. It is well known that there exists a critical value
of λ for which the system undergoes an SF to MI transitions
at half filling for both hard-core and soft-core bosons in two
dimensions [14,56,67]. Therefore, it is expected that the first
Mott lobe would appear in the system after a critical value of
λ for density ρ = 1/4 where either of the layers attains half
filling. At this stage the interlayer interaction UAB has no role
in the phase diagram as the particles reside in either of the
layers. However, with an increase in the chemical potential
μ both layers get populated and one may see an interesting
interplay between UA, UAB, and λ which leads to various
gapped phases and transitions to the SF phase at different
integer and noninteger fillings of individual layers, as shown
in Fig. 2. In this paper we call all the gapped phases MI
phases, although the ones at noninteger densities are different
from the usual MI phase where each site is occupied with the
same integer number of bosons [52]. However, in the case of
superlattices, one can consider the density with respect to the
unit cell (the periodicity of the superlattice) so that the gapped
phases at noninteger densities can be called MI phases for
those particular densities.

The phase diagram of Fig. 2 is obtained by self-
consistently diagonalizing the Hamiltonian shown in Eq. (2)
to obtain the ground-state wave function and then the super-
fluid order parameter ψ as discussed in the preceding section.
By considering a large on-site interaction UA = 80 and UAB =
UA/2 which is sufficient to establish various gapped phases
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FIG. 3. Variation of ρ (solid blue curve) and |ψ |2 (dashed green
curve) with respect to μ/t for λ = 10, 70, 140 shows the gapped and
gapless phases when layer B has HCBs. The plateaus in ρ correspond
to the gap in the MI phases whereas the shoulders around the plateaus
(where the values of |ψ |2 are finite) indicate the gapless SF phase. We
also plot the individual layer densities as ρA (dot-dashed curve) and
ρB (dotted curve) for clarity. Due to the hard-core nature, ρB saturates
at one. The fluctuations in ρA and ρB are due to the degenerate states
in the CMFT calculation.

for the soft-core bosons in one layer and by varying λ for
a wide range of values, we obtain the entire phase diagram
which consists of the gapped MI lobes and the intermedi-
ate SF phases. Here we define the superfluid density ρs =
1
4

∑
i,σ |ψiσ |2, where ψiσ is the layer-dependent superfluid

order parameter as discussed in the preceding section. The
gapped phases are obtained by looking up the regions in
which the total superfluid density vanishes in the ρs vs μ/t
plot for several values of λ. In Fig. 3 we show ρ (solid blue
line) and ρs (dashed green line) with respect to μ/t for λ =
10, 70, 140, which cut through the gapped phases in Fig. 2
parallel to the μ/t axis. It can be seen that for a particular λ,
as μ increases the plateaus in ρ appear and at the same time
ρs vanishes corresponding to the MI phases. We denote the
MI phases by MIn, where the subscript n indicates the total
number of particles, i.e., nA + nB in a supercell. The possible
supercell atom distribution for all the MI phases are presented
in Table I.

It can be seen from Fig. 2 that the first lobe which corre-
sponds to the MI1 appears after a critical λ ∼ 8 at ρ = 1/4,
as discussed before. The gap continues to be finite and the
lobe expands as λ increases further. Upon increasing the value
of μ or, in other words, by increasing the particle number in
the system, the other gapped phases start to appear, which are
seen as plateaus in the ρ vs μ/t plot shown in Fig. 3. For total
density ρ = 1/2 (half filling of both the layers), there exist
two gapped lobes separated by the SF phase as a function of λ.

TABLE I. Boson distribution in the unit cell: various MI states
when atoms in layer B are HCBs. Each state shows the density
distribution in the supercell corresponding to a particular MI state
for a given n and ρ.

n ρ Supercell configuration

1 0.25 MI1 = ∣∣0 1
0 0

〉
or

∣∣0 0
0 1

〉

2 0.5 MIl
2 = ∣∣0 1

1 0

〉
or

∣∣1 0
0 1

〉
and MIr

2 = ∣∣0 1
0 1

〉

3 0.75 MIl
3 = ∣∣1 1

0 1

〉
and MIr

3 = ∣∣0 2
0 1

〉

4 1.0 MIl
4 = ∣∣1 1

1 1

〉
and MIr

4 = ∣∣1 2
0 1

〉

5 1.25 MI5 = ∣∣1 2
1 1

〉

6 1.5 MIl
6 = ∣∣2 2

1 1

〉
and MIr

6 = ∣∣1 3
1 1

〉

7 1.75 MI7 = ∣∣2 3
1 1

〉

8 2.0 MIl
8 = ∣∣3 3

1 1

〉
and MIr

8 = ∣∣2 4
1 1

〉

The appearance of a large gap at vanishing λ can be attributed
to the effect of UAB which prevents the atoms in layer A
and layer B from occupying the same sites. Hence, one may
expect a gapped phase which is similar to the checkerboard
solid for the Bose-Fermi mixture on a square lattice [68]. We
call this phase the MIl

2 phase. As discussed in Ref. [68], the
stability of this gapped phase depends on the ratio UAB/UA.
In our case UAB/UA = 0.5, which is sufficient to open a gap
in the system. However, the gap gradually decreases as the
value of λ increases and as a result the system enters the SF
phase. This is because of the increase in the effective on-site
potential on every alternate site in both layers which results
in a smaller ratio UAB/UA. Increasing the value of λ further,
the gapped phase reappears after a critical λ ∼ 47.6. At this
stage, the superlattice potential is very strong compared to the
ratio UAB/UA and the bosons reside in the deep lattice sites.
We call this gapped phase the MIr

2 phase, which is similar to
the striped phase for the 2D case. The density distribution can
be seen from the ρ vs μ/t plot shown in Fig. 3 (see the figure
for details).

At this stage a further increase in density results in the
next gapped phases at ρ = 3/4. The situation at this density
is completely different from the case of half density. Here we
find that the system is initially in the gapless SF phase for
a range of λ starting from λ = 0 and there exists a gapped
island for some intermediate range of λ and then a gapped
phase for large values of λ. The physics at this density can
be understood by the following analysis. For λ = 0, as μ

increases layer A will start to get populated first due to the
soft-core nature and all the sites are occupied by one atom
each, giving rise to unit filling and layer B remains at half
filling. At unit filling layer A is in the MI phase as UA is
sufficiently strong. As a result, the atoms in layer B will
experience equal repulsion UAB from all the sites of layer
A and hence they can move freely, giving rise to the SF
phase of layer B. Therefore, the system as a whole is gapless,
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although layer A is in the MI state. The increase in λ, however,
introduces the gap in the system by localizing the hard-core
bosons in the deep sites of layer B while layer A remains in the
MI phase. The resulting system is therefore a gapped phase.
This phase is called the MIl

3 phase, which lies between λ ∼
7.5 and λ ∼ 108.4. A further increase in λ leads to an increase
in particle-hole fluctuation and the gapped MI phase starts to
melt and the SF phase reappears in the system. Eventually,
the system enters another gapped phase after a critical value
of λ ∼ 131.10, where in layer A two bosons are localized in
the deep lattice sites. We call this phase the MIr

3 phase, as
depicted in the phase diagram of Fig. 2.

At this stage, a further increase in the value of μ will
facilitate the addition of bosons in layer B, which saturates
at unit filling due to the hard-core nature of bosons where
all the sites are occupied by one boson each. This situation
corresponds to the MI4 phases in the phase diagram where
the total density of the system is ρ = 1. When λ is small,
we have every site in both layers occupied by one atom each
and this phase is called the MIl

4. When λ increases, the MIl
4

phase melts and the system enters the SF phase, eventually
leading to the MIr

4 phase, where the atoms in layer A occupy
the deep sites while layer B maintains uniform density due
to the hard-core nature. In such a situation layer A is like the
striped phase and layer B is saturated. These features can be
clearly seen from the individual layer densities as shown in
Fig. 3.

A similar situation arises for the other integer and noninte-
ger densities where two distinct gapped phases appear at the
two limits of the superlattice potential which are separated
by the SF phase as depicted in the phase diagram of Fig. 2.
The corresponding boson distributions are shown in Table I
for clarity. For quarter-integer densities, the gapped islands
appear for a range of intermediate values of λ separated by
the SF phase. It should be noted that the tips of the right
lobes shift towards larger values of λ as ρ increases. However,
an interesting pattern occurs for the left lobes where the
tip first shifts towards larger λ up to MIl

4 and then shifts
left for higher densities. The appearance of this feature is
attributed to the presence of bosons in layer B on all the
lattice sites after a critical density ρ � 1. At these densities,
the bosons in layer A are not affected by the presence of
the bosons in layer B as they experience uniform repulsion
which is equal to UAB from all sites. Therefore, the physics
of the system is governed only by the properties of bosons
in layer A, as discussed in Ref. [14]. The MIl -SF transition
happens for smaller and smaller values of λ as the density
increases because the increase in density leads to the decrease
in effective on-site interactions on the shallow lattice sites.
Therefore, the MIl lobes melt into the SF phases due to the
hopping t which dominates over the interactions. On the other
hand, the SF-MIr transition points shift towards larger values
of λ at higher densities because of the increase in the number
of particles in the deep wells which results in an increase in
UAB. Therefore, a stronger λ is necessary to introduce the MIr

phases as can be seen from the phase diagram.
To further understand the role of various interactions in

our model, we study the phase diagram in the μ/t vs U/t
plane as well. For this purpose we consider a cut across the
phase diagram of Fig. 2 at λ = 60, which corresponds to
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FIG. 4. The CMFT phase diagram in the μ/t vs U/t plane when
bosons in layer A are soft core and bosons in layer B are hard core in
nature. Here UA = U = 80, UAB = 40, and λ = 60. Since UA is fixed
in the case, we vary t in order to tune the ratio U/t .

U = 80 and UAB = 40. In this case we vary t to obtain a
range of U/t ratios and the resulting phase diagram in this
case is shown in Fig. 4. We obtain a very interesting pattern
of staggered MI lobes in this case. It can also be seen that
the size of the MI lobes with odd integers in the subscript is
larger than the MI lobes with even integers in the subscript.
We follow the nomenclature of density distributions given in
Table I and discuss the phase diagram in the following text.
As we increase μ (from bottom to top) the particle number
increases and there are two possibilities for each newly added
particle: (i) It is added on top of a density distribution wherein
the particle arrangement is identical in both the layers, that
is, vacuum state MIr

2, MIl
4, MIl

6, and MIl
8, or (ii) the particle

is added on top of an uneven density configuration, that is,
MI1, MIl

3, MI5, and MI7. In case (i), the particle always ends
up in the deeper potential well with fewer particles. Such a
rearrangement is expected, as the value of the superlattice po-
tential λ is sufficiently large. In case (ii), the particle entering
the system avoids the densely occupied sites and prefers a site
with lower occupancy. In this manner the contribution from
the U and UAB terms is minimized and the system tends to
attain a more uniform density distribution. The lobes with an
even density distribution are less stable compared to the lobes
with an uneven density distribution and readily accept a new
particle. Consequently, lobes of the former type are smaller in
size with respect to the latter.

B. Three-body constraint for bosons in layer B

Now we discuss the case in which we replace the bosons in
layer B with the TCBs. As discussed before, the effect of the
three-body constraint is a result of large three-body on-site
repulsion, i.e., W → ∞. In such a situation the maximum
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FIG. 5. The CMFT phase diagram when bosons in layer A are
soft core and bosons in layer B are TCBs. Here UA = UB = 80 and
UAB = 40.

number of bosons allowed per lattice site is 2, i.e., (a†)3 = 0.
Such constrained bosons may impart significant effects on the
overall phase diagram of bosons in the optical superlattice.
Note that, in this case, we have finite values of the two-body
interaction UB in layer B. Similar to the preceding section, we
numerically solve the mean-field Hamiltonian given in Eq. (2)
and with UA = UB = 80, UAB = 40, and varying λ we obtain
various gapped phases. The ground-state phase diagram is
shown in Fig. 5 and the particle distributions are shown in
Table II.

It can be seen that the phase diagram for this case exhibits
distinct features along with some similarities compared to the
one obtained when bosons in layer B were hard core in nature

(compare with Fig. 2). Although the appearance of the MI
phases for the odd (total) densities show similar behavior to
the previous case, the even lobes exhibit different features
with respect to their tip positions. It can be easily seen that the
features in the part of the phase diagram from n = 6 onward
match well with the phase diagram of the previous case (when
layer B was hard core) except the first lobe at n = 1 of Fig. 2.
This can be understood as follows. Let us consider the λ = 0
case for simplicity. As layer B is occupied by TCBs now, for
n = 6 the density of the supercell is 1.5. This means there
are two extra particles on top of the ρ = 1 lobe (MIl

4). At
ρ = 1, each site of both layers is occupied by one particle
because of large on-site interactions UA and UB. Therefore,
any extra particle which gets added to layer B containing the
TCBs will behave like a hard-core boson on top of the uniform
particle distribution. Hence, the effective system becomes
equivalent to the one considered in the preceding section.
However, there exist different gapped phases in low-density
regimes, i.e., up to n = 6 lobes. For n = 1 (ρ = 0.25) we get
an MI1 phase which is similar to the one in Fig. 2, which
starts after a finite value of λ ∼ 8. As the number of particles
increases, the second gapped phase MIl

2 appears at n = 2
(ρ = 0.5) for λ = 0 and this survives up to a critical value
of λ ∼ 32; after this the system becomes gapless. In this case,
each layer is occupied by one boson. A further increase in λ

leads to the MIr
2 phase, where the particles exist in the deep

sites. Similarly, the MI4 phases appear for n = 4 (ρ = 1) in
the beginning when λ = 0 and the system is a proper Mott
insulator at unit filling. An increase in λ will melt the gap and
the SF phase appears; a further increase in λ will reintroduce
the gap and the system gets into the MIr

4 phase. In this phase,
there can be two possible particle distributions in the lattice
where two particles populate the deep sites of layer A, while
sites of layer B are uniformly filled by one particle in each site

TABLE II. Boson distribution in the unit cell: various MI states when atoms in layer B are TCBs. Each state shows the density distribution
in the supercell corresponding to a particular MI state for a given n and ρ.

n ρ Supercell configuration

1 0.25 MI1 = ∣∣0 1
0 0

〉
or

∣∣0 0
0 1

〉

2 0.5 MIl
2 = ∣∣0 1

1 0

〉
or

∣∣1 0
0 1

〉
and MIr

2 = ∣∣0 1
0 1

〉

3 0.75 MIl
3 = ∣∣1 1

0 1

〉
or

∣∣0 1
1 1

〉
and MIr

3 = ∣∣0 2
0 1

〉
or

∣∣0 1
0 2

〉

4 1.0 MIl
4 = ∣∣1 1

1 1

〉
and MIr

4 = ∣∣1 1
0 2

〉
or

∣∣0 2
1 1

〉

5 1.25 MIl
5 = ∣∣1 2

1 1

〉
and MIr

5 = ∣∣1 2
0 2

〉

6 1.5 MIl
6 = ∣∣2 1

2 1

〉
,
∣∣1 2
1 2

〉
,
∣∣2 1
1 2

〉
, or

∣∣1 2
2 1

〉
and MIr

6 = ∣∣1 2
1 2

〉

7 1.75 MIl
7 = ∣∣2 2

1 2

〉
and MIr

7 = ∣∣1 3
1 2

〉

8 2.0 MIl
8 = ∣∣2 2

2 2

〉
and MIr

8 = ∣∣1 3
2 2

〉

9 2.25 MI9 = ∣∣2 3
2 2

〉

10 2.5 MIl
8 = ∣∣3 3

2 2

〉
and MIr

8 = ∣∣2 4
2 2

〉
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FIG. 6. The CMFT phase diagram in the μ/t vs U/t plane when
bosons in layer A are soft core and bosons in layer B are three-body
constrained. Here UA = UB = U = 80, UAB = 40, and λ = 60. Since
UA is fixed in the case, we vary t in order to tune the ratio U/t .

and vice versa. This gapped phase vanishes at λ ∼ 148 and a
further increase in λ may lead to another gapped phase where
the deep sites of both layers will be occupied by two particles
(not in the range of λ considered here). The physics of odd
integer lobes can also be understood from similar analogies
discussed above.

Like before, in this case we also study the phase diagram
in the μ/t vs U/t plane. The various parameter values are set
as follows: UA = UB = 80, UAB = 40, and λ = 60. The phase
diagram obtained in this case is shown in Fig. 6 and it can be
readily seen that it has features similar to those obtained pre-
viously in Fig. 4. Our discussion for the previous case holds
mostly true in this case as well. However, there are two major
differences between the two phase diagrams. (i) In the present
case SF-MI transition critical points are in general higher than
those found in the previous case. A straightforward explana-
tion is that because of increased density fluctuations the SF
region becomes enlarged and MI phase sets in relatively later.
This can be seen by comparing the position of the tips of the
MI1 lobes in Figs. 4 and 6 (and other lobes as well). (ii) By
introducing three-body constrained bosons in the present case,
we allow more particles to accommodate in layer B and make
room for more degenerate states to set in. This can be seen in
Table II, in the density configurations for n = 3, 6, . . .. This
degeneracy has a significant effect on the phase diagram, as it
tends to make the corresponding MI states less stable. If the
reverse is true then we have stable MI phases, hence larger
lobes.

C. Phase diagram in one dimension

In this section we complement our CMFT results presented
above by analyzing the situation in one dimension. The one-

0 10 20 30 40
λ/t

0

20

40

60

μ/
t

MI1

MI2
r

MI2
l

MI3
r

MI3
l

MI4
r

MI4
l

MI5

MI6
r

MI6
l

MI7
MI8

l

FIG. 7. The DMRG phase diagram when bosons in leg A are soft
core in nature and bosons in leg B are HCBs.

dimensional analog of bilayer geometry is a two-leg ladder
where layer A (B) is replaced by leg A (B) as shown in
Fig. 1(c). The one-dimensional ladder geometry is extremely
important in the context of condensed-matter systems as it
resembles several structures of compounds of interest. The
ladder geometry has been discussed in great detail in terms
of the Hubbard model [69–81] and the Bose-Hubbard model
[27,82–86]. Analogous to the 2D case, we assume only in-
terleg dipole-dipole interactions by aligning the dipoles at
a magic angle with each other along the leg direction. The
physics of this system will be similar to the two-dimensional
case due to the construction of the bilayer lattice in our case as
discussed earlier. We employ the DMRG method to solve the
model (1) in the canonical ensemble to compute the ground-
state energy and wave function. To separate the gapped and
gapless regions we calculate the single-particle gap, which is
defined as

GL = μ+ − μ−, (5)

where μ+ = EL(N + 1) − EL(N ) and μ− = EL(N ) −
EL(N − 1) are the chemical potentials, with EL(N ) the
ground-state energy of a system of length L and N = NA + NB

the total number of particles in the system. We obtain the
ground-state phase diagram for both cases with bosons of leg
B separately being HCBs and TCBs while bosons in leg A
are soft core in nature and are shown in Fig. 7 (UA = 20 and
UAB = 10) and Fig. 8 (UA,B = 20 and UAB = 10), respectively.
One can easily see that the phase diagrams of Figs. 7 and
8 qualitatively match fairly well with the ones obtained
using the CMFT method, i.e., Figs. 2 and 5, respectively.
When bosons in leg B are HCBs, we observe that the MI tip
positions first increase and then decrease as shown in Fig. 7,
while there is an alternating increase and decrease of the
tip positions when the bosons in leg B are TCBs as plotted
in Fig. 8. The boundaries of the MI lobes are computed
by extrapolating the μ values across the MI plateaus to the
thermodynamic limit by quadratic fitting. In Fig. 9 we show
the finite-size extrapolation of μ+ (dashed lines) and μ−
(solid lines) for λ = 18, 20, 22, 24, 26. This clearly shows
that GL−→∞ remains finite in the gapped phase and vanishes
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FIG. 8. The DMRG phase diagram when bosons in leg A are soft
core in nature and bosons in leg B are TCBs.

in the gapless region, which clearly distinguishes between the
gapped and gapless phases in the phase diagrams.

Further, to understand the particle distribution in real space
we compute the expectation value of the number operator as

〈ni〉 = 〈�0|ni|�0〉, (6)

where |�0〉 is the ground-state wave function of the system.
As an example, in Fig. 10 we plot 〈ni〉 with respect to the
site index i for λ = 12 [Fig. 10(a)] and λ = 28 [Fig. 10(b)]
corresponding to the MIl

6 and MIr
6 phases, respectively, of the

phase diagram shown in Fig. 7. It can be clearly seen that
for λ = 12 leg B is occupied by one hard-core boson in each
site, whereas in leg A, each site is occupied by two atoms.
However, for λ = 28, leg B is unaffected and leg A shows a
| . . . 3131 . . .〉 type of distribution corresponding to the MIr

6
phase. A similar 〈ni〉 vs i plot is shown in Fig. 11 for the
MI7 phase of Fig. 8. Here we consider λ = 22 [Fig. 11(a)]

0 0.015 0.03 0.045 0.06
1/L

28

30

32

34

 μ
/t

 λ = 18
 λ = 20
 λ = 22
 λ = 24
 λ = 26

FIG. 9. Finite-size scaling of chemical potentials for ρ = 1.5 for
different values of λ corresponding to the phase diagram of Fig. 7
when bosons in leg A are soft core in nature and bosons in leg B are
HCBs. The solid and dashed lines represent the fitted functions to μ+

and μ−, respectively.

1

2

3(a)

(b)

<n
i>

leg-A
leg-B

10 20 30 40 50
i

1

2

3

<n
i>

FIG. 10. Density distribution of the system when (a) λ = 12 and
(b) λ = 28 for ρ = 1.5 corresponding to the phase diagram of Fig. 7.
The black circles and red squares represent the density distribution
of leg A and leg B, respectively.

and 38 [Fig. 11(b)], which fall in two regions of the MIl
7 and

MIr
7 phases, respectively. For λ = 22, all the sites of leg A

are occupied by two particles each, whereas leg B exhibits
a finite density oscillation corresponding to a | . . . 2121 . . .〉
type of distribution. However, for large λ = 38, the density
distribution of leg A becomes | . . . 3131 . . .〉 while leg B
remains unaffected. It should be noted that for the parameters
considered here, the gapless regions between two gapped
phases are very small compared to ones obtained using the
CMFT method.

IV. CONCLUSION

We have analyzed the ground-state properties of a system
of interacting bosons in a bilayer superlattice with interlayer

1

2

3(a)

(b)

<n
i>

leg-A
leg-B

10 20 30 40 501

2

3

<n
i>

FIG. 11. Density distribution of the system when (a) λ = 22
and (b) λ = 38 for ρ = 1.75 corresponding to the phase diagram
of Fig. 8. The black circles and red squares represent the density
distribution of leg A and leg B, respectively.
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FIG. 12. Plots of ρ-μ for the cut along λ values (a) 8.1 and
(b) 18.4, in the phase diagram given in Fig. 5. The four-site (eight-
site) data are marked by the dashed line with black squares (solid line
with red crosses). The plateaus represent the extent of Mott phases
for the densities (a) 0.25 (MI1) and (b) 1.25 (MIl

5 and MIr
5). Some

data points have been skipped for clarity.

repulsion which can be introduced by the dipole-dipole inter-
actions. Considering the bosons in one layer as soft core in
nature and separately allowing two- and three-body hard-core
constraints in the other layer, we obtained the ground-state
phase diagram using the CMFT approach. The phase diagrams
exhibit various gapped MI phases at integer and half-integer
densities. Due to the competition between the superlattice
potential, intra- and interlayer interactions and the constraints
on the bosons of layer B lead to interesting features in the
phase diagram. Within the range of λ considered, we obtained
two types MI lobes (MIl

n and MIr
n) separated by the SF region

for a particular total number of particles in the supercell equal
to n. Interestingly, when the hard-core constraint was applied
in one layer, the tips of the MIl

n lobes first shifted towards
higher values of λ and then gradually receded to lower values
of λ. At the same time the tips of the MIr

n lobes shifted
towards the higher-λ values with an increase in the density of
the system. The situation was completely different when the
three-body constraint was considered in one layer. The tips
of MI lobes first oscillated and then, after a critical density,
followed a trend similar to the one for the hard-core constraint.
We further complemented our findings by repeating the calcu-
lations in a one-dimensional nonlocally coupled ladder super-
lattice using the DMRG method and showed that the quantum
phase diagrams qualitatively agree with the CMFT method.
The physics obtained in this work deals with the system of
bosons in two-layer systems with different types of on-site
interactions in a superlattice. The results provide a detailed
analysis of the effect of constrained bosons on the overall
phase diagram of the bilayer system, which is also equivalent
to a two-component atomic system. With the experimental
progress in controlling local and dipole-dipole interactions in
recent years, these findings can be experimentally observed
with the existing quantum gas setups.
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APPENDIX: EFFECT OF LARGER CLUSTER SIZES

To verify the stability of the phases with respect to the
cluster size, in this Appendix we compare our previous results
with those obtained using an eight-site bilayer cluster. To this
end, first we compare the ρ-μ plots for two representative
values of λ = 8.1 and 18.4, given in Figs. 12(a) and 12(b),
respectively. The occupation number density curves obtained
using four-site (eight-site) bilayer clusters are marked with
dashed line and black squares (solid line and red crosses). It
can be clearly seen that the Mott plateaus in both cases largely
overlap and are clearly visible. Also, the critical μ/t value
changes only slightly. This is the first indication of the stability
of the MI phases.

Next we compare the Mott phase boundaries for the den-
sities corresponding to the plateaus shown in Figs. 12(a) and
12(b). For this purpose we plot the MI lobes in the λ-μ plane
as shown in Figs. 13(a) and 13(b) and check for the shift in
the phase boundaries, if any. The MI lobes obtained using the
four-site bilayer cluster are marked by black solid lines and for
comparison purposes a few select data points have also been
marked with black squares. The data points obtained using the
eight-site bilayer cluster are marked with red crosses. The MI
lobe in Fig. 13(a) [13(b)] corresponds to the density plateau
shown in Fig. 13(a) [13(b)]. It can be seen that the data points
overlap very well in both cases and there are no significant
changes in the phase boundaries. This holds true near as well
as away from the tips of the Mott lobes.
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