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We theoretically study binary Bose-Einstein condensates trapped in a single-well harmonic potential to probe
the dynamics of collective atomic motion. The idea is to choose tunable scattering lengths through Feshbach
resonances such that the ground-state wave function for two types of the condensates are spatially immiscible
where one of the condensates, located at the center of the potential trap, can be effectively treated as a potential
barrier between bilateral condensates of the second type of atoms. In the case of small wave-function overlap
between bilateral condensates, one can parametrize their spatial part of the wave functions in the two-mode
approximation together with the time-dependent population imbalance z and the phase difference φ between
two wave functions. The condensate in the middle can be approximated by a Gaussian wave function with
the displacement of the condensate center ξ . As driven by the time-dependent displacement of the central
condensate, we find the Josephson oscillations of the collective atomic motion between bilateral condensates
as well as their anharmonic generalization of macroscopic self-trapping effects. In addition, with the increase in
the wave-function overlap of bilateral condensates by properly choosing tunable atomic scattering lengths, the
chaotic oscillations are found if the system departs from the state of a fixed point. The Melnikov approach with
a homoclinic solution of the derived z, φ, and ξ equations can successfully justify the existence of chaos. All
results are consistent with the numerical solutions of the full time-dependent Gross-Pitaevskii equations.
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I. INTRODUCTION

The first experimental observation of interference fringes
between two freely expanding Bose-Einstein condensates
(BECs) has launched the fascinating possibility to probe
new quantum phenomena on macroscopic scales related to
the superfluid nature of the Bose condensates [1]. A chief
effect is the Josepshon analog, in which the phase differ-
ences between two trapped BECs in a double-well poten-
tial can generate Josephson-like current-phase oscillations
via collectively atomic tunneling through the barrier [2,3].
Nevertheless, the nonlinearity of tunneling effects produces
novel anharmonic Josephson oscillations and macroscopically
quantum self-trapping (MQST) effects. The potentially exist-
ing such interesting phenomena indeed triggers a wide variety
of theoretic investigations in the settings of two-component
BECs systems in the double-well potential [4–7], triple-well
[8], and the single BEC system in the triple-well [9], four-well
[10], and multiple-well potentials [11,12], to cite a few. The
effective Josephson dynamics can also be observed in some
systems without an external potential [13]. More importantly,
several experiments have successfully observed coherence
oscillations through quantum tunneling of atoms between
the condensates trapped in a double-well potential [14–16],
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whereas similar phenomena were also seen from attractive
to repulsive atomic interactions by experimentally changing
atomic scattering lengths through Feshbach resonances [17].
In addition to the regular coherent oscillations mentioned
above, the studies on the possibility of the appearance of
chaotic motions, by applying an externally time-dependent
trap potential, are also a fascinating task with findings that
deserve further experimental justification [18–21]. Chaotic
behavior is also studied in the dynamics of of three coupled
BECs [22].

In the present work, we consider the two-component BECs
system with atoms in two different hyperfine states in a single-
well harmonic trap potential. Such a two-component BEC sys-
tem provides us an ideal platform for the study of intriguing
phenomena, for example, mimicking quantum gravitational
effects in Ref. [23]. Using Feshbach resonances to experi-
mentally tune the scattering lengths of atoms allows us to
construct the diagram in Fig. 1, showing the typical ground-
state wave function of the binary condensates [24–28]. The
effective parameter characterizing the miscibility or immis-
cible regime of binary condensates is mainly determined by
the value of � = g11g22 − g2

12, where gi j denotes the atomic
interaction between i and j atoms [29–31]. The parameter
regime for � > 0 corresponds to the miscible distribution of
two-component condensates, whereas for � < 0 the different
species of atoms repel each other and the distribution becomes
immiscible [29–31]. In particular, we focus on the situations
of the scattering lengths in the immiscible regime, where the
condensate of one of the components is located at the center
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FIG. 1. The ground-state wave function of binary BECs system
in a cigar-shape trap potential is shown for two-species 85Rb |2, −2〉
state and 87Rb |1, −1〉 state with atomic coupling constants in mis-
cible and immiscible regimes, respectively. The numbers of atoms,
say, N1 = 500, N2 = 1000, and also the potential trap ωx = 2π ×
12 Hz, ωy,z = 2π × 100 Hz are chosen to show the spatial distribu-
tion of wave functions in the immiscible (miscible) regime for � < 0
(� > 0) below (above) red dashed line determined by � = 0, where
� = g11g22 − g2

12. The black solid line separates between symmetric
and asymmetric condensate wave functions.

of the potential trap, and can effectively be regarded as an
effective potential barrier between bilateral condensates of the
second component of the system. Experimentally, spatially
asymmetric bilateral condensates can be prepared by means of
a magnetic field gradient [32–34], allowing the possibility to
observe collectively coherence oscillations of atoms between
them. This is an extension of the works of Refs. [2,3], where
the system of a single BEC in an external double-well po-
tential is studied. The collective oscillations of atoms through
quantum tunneling between the condensates centered at each
of the potential wells have been observed where the full
dynamics of the system can be further simplified, and turned
into an analog pendulum’s dynamics in the so-called two
modes approximation [2,3,35,36]. In our setting, the dynamics
of the system can also be approximated by analogous coupled
pendulums dynamics using the variational approach as well
as two modes approximation. One can then reproduce regular
oscillations around the stable states studied in Refs. [2,3]
within some parameter regime by considering the effects
from time-averaged trajectories of the central condensate.
Additionally, the collective motion of atoms, if departing from
the unstable states, could show chaotical behavior, oscillating
between bilateral condensates due to the time-dependent driv-
ing force given by the dynamics of the condensate centered
in the middle [18–21]. The scattering lengths in the parameter
regime, which give the chaotic dynamics of the system, will
be useful as a reference for experimentalists to observe the
effects.

To be concrete, consider a mixture of 85Rb |1〉 = |F =
2, mF = −2〉 and 87Rb |2〉 = |F = 1, mF = −1〉 by ignoring
the small mass difference [29]. The scattering lengths we
choose are estimated to be a22 = 50a0 and a12 = 85a0 with
a0 the Bohr radius. The existence of the Feshbach resonance
at 160G permits us to tune the scattering length a11 of 85Rb

atoms from 50a0 to 150a0 to be specified in each case later
[29]. Let us consider two-component elongated BECs in
quasi-one-dimensional (1D) geometries with the trap poten-
tial [37] ωx = 2π × 12 Hz, ωy,z = 2π × 100 Hz. We take the
numbers of atoms N1 = 500 and N2 = 1000 as an example.
The experimental realization of the Josephson dynamics by
two weakly linked BECS in a double-well potential in a
single BEC system is confirmed in Ref. [14]. Both Josephson
oscillations and nonlinear trapping are observed by tuning
the external potential. Such phenomena are also explored
in two-component BECs system in a double-well potential
where apart from their own atomic scattering processes the
Rabi coupling between the atoms from each components of
the BECs is introduced. Tuning the scattering lengths using
the associated Feshbach resonances and/or the Rabi coupling
constant allow us to observe the transition from Josephson
oscillations to nonlinear self-trappings [38]. Our proposal
also in the two-component BECs system but in a single-well
potential suggests a novel setup, although involving more rich
dynamical aspects of condensates, the only tunable param-
eters are atomic scattering lengths again through Feshbach
resonances to achieve the miscible condensates that needs
more experimental endeavor as compared with [38].

Our presentation is organized as follows. In Sec. II, we
first introduce the model of the binary BECs system, and the
corresponding time-dependent Gross-Pitaeviskii (GP) equa-
tions for each of condensate wave functions. In this two-
component BECs system, we study the evolution of the wave
functions within a strong cigar-shape trap potential so that
it can effectively treated as a quasi-one-dimensional system.
We further assume that the condensates start being displaced
from their ground state in the immiscible regime where one
of the condensates is distributed in the trap center while the
other condensate surrounds the central condensate on its two
sides. Then we propose the ansatz of the Gaussian wave
functions, which can reduce the dynamics of the system into
few degrees of freedom, such as the center of the central
condensate as well as the population imbalance and the rel-
ative phase difference between bilateral condensates in the
two-mode approximation. We later obtain their equations of
motion with the form of coupled oscillators equations. In
Sec. III, we analyze the stationary-state solutions and their
stability property. In Sec. IV, we examine the time evolution
of the system around the stable stationary state, showing the
regular oscillatory motion. In Sec. V, the study is focused on
when the system starts from near unstable stationary-state so-
lutions, exhibiting the chaotic behavior by numerical studies.
The Melnikov homoclinic method is adopted for analytically
studying the existence of chaos. Concluding remarks are in
Sec. VI. In Appendix, we provide more detailed derivations
or approximations to arrive at coupled oscillators equations
from the time-dependent GP equations using the appropriate
ansatz of Gaussian wave functions.

II. VARIATIONAL APPROACH AND ANALOGOUS
COUPLED PENDULUMS DYNAMICS

We consider the binary BECs for same atoms in two differ-
ent hyperfine states confined in a strong cigar-shape potential
with the size of the trap Lx along the axial direction,taken in
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the x direction, which is much larger than Lr along the radial
direction. This system can be effectively treated as the pseudo-
one-dimensional system with the Lagrangian described as
[39,40]

L1D =
∑
j=1,2

∫
dx

[
ih̄

2

(
ψ j

∂ψ∗
j

∂t
− ψ∗

j

∂ψ j

∂t

)

−
(

h̄2

2m

∣∣∣∣∂ψ j

∂x

∣∣∣∣
2

+ Vext|ψ j |2 + g j j

2
|ψ j |4

)]

+
∫

dx g12|ψ1|2|ψ2|2, (1)

where the external potential in the axial direction is given by
Vext (x) = m ω2

x x2/2. The mass of atoms is m and the coupling
constants between atoms are given in terms of scattering
lengths ai j as gi j = 2h̄2ai j/mL2

r . The wave function ψ j is
subject to the normalization∫

d x |ψ j (x)|2 = Nj (2)

with the numbers of atoms Nj in each hyperfine states j. The
time-dependent GP equations for each component of the BEC
condensates are given by [41]

ih̄
∂ψ1

∂t
=

(
− h̄2

2m

∂2

∂x2
+ Vext + g11|ψ1|2 + g12|ψ2|2

)
ψ1,

(3)

ih̄
∂ψ2

∂t
=

(
− h̄2

2m

∂2

∂x2
+ Vext + g22|ψ2|2 + g12|ψ1|2

)
ψ2.

(4)

The full dynamics of the condensates in a harmonic trap
potential can be explored by solving the GP equations numer-
ically with given initial wave functions. However, in order to
extract their feature analytically, we will propose an ansatz
of the wave functions with several relevant parameters. All
results from solving the equations of motion for the introduced
parameters given by the variational approach will be justified
by comparing with those given by numerically solving the GP
equations. Moreover, we will rescale the spatial or temporal
variables into the dimensionless ones by setting t → t/h̄ωx

and x → x/
√

h̄/mωx. Henceforth, the dimensionless t and x
will be adopted, and their full dimensional expressions will
be recovered, if necessary.

Experimentally, the values of parameters gi j , which are
related to scattering lengths ai j , can be tuned by Feshbach
resonances [24,25,29]. In fact, we might explore the evolution
of condensate wave functions, in which ψ1 and ψ2 are initially
prepared in the immiscible regime, determined by the param-
eter � = g11g22 − g2

12 when � < 0 [29–31] as illustrated in
Fig. 1. Let us now assume the general Gaussian wave function
ψ2 centered at the potential trap center as [39,40,42]

ψ2(x, t )

=
[

N2
2

πw(t )2

]1/4

exp

{
− [x − ξ (t )]2

2w(t )2
+ ixα(t ) + ix2β(t )

}
,

(5)

FIG. 2. The typical condensate wave functions are plotted
for the stationary-state solutions of the GP equations for scat-
tering length a11 = 110a0, a22 = 50a0, and a12 = 85a0 that give
g11/g22 = 2.2 and g12/g22 = 1.7 (� < 0 in the immiscible regime
shown in Fig. 1), which can be fitted into a Gaussian function
(dashed line).

where four time-dependent variational parameters are the po-
sition of the center ξ (t ), the width w(t ), and α(t ) (slope) and
β(t ) [(curvature)1/2] of the wave function. We also assume
that the ground-state configuration of ψ1(x, t ) is of the two-
mode form [2,3,35,36]

ψ1(x, t ) = ϕL(t )ψL(x) + ϕR(t )ψR(x) . (6)

The involved Gaussian-like spatial functions ψL(x) and ψR(x)
together with the initial wave function ψ1(x, t = 0) with width
σ0 will be determined numerically by the stationary-state
solutions of the GP equations (3) and (4) with the forms
shown in Fig. 2, which is symmetric with respect to x =
0. ψL(x) and ψR(x) presumably serve as a good basis to
express the spatial part of the wave functions of bilateral
condensates with normalization conditions

∫
dx |ψL,R|2 = 1,

and also negligible overlap
∫

dx ψLψR ≈ 0 for the weak link
between bilateral condensates in the immiscible regime. Note
that the analytical approach based on the wave functions
above gives transparent and consistent results as compared
with those from numerically solving the full GP equations
in the case of Josephson oscillations but for the motion of
MQST discrepancy arise as will be seen later where one
should look for the wave functions of bilateral condensates
being not restricted to be symmetric with respect to x = 0.
Thus, the time-dependent part of the wave function can be
parametrized as

ϕL(t ) =
√

NL(t ) eiφL (t ), (7)

ϕR(t ) =
√

NR(t ) eiφR (t ), (8)

with the phase φL,R(t ) and the amplitude
√

NL,R(t ) given by
the number of atoms in each sides of the condensates. The
total number of atoms ( j = 1) is N1 = NL + NR. To realize
quantum coherence between left and right condensates, and
also atomic number oscillations, it finds more convenient to
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introduce the population imbalance

z(t ) ≡ NL(t ) − NR(t )

NL(t ) + NR(t )
, (9)

and relative phase

φ(t ) ≡ φR(t ) − φL(t ). (10)

When all atoms locate in the left (right) side of the central
condensate, z = 1(−1).

The time evolution of coherent oscillations between bilat-
eral condensates surrounding around the central condensate is
mainly determined not only by the self-interaction of atoms
[2,3], but also the interspecies coupling constant g12 with the
wave functions ψ1(x, t ) and ψ2(x, t ), which give an additional
effect to influence the dynamics of coherent oscillations due
to the wave-function overlap between them. Also, notice that
although the initial wave function of the central condensate
is centered at x = 0, which is the minimum of the external
trapped potential, the later evolution of the wave function
will find its stationary state with the center located at x = ξ0,
moving around that position with nonzero kinetic energy.
Thus, in the presence of ψ2(x, t ) shown in Fig. 2 together
with the external trapped potential, the resulting effective
potential experienced by the wave function ψ1(x, t ) in the GP
equation in (3) can be seen in the shape of the double-well
potential. However, the dynamics of the central condensate
leads to the effective potential time dependent, contributing
its effects to quantum coherence oscillations between bilateral
condensates. This will be the main purpose of studies in Secs.
IV and V. This is an extension of the work in Refs. [2,3] with
additional degrees of freedom of the central condensate. When
the initial conditions of the central or bilateral condensates are
chosen near their stable-state configurations, the dynamics of
coherence oscillations modifies slightly the behavior found
in Refs. [2,3]. Nevertheless, as their initial conditions are
chosen near the unstable-state configurations, the chaos oc-
curs. Although the analogous coupled pendulums dynamics,
which is reduced from the full dynamics of the system and
later gives essential information on the time evolution of the
condensate wave functions, may produce relatively different
trajectories from the solutions of the time-dependent GP equa-
tions, they are still very useful to provide us analytic analysis
on the chaos dynamics by adopting the Melnikov Homoclinic
method.

Substituting the ansatz of the wave function (5) and (6)
into the Lagrangian (1), and carrying out the integration over
space, the effective action then becomes the functional of
time-dependent variables α, β, ξ , w, z, and φ. Their time
evolutions follow the Lagrange equations of motion derived
from this effective Lagrangian, discussed in detail in the
Appendix. When the wave function ψ2(x, t = 0) is slight
away from the stationary state, the dynamics of the condensate
just undergoes small amplitude oscillations around that state.
We will further assume that the displacement ξ and the wave-
function width, deviated from σ0 and defined by w = σ0 + σ ,
are small as compared with σ0, namely ξ � σ0 and σ � σ0.

Retaining terms up to linear order in ξ and σ of interest,
we have found the Lagrange equations for the parameters by
the variational approach as

ż + 2

(
k + κ

σ

σ0

)√
1 − z2 sin φ = 0, (11)

φ̇ − �E − �z − 2

(
k + κ

σ

σ0

)
z√

1 − z2
cos φ + 2

√
N2/N1 ηξ

= 0, (12)

ξ̈ + ω2
ξ ξ −

√
N1/N2 ηz − εσ = 0, (13)

σ̈ + ω2
σ σ − 2εξ = 0 . (14)

The quantities that appear in the equations above are the
integrals involving the condensate wave functions, namely

k0 = −
∫

dx

(
1

2

dψL

dx

dψR

dx
+ x2

2
ψLψR

)
, (15)

k = k0 − g12N2√
πσ0

∫
dxψLψR e−x2/σ 2

0 , (16)

κ = g12N2√
πσ0

∫
dxψLψR

(
1 − 2

x2

σ 2
0

)
e−x2/σ 2

0 , (17)

�E =
∫

dx

[
1

2

(
dψL

dx

)2

+ x2

2
ψ2

L + g11N1

2
ψ4

L

]

−
∫

dx

[
1

2

(
dψR

dx

)2

+ x2

2
ψ2

R + g11N1

2
ψ4

R

]
, (18)

� = g11N1

2

(∫
dxψ4

L +
∫

dxψ4
R

)
, (19)

η = −g12
√

N1N2√
πσ 3

0

∫
dx(ψ2

L − ψ2
R ) x e−x2/σ 2

0 , (20)

ε = g12N1√
πσ 3

0

∫ ∞

−∞
dx(ψ2

L − ψ2
R )

(
3

x

σ0
− 2

x3

σ 3
0

)
e−x2/σ 2

0 , (21)

ω2
ξ = 1 + g12N1√

πσ 3
0

∫
dx(ψ2

L + ψ2
R )

(
2

x2

σ 2
0

− 1

)
e−x2/σ 2

0 , (22)

ω2
σ = 1 + 3

σ0
+ g22N2√

2πσ 3
0

+ g12N1√
πσ 3

0

∫
dx(ψ2

L + ψ2
R )

(
2 − 10

x2

σ 2
0

+ 4
x4

σ 4
0

)
e−x2/σ 2

0 .

(23)

The expressions of k (16) and κ (17) are determined by the
wave-function overlap between the left and right condensates,
and thus k ∼ κ � 1 by considering the weak link between
bilateral condensates that depends not only on atomic scat-
tering lengths but also on the number of the condensates with
N2 > N1. Nevertheless, it will be seen that since the frequency
of collectively atomic oscillations ωJξ ∝ ωx

√
k with ωx =

2π × 12 Hz we adopt, the corresponding oscillation timescale
t ∝ 1/(ωx

√
k) is constrained to be not larger than the typical

lifetime of this type of the condensates of order ∼10 s [37],
giving k > 10−4 where N2 cannot be too large. The variation
of the Gaussian width induces a time-dependent modification
to the parameter k + κσ/σ0 in (11) and (12). In the single
BEC experiment [2,3], the similar modification to k can be
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achieved by the time-dependent laser intensity or the magnetic
field with the possibility to induce the Shapiro effect [43],
analog Kaptiza pendulum [44] and even chaotic motions
[18–21]. Here, since σ � σ0, the time-dependent modifica-
tion is relatively small compared with k to be ignored in this
work. Also, for simplicity, we consider that the spatial part of
the wave function ψ1(x, t ) is symmetric with respect to x = 0
shown in Fig. 2, thus giving �E = 0 in (12). The coupling of
the population imbalance z to the relative phase φ in (12) is
given by the strength � in (19), a tunable value by changing
the scattering lengths of atoms in bilateral condensates.

It is known that the dynamical equations of pair variables
(z, φ) in the single BEC system show an analogy to that of a
nonrigid pendulum model, whose length depends on the angu-
lar momentum z [3]. Nevertheless, in our binary BECs system,
the pair variables (z, φ) are also coupled to the displacement
of the wave function ψ2 with the coupling constant η in (20)
depending on the interspecies coupling constant g12 of atoms,
and also the wave-function overlap between the bilateral and
central condensates. With the parameters shown in Fig. 1 and
the chosen scattering lengths obeying � < 0, which lead to
the spatial parts of the wave functions schematically shown
in Fig. 1, η is of order one η ∼ 1.0, and ε ∼ 0.1 due to
cancellation between the contributions from the left and right
wave functions. In the case of the initial deviation of the
wave-function width σ (0) = σ̇ (0) = 0, the time-dependent
σ is driven by ξ , giving σ ∼ εξ , which in turn leads to
the term εσ in the equation of ξ (13) of the order of ε2ξ

with ε2 � η to be safely ignored. From the viewpoint of the
wave function ψ2, the presence of ψR and ψL will make trap
potential narrower and affects slightly the natural vibration
frequency in ξ and give a modified frequency ωξ in (22).
Since we just focus on various types of coherent oscillations
between bilateral condensates with the dynamical variables
z, φ, apart from their mutual coupling, they are also coupled
to the displacement of the central condensate ξ . Ignoring the
εσ term in (13), the small deviation from the wave-function
width σ is decoupled. In fact, in this approximation, once the
time-dependence of ξ is found, the equation of σ in (14) can
be solved, and then plugging all solutions to the equations
(A2) in Appendix can find α and β. Also notice that taking
into account the time-dependent σ by involving (14) certainly
can improve the agreement with the full numerical results.
Thus, after the further replacement ξ → √

2N2/N1ξ , the set
of the key equations can be simplified as

ż + 2k
√

1 − z2 sin φ = 0, (24)

φ̇ − �z − 2k
z√

1 − z2
cos φ + ηξ = 0, (25)

ξ̈ + ω2
ξ ξ − ηz = 0. (26)

These are the main results of this section and we will term
them the coupled pendulums (CP) dynamics. The correspond-
ing Hamiltonian then reads as

H = �

2
z2 − 2k

√
1 − z2 cos φ + 1

2
ξ̇ 2 + ω2

ξ

2
ξ 2 − η z ξ . (27)

In our binary BECs case, the above Hamiltonian also shows
an analogy between the dynamics of coupled pendulums and
the BEC dynamics as in Ref. [3].

III. EQUILIBRIUM SOLUTIONS AND
STABILITY ANALYSIS

In the two-component BEC system, the relevant equations
of motion for describing quantum coherent oscillations be-
tween bilateral condensates in the presence of the central
condensate are effectively described by the dynamics of two-
coupled pendulums. In this case, the stationary states with the
vanishing time-derivative terms now obey

2k
√

1 − z2
0 sin φ0 = 0, (28)

�z0 + 2k
z0√

1 − z2
0

cos φ0 − η ξ0 = 0, (29)

ω2
ξ ξ0 − η z0 = 0. (30)

As a result, the stationary relative phase is given by

φ0 = 0 or φ0 = ±π. (31)

Also, Eq. (30) leads to a relation between the population
imbalance z0 and the displacement of the central condensate
ξ0

ξ0 = ω−2
ξ ηz0. (32)

Inserting the relation (32) into Eq. (29) together with φ0 = 0
or ±π , the population imbalance is found to be

z0 = 0 or z0 = ±
√

1 − 4k2

�2
eff

, (33)

where �eff = � − ω−2
ξ η2. The solution z0 �= 0 exists as long

as �eff/2k � 1 or �eff/2k � −1 in the MQST state for the
atom system. Notice that �eff can be positive or negative,
and it is tunable by changing either g11 or g12 to vary k
(16), � (19), and η (20). There are four different types
of stationary states, (z0, φ0) = (0, 0) − I, (0, ±π ) − II,

(±
√

1 − 4k2/�2
eff , 0) − III and (±

√
1 − 4k2/�2

eff , ±π ) −
IV, summarized in Table I. Furthermore, the corresponding
energy for each stationary states can be computed through
(27) using the relation of stationary-state solutions (32), where
the results are listed in Table II. In the case �eff/2k > 1,
the ground state is in configuration I where the bilateral con-
densates have the same populations z0 = 0, thus the central
condensate is centered at ξ0 = 0, consistent with Fig. 1. As
for �eff/2k < −1, the ground state shows the population
imbalance for z0 �= 0 and the wave function ψ2 is centered
at ξ0 �= 0 due to (32) for a given z0 also seen in Fig. 1.

We next study the stability of the system around the equi-
librium solutions. To do so, we consider the small perturba-
tions around ξ0, z0, and φ0 defined by

ξ (t ) = ξ0 + δξ (t ), (34)

z(t ) = z0 + δz(t ), (35)

φ(t ) = φ0 + δφ(t ). (36)
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TABLE I. Stationary states.

Label z0 φ0 ω±

I 0 0 [ω2
ξ + ω2

Jξ ±
√

(ω2
ξ − ω2

Jξ )2 + 8kη2 ]/2

II 0 ±π [ω2
ξ + ω2

Jξ ±
√

(ω2
ξ − ω2

Jξ )2 − 8kη2 ]/2

III ±√
1 − 4k2/�2

eff 0 [ω2
ξ + ω2

Jξ ±
√

(ω2
ξ − ω2

Jξ )2 + 8kη2
√

1 − z2
0 ]/2

IV ±√
1 − 4k2/�2

eff ±π [ω2
ξ + ω2

Jξ ±
√

(ω2
ξ − ω2

Jξ )2 − 8kη2
√

1 − z2
0 ]/2

Substituting (34)–(36) into Eqs. (24)–(26), and using ξ0 = ω−2
ξ ηz0, one obtains the linearized equations of motion for δξ (t ) and

δz(t ) as

[
δξ̈ (t )
δz̈(t )

]
=

⎛
⎜⎜⎝

−ω2
ξ η

2kη

√
1 − z2

0 cos φ0 2k cos φ0

⎡
⎣ (−� + 2�z2

0 − ω−2
ξ η2z2

0 )√
1 − z2

0

− 2k cos φ0

⎤
⎦
⎞
⎟⎟⎠
[
δξ (t )
δz(t )

]
. (37)

Notice that the linear term in δφ vanishes where φ0 = 0 or ±π

for the stationary-state configurations is evaluated in obtaining
the linearized equations of motion. Considering the oscillation
motion of δξ (t ) and δz(t ) with δξ (t ), δz(t ) ∝ exp(iωt ), we
obtain the eigenfrequencies

ω2
±

= 1
2

[
ω2

ξ + ω2
Jξ ±

√(
ω2

ξ − ω2
Jξ

)2 + 8kη2
√

1 − z2
0 cos φ0

]
.

(38)

In addition to the nature frequency ωξ for the central
condensate, there exists an oscillating frequency

ω2
Jξ = ω2

J + 2k cos φ0 ω−2
ξ η2z2

0√
1 − z2

0

(39)

with

ω2
J = 2k cos φ0

⎡
⎣ 2k cos φ0 + �(1 − 2z2

0 )√
1 − z2

0

⎤
⎦, (40)

which manifests the nature frequency for quantum oscillations
between two bilateral condensates ωJ with the effects from
the dynamics of the central condensate [2]. However, the true
eigenfrequencies are the mixture of these two fundamental
frequencies ωξ , ωJξ as they couple. With the parameters in
the immiscible regime, typically for small k where the wave-
function overlap between bilateral condensates is small, this
gives ωξ 
 ωJξ . In the two-component BECs system, the
existing oscillation frequency ωξ of the central condensate
will drive the dynamics of the pair variables (z, φ) into the
oscillatory motions with frequencies ω− and ω+ where ω+ 

ω−.

Later we will manipulate the initial conditions of
z(0), φ(0) as well as ξ (0), ξ̇ (0) to effectively switch off
the fast varying mode of frequency ω+, giving the results
presumably to those in Ref. [2]. Then, the presence of the
fast varying mode for more general initial conditions will also
be studied to see its effects on quantum coherent phenomena

(z, φ). We will learn that, in the case of relatively small k ∼
10−3 with very small wave-function overlap, the time average
over the evolution of the fast varying mode is adopted to find
the deviation from the results in Ref. [2]. Those trajectories
are regular motion moving around the stable states of the
system listed in Table II. However, we also probe the param-
eter regime with relatively large wave-function overlap with
relatively large value k ∼ 10−2 for amplifying the influence
of the fast varying mode that can even drive the dynamics of
z and φ to the chaotic behavior, if the system starts from the
unstable state also seen in Table II.

In our system, the dynamics of quantum coherence os-
cillations (z, φ) is very sensitive to the tunneling energy k.
For even larger k, the proposed wave-function ansatz fails
to describe the evolution of (z, φ) where the dynamics of
the system can only be explored by directly solving time-
dependent GP equations, which is beyond the scope of the
present work.

IV. REGULAR MOTION

A. General solutions for small amplitude oscillations

After studying the stationary-state configurations and ex-
amining their dynamical stability, we step forward to dis-
cuss the time evolution of the system when z and ξ un-
dergo small amplitude oscillations around the stationary
states. Recalling the linearized equations of motion (37),
the general solutions will be the superposition of two

TABLE II. Mean field extreme for different �eff/2k parameters.

Stable Unstable Energy

�eff/2k > 1 I, IV II EIV > EI

−1 < �eff/2k < 1 I, II None EII > EI

�eff/2k < −1 II, III I EII > EIII
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eigenfunctions,

δξ (t ) = A++eiω+t + A+−e−iω+t

+ A−+eiω−t + A−−e−iω−t , (41)

δz(t ) = B++eiω+t + B+−e−iω+t

+ B−+eiω−t + B−−e−iω−t . (42)

Substituting Eqs. (41) and (42) into (37), one gets the
relations among those coefficients

A+,± = P+ B+,± , (43)

A−,± = P− B−,± , (44)

where P± depends on the stationary-state solutions obtained
as

P± = −1

4kη

√
1 − z2

0 cos φ0

[
ω2

ξ − ω2
Jξ

±
√(

ω2
ξ − ω2

Jξ

)2 + 8kη2
√

1 − z2
0 cos φ0

]
. (45)

According to the experimental feasibility where an application
of a magnetic gradient trap may cause the displacements of
condensates [32–34], we then consider the initial conditions
such as δφ(0) = 0, and δξ̇ (0) = 0. The corresponding solu-
tions are

δξ (t ) =
[ −P+P−

P+ − P−
δz(0) + P+

P+ − P−
δξ (0)

]
cos ω+t

+
[

P+P−
P+ − P−

δz(0) − P−
P+ − P−

δξ (0)

]
cos ω−t,

(46)

δz(t ) =
[ −P−

P+ − P−
δz(0) + 1

P+ − P−
δξ (0)

]
cos ω+t

+
[

P+
P+ − P−

δz(0) − 1

P+ − P−
δξ (0)

]
cos ω−t . (47)

In the case that ψL and ψR are very spatially separated,
resulting in small tunneling energy k in (16), two frequencies
will have very different values, ωξ 
 ωJξ , since ωJξ ∝ √

k in
(39). Then the eigenfrequencies (38) and the coefficients (45)
can be further approximated respectively as

ω+ → ωξ , ω− → ωJξ (48)

and

P+ → − ω2
ξ

2kη

√
1 − z2

0 cos φ0

+ O(k), P− → η

ω2
ξ

+ O(k).

(49)

The general solutions for small k now become

δξ (t ) � 1

ω4
ξ

{ − ω2
ξ

[
η δz(0) − ω2

ξ δξ (0)
]

cos ωξ t

+ η
[
ω2

ξ δz(0) + 2kη

√
1 − z2

0 cos φ0δξ (0)
]

cos ωJξ t
}
,

(50)

δz(t ) � 1

ω4
ξ

{
2kη

√
1 − z2

0 cos φ0
[
η δz(0) − ω2

ξ δξ (0)
]

cos ωξ t

+ ω2
ξ

[
ω2

ξ δz(0) + 2kη

√
1 − z2

0 cos φ0δξ (0)
]

cos ωJξ t
}
.

(51)

In this binary BEC system, it is important to explore the
effects from the additional mode with frequency ωξ on the
coherent oscillations between bilateral condensates. To do so,
we first choose the initial displacement of the central con-
densate and the initial population imbalance as −P−δz(0) +
δξ (0) = 0 in (46) and (47) where this choice of the initial
conditions leads to the amplitude of the rapidly oscillatory
motion vanishing, thus leaving with the slowly varying motion
only. For the situations of small k, using (49) we obtain a
linear relation,

δξ (0) = ω−2
ξ η δz(0), (52)

as in the stationary-state solutions (32). In this case, δξ (t ) and
δz(t ) undergo slow oscillations and the linearized solutions
(50) and (51) of the system read as

ξs(t ) � ξ0 + ω−2
ξ ηδz(0) cos ωJξ t, (53)

zs(t ) � z0 + δz(0) cos ωJξ t . (54)

Notice that together with (32) and (52), ξ (t ) = ω−2
ξ ηz(t ) and

Eqs. (24)–(26) reduce to the same set of the equations in the
single BEC case in Ref. [2] by letting

�eff = � − η2ω−2
ξ . (55)

In addition, the solution (53) shows ξ̇s � ξs.
Another interesting initial condition is δξ (0) = 0 and in

this case we can activate properly the rapidly oscillatory
motion with the solutions

ξ (t ) � ξs(t ) + Cξ cos ωξ t, (56)

z(t ) � zs(t ) + Cz cos ωξ t, (57)

where

Cξ = −ηω−2
ξ δz(0), (58)

Cz = 2ω−4
ξ kη2

√
1 − z2

0 cos φ0δz(0), (59)

and Cz � Cξ in the regime of small k. Later we will explore
the effects from the rapidly oscillatory mode on the dynamics
of (z, φ) in the system. However, this system involves two
largely separate frequencies, namely ωξ 
 ωJξ , for small k
with small wave-function overlap between bilateral conden-
sates. Although numerical trajectories of the CP dynamics
is straightforward, we find more convenient to represent the
trajectories in Poincaré maps (stroboscopic plots at every
period, 2π/ωξ ). These trajectories in Poincaré maps can
be analytically understood by considering the time-averaged
effects over the evolution of the ωξ mode in the timescale
T where 1/ωξ � T � 1/ωJξ , with which we construct the
corresponding effective potential in next section.

063622-7



WEI-CAN SYU, DA-SHIN LEE, AND CHI-YONG LIN PHYSICAL REVIEW A 101, 063622 (2020)

B. The effective potential

In order to construct an effective potential for the (z, φ)
dynamics, we substitute (24) into (27) to obtain

4k2(1 − z2) − ż2 =
[

�

2
z2 + ξ̇ 2

2
+ ω2

ξ ξ
2

2
− ηξ z − H (0)

]2

,

(60)

where H (0) is a constant value determined by the initial state
(z(0), φ(0), ξ (0), ξ̇ (0)). To get an effective potential for the
small amplitude oscillations around z0 and ξ0 that includes the
effects from the ωξ mode of the general C2, C3, and C4 terms,
we substitute (56) and (57) into (60) giving

4k2[1 − (zs + Cz cos ωξ t )2] − (żs − ωξCz sin ωξ t )2

=
[
�

2
(zs + Cz cos ωξ t )2 + 1

2
(ωξCξ sin ωξ t )2 + ω2

ξ

2

× (ηω−2
ξ zs + Cξ cos ωξ t )2 − η

(
ηω−2

ξ zs + Cξ cos ωξ t
)

× (zs + Cz cos ωξ t ) − H (0)

]2

, (61)

where, since ξ̇ 2
s � ξ 2

s , the term ξ̇ 2
s is ignored for keeping

the leading-order effects. Although Cz � Cξ in the small k
approximation, we still retain the terms of Cz, which are small,
for seeing how they contribute to the effective potential. Let
us now introduce the time-averaged population imbalance z
over the timescale T for 1/ωξ � T � 1/ωJξ as

〈zs(t )〉 ≡ 1

T

∫ T

0
dtzs(t ) = z̄(t ), (62)

where z̄(t ) will be determined self-consistently from the re-
sulting effective potential. It is now straightforward to find the
expression

˙̄z2 + Veff (z̄) = 4k2 − H (0)2 , (63)

from which the effective potential is obtained as

Veff (z̄) = V0(z̄) + δV (z̄). (64)

Among them, V0(z̄) is the well-known effective potential for a
single BEC in a double-well trap potential [2]

V0(z̄) = z̄2

[
4k2 − H (0)�eff + �2

eff

4
z̄2

]
, (65)

and δV (z̄) is the corrections due to the high-frequency ωξ

mode with the terms of Cz and Cξ , given by

δV (z̄)

= 1

2

{
4k2 + ω2

ξ − �

[
H (0) − �eff

2
z̄2

]
+ �2

eff z̄
2

}
C2

z

+ ω2
ξ

[
�eff

2
z̄2 − H (0)

]
C2

ξ + η

[
H (0) − �eff

2
z̄2

]
CzCξ

− ηω2
ξ

2
CzC

3
ξ + 1

8

(
2�effω

2
ξ + 5η2)C2

z C2
ξ

− 3η�

8
C3

z Cξ + 3�2

32
C4

z + ω4
ξ

4
C4

ξ . (66)

FIG. 3. The phase portrait of the population imbalance z and
the phase difference between the bilateral condensates φ as well
as the plots of the effective potential with the parameter � =
1.91, η = 1.25, k = 0.0026, giving �eff/2k = 68.02): (a) with the
initial conditions, δz(0) = 0.25, δξ (0) = 0.31 [blue (gray)], δz(0) =
0.24, δξ (0) = 0.30 [red (dark gray)], and δz(0) = 0.23, δξ (0) =
0.29 [green (light gray)], where the ωξ mode is effectively
switched; (b) with the initial conditions δz(0) = 0.25, δξ (0) =
0 [blue (gray)], δz(0) = 0.24, δξ (0) = 0 [red (dark gray)], and
δz(0) = 0.23, δξ (0) = 0 [green (light gray)], where the the ωξ mode
is effectively activated. Other initial conditions for both cases are
δφ(0) = 0, ξ̇ (0) = 0. The plots (c) and (d) are drawn for the corre-
sponding effective potential for (a) and (b), respectively.

Furthermore, since ξ (t ) = ω−2
ξ ηz(t ) holds true in the case

of Cz = Cξ = 0, the whole dynamics of (z, φ, ξ ) can reduce
to that of (z, φ) with symmetry of �eff → −�eff , and φ →
−φ + π as in Ref. [2]. Nonetheless, since Cz and Cξ are in
general nonzero, the system then does not obey the above-
mentioned symmetry. We will verify this in the later numerical
studies.

C. Results and discussions

1. �eff/2k > 2 (Josephson oscillation, running phase, and
π-mode self-trapping)

Consider the numbers of atoms in this binary con-
densates with the atom numbers N1 = 200, N2 = 1000. In
Fig. 3, we have chosen scattering lengths a11 = 97.5a0, a22 =
50a0, a12 = 85a0. As stated previously, we prepare the initial
states of the condensates, the Gaussian-like spatial functions
ψL(x) and ψR(x) together with the initial wave function of
the central condensate ψ2(x, t = 0) with width σ0 determined
numerically from finding the stationary-state solutions of GP
equations (3) and (4) with the forms shown in Fig. 2. The
resulting wave functions can in turn give the values of param-
eters k = 0.0025, � = 1.91, and η = 1.25 via (16), (19), and
(20), which lead to �eff/2k = 68 > 2.
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We first depict the trajectories by directly solving the
equations of motions (24)–(26) where the initial conditions
are slight away from the stationary state of φ0 = 0 and z0 =
ξ0 = 0 shown in Fig. 3(a). The initial conditions are chosen
as δφ(0) = δξ̇ (0) = 0 together with various choices of δz(0)
and δξ (0), obeying δξ (0) = ηω−2

ξ δz(0), with which only the
ωJξ mode becomes relevant. Thus, by varying δz(0) and δξ (0)
accordingly, the plot shows the regimes of Josephon-like os-
cillations for z̄(0) = z0 + δz(0) < z̄c(0), and MQST with the
running phase for z̄(0) > z̄c(0) as in Ref. [2]. The critical z̄ in
this case is z̄c(0) = 0.24, obtained from (69) below. Also, we
see the consistency of the solutions (50) and (51) with those
of the equations in (24)–(26). In the case of Cz = Cξ = 0, the
effective potential (64) reduces to that in Ref. [2] drawn in
Fig. 3(c) of a double-well form. Thus, for z̄(0) < z̄c(0) the
system has large-enough kinetic energy ˙̄z2 to move forward
and backward between two potential minima around the sta-
tionary state z0 = 0 and φ0 = 0 undergoing the Josephson os-
cillations. As z̄(0) increases to z̄(0) = z̄c(0), the initial kinetic
energy of the system drives z̄ rolling down toward one of the
potential minima and then climbing up the potential hill to
reach the state of z̄ = 0 just with ˙̄z = 0, obeying the condition

˙̄zc(0)2 + Veff [z̄c(0)] = Veff (z̄ = 0). (67)

Moreover, when z̄(0) > z̄c(0), the relatively small kinetic
energy constrains the system to move around one of the
potential minima with z0 �= 0, leading to the MQST, also
shown in Fig. 3(c).

Considering the initial conditions mentioned above to-
gether with the population imbalance z̄(0) = z0 + δz(0) and
the displacement of the central condensate ξ (0) = ξ0 + δξ (0)
obeying the relation ξ (0) = ηω−2

ξ z̄(0), H (0) becomes

H (0) = �eff

2
z̄(0)2 − 2k

√
1 − z̄(0)2 cos φ(0). (68)

Then, using Eq. (24) at the initial time to replace ˙̄zc(0) in
(67), for a given �eff , one can find the value of z̄c(0) with the
effective potential (60) by setting Cz = Cξ = 0, which gives
the known result in Ref. [2].

For �eff/2k > 2, if the initial relative phase 0 � |φ(0)| �
π/2, then

z̄2
c (0) = 4k

�2
eff

[�eff − 2k cos φ(0)

+
√

�eff (�eff − 4k) cos2 φ(0) + 4k2 cos4 φ(0)],

(69)

and when π/2 � |φ(0)| � π we have

z̄2
c (0) = 4k

�2
eff

[�eff − 2k cos φ(0)

−
√

�eff (�eff − 4k) cos2 φ(0) + 4k2 cos4 φ(0)].
(70)

The critical value of z̄c(0) as a function of φ(0) draws a
boundary between the Josephson oscillations and the MQST
mode to be discussed in the later numerical studies in Fig. 9.
As for a negative �eff , the solutions of z̄2

c (0) are given due
to the following symmetry �eff → −�eff and φ → −φ + π .
The value of z̄c(0) found in Fig. 3(a) and 3(c) can also been
achieved from (69) and (70) with φ(0) = 0 for the positive
value of z̄c(0).

In Fig. 3(b), we present the evolutions of z(t ) and φ(t ),
which include the effects from the ωξ mode with the same
set parameters discussed previously (see figure caption for de-
tails). To make a comparison with the evolution in Fig. 3(a) of
the slowly varying mode, it finds more convenient to represent
the trajectories in Poincaré maps (stroboscopic plots at every
period T = 2π/ωξ ) by collecting the results from the section
of ξ (0) = 0 and ξ̇ (0) > 0. It in turn can be further analyzed
in terms of the effective potential as we will see later by
considering the time-averaged effects from the fast oscillatory
mode. The similar Josephson-like oscillations [z̄(0) < z̄c(0)]
and the running phase MQST dynamics z̄(0) > z̄c(0) are
shown with a transition between them at the shifted critical
value z̄c(0) = 0.238. The shifted critical value z̄c(0) can be
obtained from the conserved quantity

H (0) = �eff

2
z̄(0)2 − 2k

√
1 − [z̄(0) + Cz]2 cos φ(0)

+ (�eff + ηω−2
ξ )

2
C2

z + �eff z̄(0)Cz + ω2
ξ

2
C2

ξ

− ηCzCξ , (71)

where we have substituted the results of (53) and (54) into
(27), and evaluated the Hamiltonian at an initial time. Again,
substituting (24) at an initial time into (67) and with the help
of effective potential (64), we can obtain the critical value of
z̄c(0) through the expression as follows:

�eff = 1

z̄c(0)2 + 4Czz̄c(0) − C2
z

{
4k

√
1 − [z̄c(0) + Cz]2 cos [φ(0)] + ηCzCξ − η2ω−2

ξ

2
C2

z

+
⎡
⎣{

4k
√

1 − [z̄(0) + Cz]2 cos [φ(0)] + ηCzCξ − η2ω−2
ξ

2
C2

z

}2

+ 16k2

z̄c(0)2

[
z̄c(0)2 + 4Czz̄c(0) − C2

z

]
(1 − Cz[2z̄c(0) + Cz] − {1 − [z̄c(0) + Cz]

2} cos2 [φ(0)])

]1/2
⎫⎬
⎭, (72)

where Cz and Cξ are given explicitly in terms of z0 and δzc(0) via (59) and z̄c(0) = z0 + δzc(0) in (54). For a fixed �eff , the
shifted value of z̄c(0) obtained from (72) is consistent with the numerical result in Fig. 3(b).
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FIG. 4. The evolution of the population imbalance z (a) and the
displacement of the central condensate (b) as a function of time in the
case of the Josephson oscillations are compared between the results
of the numerical solutions of the time-dependent GP equations (blue
line), and the linearized equations in Eqs. (24)–(26) (red dashed
line) with the same parameters described in the text and the initial
conditions z(0) = −0.1, φ(0) = ξ (0) = ξ̇ (0) = 0.

In Fig. 4 we provide numerical comparison on the results
of the coupled pendulums equations (24)–(26) and those by
solving the full time-dependent GP equations (3) and (4). The
initial wave functions for both condensates, as previously said,
are prepared from the stationary solutions of GP equations
with the form similar to Fig. 2. The wave function of the
central condensate can be approximated by (5) with ξ (0) =
α(0) = β(0) = 0 giving ξ̇ (0) = 0. However, for the bilateral
condensates, their initial wave functions are prepared for the
functions of x with the relative phase φ(0) = 0 and then tune
the wave functions to give z(0) �= 0. In Fig. 4, using the
same parameters and the initial conditions we find consistency
between the solutions from analogous CP dynamics and the
time-dependent GP equations.

In Fig. 5, the scattering lengths are slightly changed to
probe the dynamics of z, φ around the stationary state φ0 =
π, z0 = 0.91 ( �= 0) obtained from (33) with the parameters
� = 1.63, η = 1.267, k = 0.005, giving �eff/2k = 2.5 > 2.
We have the π -mode MQST oscillations in this case. The
initial conditions of δz(0) are chosen being δz(0) � 1 with
small perturbations around nonzero z0, where the effective
potential constructed in (64) can safely be applied. The plots
of Figs. 5(c) and 5(d) of the respective effective potentials
illustrate the single-well profile with the effects of turning on
or off the ωξ mode can satisfactorily interpret the dynamics
of the population imbalance z shown in Figs. 5(a) and 5(b).
This indicates that the MQST mode will persist for all range
of z(0) with −1 < z(0) < 1. The effects from nonzero Cz

and Cξ seem changing slightly the turning points of z̄, as z̄
oscillates around z0. For this �eff with φ(0) = π , z̄c(0) = 0 is
found. This means that for −1 < z(0) < 1, the MQST mode
sets in. In general, we can find z̄c(0) as a function of φ(0)
using the effective potential obtained above to be shown in
Fig. 5. Similar check is done using the time-dependent GP
equation as in Fig. 4 for the case of MQST whereas in Fig. 6,
large discrepancy is found due to the fact that the two modes
approach in (2) may not provide a relatively good basis to
parametrize the spatial parts of the wave functions of bilateral
condensates.

FIG. 5. The phase portrait with the parameters � = 1.80, η =
1.31, k = 0.017 (�eff/2k = 2.47). The π mode trajectories circle
the stationary point z0 = 0.91, φ0 = ±π, ξ0 = 1.19 shown in top
panels: (a) with the initial conditions, δz(0) = 0.15, δξ (0) = 0.20
[blue (gray)], δz(0) = 0.10, δξ (0) = 0.13 [red (dark gray)], and
δz(0) = 0.05, δξ (0) = 0.065 [green (light gray)], where the ωξ

mode is effectively switched: (b) with the initial conditions δz(0) =
0.15, δξ (0) = 0 [blue (gray)], δz(0) = 0.10, δξ (0) = 0 [red (dark
gray)], and δz(0) = 0.05, δξ (0) = 0 [green (light gray)], where the
the ωξ mode is effectively activated. Other initial conditions for both
cases are δφ(0) = 0, δξ̇ (0) = 0. In bottom panels, the plots (c) and
(d) are drawn for the corresponding effective potential for (a), and
(b) respectively.

FIG. 6. The evolution of the population imbalance z (a) and the
displacement of the center condensate (b) as a function of time
in the case of the MQST are compared between the results of
the numerical solutions of the time-dependent GP equations (blue
line), and the linearized equations in Eqs. (24), (25), and (26)
(red dashed line) with the parameters a11 = 87a0, a22 = 50a0, a12 =
85a0 (� = 2.0, k = 0.007, η = 1.4) and the initial conditions are
z(0) = 0.1, φ(0) = π, ξ (0) = ξ̇ (0) = 0.
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FIG. 7. In top panels, the phase portrait with the parame-
ters of � = 1.63, η = 1.27, η = 0.005 (�eff/2k = 1.07) is plot-
ted for the Josephson oscillation trajectories around the stationary
state: z0 = 0 φ0 = 0, ξ0 = 0 (a) with the initial conditions, δz(0) =
0.3, δξ (0) = 0.38 [blue (gray)], δz(0) = 0.2, δξ (0) = 0.25 [red
(dark gray)], and δz(0) = 0.10, δξ (0) = 0.12 [green (light gray)]
where the ωξ mode is effectively switched: (b) with the initial condi-
tions δz(0) = 0.30, δξ (0) = 0 [blue (gray)], δz(0) = 0.20, δξ (0) =
0 [red (dark gray)], and δz(0) = 0.10, δξ (0) = 0 [green (light gray)]
where the ωξ mode is effectively activated. Other initial conditions
for both cases are δφ(0) = 0, δξ̇ (0) = 0. In bottom panels, the plots
(c) and (d) are drawn for the corresponding effective potential for (a),
and (b) respectively.

2. 1 < �eff/2k < 2 (Josephson oscillation and π-mode
self-trapping)

In the interval 1 < �eff/2k < 2, there exist two solutions
of z̄2

c (0), if π/2 � |φ(0)| � π ,

z̄2
c (0) = 4k

�2
eff

[�eff − 2k cos φ(0)

±
√

�eff (�eff − 4k) cos2 φ(0) + 4k2 cos4 φ(0)].
(73)

In Figs. 7 and 8, the parameter �eff/2k is tuned to the value
between 1 < �eff/2k < 2. On the one hand, the Josephson
oscillations are seen for φ(0) = 0, and however, the running
phase MQST does not exist in this case in Fig. 7 where there
is no such a z̄c(0) found with the single-well potential, shown
in (72) and (73). On the other hand, the transition between the
Josephson oscillations and the MQST can occur in φ(0) =
π with the double-well potential, giving the critical value of
z̄c(0) either by (73) for the positive z̄c(0) with the ωJξ mode
only, or by (72) involving the contributions from the ωξ mode.

3. 0 < �eff/2k < 1 (Josephson oscillation)

As for 0 < �eff/2k < 1, since there does not exist the so-
lution of z̄c(0) due to the fact that the corresponding effective

FIG. 8. In top panels, the phase portrait with parameters
as in Fig. 7 is plotted for the π mode trajectories around
the stationary state: z0 = 0.37, φ0 = π, ξ0 = 0.47 (a) with the
initial conditions, δz(0) = 0.15, δξ (0) = 0.1905 [blue (gray)],
δz(0) = 0.100, δξ (0) = 0.127 [red (dark gray)], and δz(0) =
0.050, δξ (0) = 0.064 [green (light gray)] where the ωξ mode
is effectively switched: (b) with the initial conditions δz(0) =
0.150, δξ (0) = 0 [blue (gray)], δz(0) = 0.100, δξ (0) = 0 [red (dark
gray)], and δz(0) = 0.050, δξ (0) = 0 [green (light gray)] where the
the ωξ mode is effectively activated. Other initial conditions for both
cases are δφ(0) = 0, δξ̇ (0) = 0. In bottom panels, the plots (c) and
(d) are drawn for the corresponding effective potential for (a), and
(b) respectively.

potential for both φ(0) = 0 and φ(0) = π shows a single well
like the case in Fig. 7, we find the Josephson oscillations for
both relative phase difference cases.

To summarize the discussion given above, we show the
phase portraits in Fig. 9 from solving the double pendulum
equations (24)–(26). The initial conditions we choose in the
plots of the top row are again z(0) = z0 + δz(0), φ(0) = φ0

and ξ (0) = ξ0 + δξ (0), ξ̇ (0) = 0, where δξ (0) = ω−2
ξ ηδz(0)

so that the mode of ωξ is effectively switched off. The bottom
row figures correspond to the initial condition of δξ (0) = 0
instead with the solutions that the mode of ωξ is effectively
switched on for comparison. For top row results, in Fig. 9(e),
there exists a transition between the Josephson oscillations
and the running phase MQST at φ(0) = 0 for �eff/2k > 2,
and in Fig. 9(d), the transition occurs between the MQST
and Josephson oscillations at φ(0) = ±π instead apart from
the Josephson oscillations at φ(0) = 0 for 1 < �eff/2k < 2,
and further in Fig. 9(c) the Josephson oscillations at φ(0) =
0,±π respectively occur for 0 < �eff/2k < 1. For �eff/2k <

0, with Cξ = Cz = 0, all results for �eff/2k > 0 are shifted
from φ → −φ + π . Nevertheless, including the effects from
the ωξ mode, such symmetry mentioned above does not exist.
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FIG. 9. The phase portraits, choosing different η with fixed parameters of � = 1.35, k = 0.005, and ωξ = 1 by solving (24), (25), and
(26). The top row figures correspond to the initial conditions: z(0) = z0 + δz(0), φ(0) = φ0, and ξ (0) = ξ0 + δξ (0), ξ̇ (0) = 0, where δξ (0) =
ηω2

ξ δz(0) away from the various stationary states by changing δz(0) with the solutions that the mode of ωξ is effectively switched off. The
bottom row figures correspond to the initial condition of δξ (0) = 0 in stead with the solutions that the mode of ωξ is effectively switched on
for comparison. The parameters we choose are as follows: (a) �eff/2k = −2.47, η = 1.172; (b) �eff/2k = −1.55, η = 1.168; (c) �eff/2k = 0,
η = 1.162; (d) �eff/2k = 1.55, η = 1.155; (e) �eff/2k = 2.47, η = 1.151.

V. CHAOTIC DYNAMICS

In previous sections, we mainly focus on various regimes
of the regular motions. In particular, when two frequencies ω+
and ω− have large difference in magnitude, the dynamics of
the rapidly varying mode is averaged out giving a mean effect
to the mode of slow oscillations. However, as the difference
in magnitude between two frequencies becomes small with
a relatively larger overlap between bilateral condensates, the
system exhibits chaotic phenomena with the scattering lengths
in the regimes marked in Fig. 10. From experimental per-
spectives, this can be achieved by increasing the scattering
length a11 of the bilateral condensates or decreasing the inter-
species scattering length a12, thus resulting in relatively large
tunneling energy k.

In Fig. 11, we consider the scattering lengths giving
�eff/2k > 2 shown in Fig. 10 for the system to illustrate
the chaotic behavior. The initial conditions are chosen near
the solutions z0 = ξ0 = 0, φ0 = ±π , a hyperbolic fixed point,
which is a unstable point by changing z, realized from the
effective potential in Fig. 3 and also in Table II, but is a stable
point by changing the phase φ instead. We solve the time-
dependent GP equations using the initial condition ψ2(x, 0)
with ξ (0) = 0 and ξ̇ (0) = 0. The bilateral condensate wave
function ψ1(x, 0) is constructed by spatial wave functions ψL

and ψR with the initial population imbalance z(0) = 0.09 and
the initial relative phase difference φ(0) = π . The dynamics
of z is shown to run between the Josephson oscillations and
the running phase MQST in Fig. 11(b). With the same initial
conditions for z(0), φ(0), ξ (0), and ξ̇ (0), the numerical results
of coupled pendulum equations (24), (25), and (26) also show
the similar dynamics from which solutions we can compute
the so-called Lyapunov exponents for each of the dynamic
variables. A chaotic motion can be understood from the fact

that, for two initial nearby initial variables q(II )(0) → q(I )(0),
their difference grows exponentially in time t , obeying

|q(II )(t ) − q(I )(t )| = |q(II )(0) − q(I )(0)|eλt ,

where the rate λ is the Lyapunov exponent obtained from

λ = lim
t→∞ lim

q(II ) (0)→q(I ) (0)

1

t
ln

∣∣∣∣ q(II )(t ) − q(I )(t )

q(II )(0) − q(I )(0)

∣∣∣∣. (74)

FIG. 10. With same parameters of Fig. 1, the (blue and deep
blue) regimes of the scattering lengths lead to the chaotic behavior
of the system for �eff/2k > 1 with the initial conditions near the
hyperbolic fixed point z0 = ξ0 = 0, φ0 = ±π seen in Fig. 9(d) (1 <

�eff/2k < 2) and Fig. 9(e) (�eff/2k > 2), whereas the (red and
pink) regimes for �eff/2k < −1 with the initial conditions near the
state z0 = ξ0 = 0, φ0 = 0 in stead, which is also a hyperbolic fixed
point in this range of �eff/2k in Fig. 9(a) (�eff/2k < −2) and in
Fig. 9(b) (−1 < �eff/2k < −2).

063622-12



REGULAR AND CHAOTIC BEHAVIOR OF COLLECTIVE … PHYSICAL REVIEW A 101, 063622 (2020)

FIG. 11. (a) The phase portrait for the parameters: N1 =
500, N2 = 1000, a11 = 137a0, a22 = 50a0, and a12 = 85a0 that re-
sult the effective parameters � = 7.1, η = 2.45, and k = 0.0345,
(b) shows chaotic oscillation with initial conditions z(0) =
0.09, φ(0) = π, ξ (0) = ξ̇ (0) = 0. The red dashed line corresponds
to the linearized equation Eqs. (24), (25), and (26) and blue line
corresponds to the simulation results of real-time GP equations.
(c) The corresponding Lyapunov exponents obtained from (74) are
λz, λξ̇ , λξ , λφ from top to bottom.

There are four Lyapunov exponents λz, λφ, λξ , and λξ̇ shown
in Fig. 11(c). The chaotic dynamics can be recognized when
at least one of them is a nonzero positive value at large time,
and it is found λz > 0 in our choice of the initial conditions
and scattering lengths.

In order to analytically understand the chaotic dynamic, we
start from the CP dynamics with Eqs. (24)–(26), and substitute
the solution of ξ (t ) in (56) and (58) into (27) where again
the full dynamics of the system reduces to that of (z, φ) only.
Then the corresponding Hamiltonian splits into two parts

H = Hz + HI (t ), (75)

where Hz is the Hamiltonian to account for the dynamics of
the slowly varying mode given effectively by

Hz = �eff

2
z2 − 2k

√
1 − z2 cos φ. (76)

In the case of relatively small difference between the values
of ω− and ω+, the dynamics of the fast varying mode ω+ can
be treated as the time dependent perturbation contributing to
the interaction Hamiltonian as

HI (t ) ≡ �Ē (t )z(t ) = η2ω−2
ξ z(0) cos (ω+t )z(t ). (77)

Nevertheless in Refs. [18–21], this time-dependent perturba-
tion is implemented by introducing an external driving force.
Here, assuming HI � Hz, one can write the solution of z as
z = ζ + ζ̃ where ζ is the solution of the unperturbed equation

ζ̈ − (�effHz − 4k2)ζ + �2
eff

2
ζ 3 = 0, (78)

and ζ̃ is the first-order correction in z due to the perturbation
g(t ) satisfying the equation

¨̃ζ − (�effHz − 4k2)ζ̃ + 3
2�effζ

2ζ̃ = g(t ), (79)

g(t ) = �Ē (t ) Hz + HI �eff ζ − 3
2�eff �Ē (t ) ζ 2. (80)

When �effHz − 4k2 > 0, Eq. (78) presents a homoclinic
solution with the double-well potential shown in Fig. 3 for
�eff/2k > 2 and in Fig. 8 for 1 < �eff/2k < 2 when Hz = 2k.
The homoclinic solution might start from a particular initial
condition, and the system will drive z rolling down toward one
of the potential minima, and then climbing up the potential hill
of the state with z = 0, a fixed point, just with zero velocity.
The solution ζ reads as

ζ (t ) = 2
√

(�eff − 2k)/�2
eff sech(

√
�eff − 2k t + D), (81)

D = arcsech

⎡
⎣ z(0)

2
√

(�eff − 2k)/�2
eff

⎤
⎦. (82)

This homoclinic solution is also a separatrix, which is a
boundary between the Josephson oscillations and the running
phase MQST for �eff/2k > 2, and also the Josephson oscil-
lations and the π phase MQST for 1 < �eff/2k < 2. One can
then construct the Melnikov function from the homogeneous
solution of (79), which is ζ̃ = ζ̇ , and the function g(t ) as

M(0) =
∫ ∞

−∞
dt ζ̇ (t )g(t ) . (83)

The existence of zero of the Melnikov function shows the
chaos [18,19]. Substituting Eq. (79) into (83) above turns out
to be

M(0) = − 2πω+
�eff

√
�eff − 2k�Ē (0)

×
[

Hz√
�eff − 2k

− 1

3

√
�eff − 2k (1 + ν2)

]

× sech
(πν

2

)
sin (Dν), (84)

where ν = ω+/
√

�eff − 2k. For the case of the fixed point
z0 = 0, φ0 = π , the value of D → ∞ means that with such
highly rapidly oscillations of the sine function, any finite ω+
including the frequency given by the fast varying mode will
make the Melnikov function zero. Thus, the chaos occurs as
shown in Fig. 11 for �eff/2k > 2. Similar chaos occurs when
1 < �eff/2k < 2, and is shown in Fig. 12. In this case, the
dynamics of z runs between the Josephson oscillations and
the π mode MQST instead, where its behavior can also be
analyzed using the Melnikov Homoclinic method discussed
above. Moreover, the chaos may appear also in �eff/2k < −1
near the hyperbolic fixed point z0 = 0, φ0 = 0 (see Table II) in
the regime of the scattering lengths shown in Fig. 10. Notice
that although the semiclassical (mean-field) GP equation can
reliably signal the onset of the chaotic motion, it might fail
to provide the details of the dynamics on the short timescales
right after entering the chaotic regime, which can be dom-
inated by quantum many-body effects. The exploration of
chaos beyond the mean field approximation deserves further
studies [45,46].

VI. CONCLUSIONS

In summary, we have proposed a setting with binary BECs
in a single-well trap potential to probe the dynamics of
collective atomic motion. In this setting, 85Rb atoms |2,−2〉
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FIG. 12. (a) The phase portrait for the parameters: N1 =
500, N2 = 1000, a11 = 77a0, a22 = 50a0, and a12 = 77a0 that re-
sult the effective parameters � = 4.8, η = 2.18, and k = 0.019,
(b) shows chaotic oscillation with initial conditions z(0) �
0, φ(0) � π, ξ (0) = ξ̇ (0) = 0. The red dashed line corresponds
to the linearized equation Eqs. (24), (25), and (26) and blue line
corresponds to the simulation results of real-time GP equations.
(c) The corresponding Lyapunov exponents obtained from (74) are
λz, λξ̇ , λξ , λφ from top to bottom.

and 87Rb atoms |1,−1〉 are considered with tunable scattering
lengths via Feshbach resonances so that the ground-state
wave function for two types of the condensates are spatially
immiscible shown in Fig. 1. As such, the condensate of
atoms for one of the hyperfine states centered at the potential
minimum can be effectively treated as a potential barrier
between bilateral condensates formed by atoms in the other

hyperfine state. In the case of small wave-function overlap of
bilateral condensates, one can parametrize their spatial part of
the wave functions in the two-mode approximation together
with time-dependent population of atoms and the phase of
each of the wave functions. Besides, the wave function of the
condensate in the middle is approximated by an ansatz of the
Gaussian wave function. The full system can be reduced to the
dynamics of the imbalance population of atoms in bilateral
condensates z, as well as the relative phase difference φ

between two wave functions together with the time-dependent
displacement of the central condensate ξ . For small wave-
function overlap of bilateral condensates shown in Fig. 10, all
sorts of the regular trajectories, moving about the stable states,
in Refs. [2,3] can be reproduced. Moreover, the numerical
results given by solving the equations of z, φ, and ξ are in
close agreement with the solutions of the full time-dependent
GP equations. Nevertheless, with an increase in wave-function
overlap also shown in Fig. 10, we study the possibility
of the appearance of the chaotic oscillations driven by the
time-dependent displacement of the central condensate. The
application of the Melnikov approach with the homoclinic
solutions of the z, φ, and ξ equations successfully predicts the
existence of the chaos, which are further justified from solving
the full time-dependent GP equations. All of the findings in
this work deserve further experimental investigations using
advanced techniques for manipulation of atomic condensates.
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APPENDIX

Section II has discussed a variational approach to the dynamics of binary BEC system. In this Appendix we provide more
detailed derivations and approximations to arrive at the equations of the CP dynamics given in (24)–(26). Substituting the ansatz
of the ground-state wave function (5) and (6) into the Lagrangian (1), and carrying out the integration over space, the effective
Lagrangian then becomes a functional of the time-dependent variables α, β, ξ , w, z, and φ as

L1D = L0 − N1

2

(
−zφ̇ + �Ez + �

2
z2 − 2k0

√
1 − z2 cos φ

)

− N2

{(
α̇ξ + β̇ξ 2 + β̇

2
w2

)
+ 1

2

[
1

2w2
+ 2β2w2 + (α + 2βξ )2

]
+ 1

4
(2ξ 2 + w2) + g22N2

2
√

2πw

}

− g12N1N2

2
√

πw

∫
dx

[(
ψ2

L + ψ2
R

) + z(ψ2
L − ψ2

R ) + 2
√

1 − z2 cos φψLψR
]

exp

[
− (x − ξ )2

w2

]
, (A1)

where the effective parameters are tunneling energy k0 (15), difference of energies between the wells �E (18) and self-interaction
energy � (19). Using Lagrangian equations for the parameters α, β, ξ , w, z, and φ, we first obtain

α = ξ̇ − 2ξβ and β = ẇ

2w
. (A2)

Then, after inserting Eqs. (A2) into (A1), the equations of motion for population imbalance and relative phase between bilateral
condensates become

ż +
(

2k0 − 2g12N2√
πw

∫
dxψLψRe− (x−ξ )2

w2

)
×

√
1 − z2 sin φ = 0, (A3)

φ̇ − �E − �z −
[

2k0 − 2g12N2√
πw

∫
dxψLψRe− (x−ξ )2

w2

]
z√

1 − z2
cos φ − g12N2√

πw

∫
dx

(
ψ2

L − ψ2
R

)
e− (x−ξ )2

w2 = 0. (A4)
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For the center condensate, the equations of motion of ξ and w are obtained as

ξ̈ + ξ + g12N1√
πw3

∫
dx

[(
ψ2

L + ψ2
R

) + z(ψ2
L − ψ2

R ) + 2
√

1 − z2 cos φψLψR
]
(x − ξ )e− (x−ξ )2

w2 = 0, (A5)

ẅ + w − 1

w3
− g22N2√

2πw2
+ g12N1√

πw2

∫
dx

[(
ψ2

L + ψ2
R

) + z
(
ψ2

L − ψ2
R

) + 2
√

1 − z2 cos φψLψR
] ×

[
2(x − ξ )2

w2
− 1

]
e− (x−ξ )2

w2 = 0.

(A6)

It can be understood that the presence of bilateral condensates contribute a time-dependent deformation for the central condensate
by coupling to population imbalance z(t ) in the integrand of Eqs. (A5) and (A6). We introduce Gaussian functions (see Fig. 2)

ψL(x) =
(

1

πλ2

)1/4

e− (x+ζ )2

2λ2 , (A7)

ψR(x) =
(

1

πλ2

)1/4

e− (x−ζ )2

2λ2 , (A8)

and substitute them into Eqs. (A3)–(A6). In our cases, the displacement ξ and the width defined as w = σ0 + σ with σ0

determined initially by solving time-independent GP equation for finding the ground-state solution and σ driven by ξ , satisfy
the conditions

ξ �
√

λ2 + σ 2
0 and σ �

√
λ2 + σ 2

0 . (A9)

In the case of λ ∼ σ0, we have ξ �
√

λ2 + σ 2
0 ∼ σ0 and σ �

√
λ2 + σ 2

0 ∼ σ0. Back to Eqs. (A3)–(A6), it is allowed to expand
the equations in terms of small σ/σ0 and ξ/σ0 as

ż +
{

2k0 − 2g12N2√
πσ0

[
1 − σ

σ0
+ O

(
σ 2

σ 2
0

)]∫
dxψLψRe

− (x−ξ )2

σ2
0

(1−2σ/σ0 )
}√

1 − z2 sin φ = 0, (A10)

where the integral above can be further expanded as[
1 − σ

σ0
+ O

(
σ 2

σ 2
0

)]∫
dxψLψRe

[
−
(

x
σ0

)2+2

(
xξ

σ2
0

)
+O

(
ξ2

σ2
0

)][
1−2 σ

σ0
+O

(
σ2

σ2
0

)]

=
∫

dxψLψRe−x2/σ 2
0

[
1 − σ

σ0

(
1 − 2

x2

σ 2
0

)]
+

∫
dxψLψRe−x2/σ 2

0

(
2xξ

σ 2
0

)
+ O

(
ξ 2

σ 2
0

,
σ 2

σ 2
0

)
. (A11)

The term of order ξ/σ0 vanishes due to the odd function in the integrand. Therefore Eq. (A3) can be further simplified by keeping
the terms of order σ/σ0 as

ż +
[

2k0 − 2g12N2√
πσ0

∫
dxψLψRe−x2/σ 2

0 + 2g12N2√
πσ0

∫
dxψLψRe−x2/σ 2

0

(
1 − 2

x2

σ 2
0

)(
σ

σ0

)]√
1 − z2 sin φ = 0, (A12)

and reduces to (11) with the definition of the constants in (16) and (17). Following the same procedure to approximate Eq. (A4),
we have

φ̇ − �E − �z −
[

2k0 − 2g12N2√
πσ0

∫
dxψLψRe−x2/σ 2

0 + 2g12N2√
πσ0

∫
dxψLψRe−x2/σ 2

0

(
1 − 2

x2

σ 2
0

)(
σ

σ0

)]

× z√
1 − z2

cos φ − 2g12N2√
πσ 3

0

∫
dx(ψ2

L − ψ2
R ) x e

− x2

σ2
0 ξ = 0, (A13)

which leads to (12).
Now we turn to linearize Eq. (A5), which is

ξ̈ + ξ + g12N1√
πσ 3

0

[
1 − 3

σ

σ0
+ O

(
σ 2

σ 2
0

)]∫
dx

[(
ψ2

L + ψ2
R

) + z
(
ψ2

L − ψ2
R

) + 2
√

1 − z2 cos φψLψR
]

× (x − ξ )e−x2/σ 2
0

[
1 − x2

σ 2
0

+ 2

(
x

σ0

)(
ξ

σ0

)
+ 2

(
x2

σ 2
0

)(
σ

σ0

)
+ O

(
ξ 2

σ 2
0

,
σ 2

σ 2
0

)]
= 0. (14)

Considering the vanishing of the integral due to the odd function in the integrand, we conclude

ξ̈ +
[

1 + g12N1√
πσ 3

0

∫
dx(ψ2

L + ψ2
R )

(
2

x2

σ 2
0

− 1

)
e−x2/σ 2

0

]
ξ +

[
g12N1√

πσ 3
0

∫
dx(ψ2

L − ψ2
R )xe−x2/σ 2

0

]
z

+
[

g12N1√
πσ 3

0

∫
dx(ψ2

L − ψ2
R )

(
2

x3

σ 3
0

− 3
x

σ0

)
e−x2/σ 2

0

]
σ = 0, (A15)
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that gives (13). Finally, we can linearize Eq. (A6) as

σ̈ +
[

1 + 3

σ0
+ g22N2√

2πσ 3
0

+ g12N1√
πσ 3

0

∫ ∞

−∞
dx

(
ψ2

L + ψ2
R

)(
2 − 10

x2

σ 2
0

+ 4
x4

σ 4
0

)
e−x2/σ 2

0

]
σ

−
[

2g12N1√
πσ 3

0

∫ ∞

−∞
dx

(
ψ2

L − ψ2
R

)(
3

x

σ0
− 2

x3

σ 3
0

)
e−x2/σ 2

0

]
ξ = 0, (A16)

giving (14).
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