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Dylan Manna
University of Michigan, Ann Arbor, Michigan 48109, USA

® (Received 29 July 2016; accepted 19 May 2020; published 15 June 2020)

Atomic Kapitza-Dirac Bragg regime scattering is a multiphoton process in which a neutral atom undergoes a
change of momentum through an interaction with a coherent light source. When the Bragg conditions are met,
the outgoing atom beams are spatially quantized. Counterpropagating lasers act as pump and probe scattering
from far-off-resonant excited intermediate electronic states, leaving the atoms in the electronic ground state
with quantized transverse momentum. Each nontrivial scattering event imparts transverse velocity and therefore
kinetic energy to the deflected atoms through recoil. In the Bragg regime, the loss of energy in the light fields is
equal to the gain of kinetic energy in the atom. Energy nonconserving intermediate states, which are described by
nonadiabatic contributions, are not accounted for by first-order off-resonant states. By comparing the solutions of
increasing orders of off-resonant intermediate states, it becomes clear that calculating the correct Pendellosung
frequencies and phases requires including an ever increasing number of off-resonant states in proportion to the

square root of the field strength.
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I. INTRODUCTION

Two decades after J. J. Thompson introduced Bragg scat-
tering at a meeting of the Cambridge Physical Society [1] in
1912, Kapitza and Dirac first introduced what has become
known as the Kapitza-Dirac effect in 1933 [2]. Bragg [1] had
successfully demonstrated the coherent scattering of x rays
from crystals, whereas Kapitza and Dirac, seeking analogs
between matter and light, proposed the theory of coherent
electron diffraction from a strong light source. The reci-
procity of electrons and photons in quantum electrodynamics
suggests that one could observe Bragg diffraction of matter
from a periodic light source analogous to x-ray diffraction
from crystalline solids [3]. In the energy-conserving Bragg
regime, the outcome of this effect is the spatially quantized
diffraction of the electron beam into undeflected and deflected
trajectories where the momentum and energy of the electron
and light quanta would be conserved.

Given the small coupling of light with electrons, the real-
ization of the Kapitza-Dirac effect (KDE) required the advent
of lasers. By 1965, experiments scattering electrons from
lasers were proposed and successfully performed [4-10]. With
the many advances in atomic optics made in the 1980s, the
definition of the Kapitza-Dirac effect was expanded to include
neutral atoms diffracting from periodic gratings created by
counterpropagating lasers [11-17]. The atom-optics Bragg
scattering theory was put forth in 1980 [18] and 1985 [19]
and observed experimentally in 1987 [20]. In contrast to
the simpler photon-electron interaction, atomic Kapitza-Dirac
scattering is complicated and enriched by the electronic struc-
ture of the atom and the dressed field [21-23]. Kozuma et al.
[24] utilize the atomic KDE in order to study the behavior of
Bose-Einstein condensates where spatial quantization is read-
ily observed. Here and in other experiments which involve
the atomic KDE, one may use arbitrary pulse shapes as the
experiment is designed in a pump-probe arrangement where
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the condensate is still and the lasers are pulsed, yielding recoil
momentum. Gupta et al. [25] examine the Bose-Einstein
condensate laser which relies on the KDE as the mechanism
of coherently imparting momentum.

In the reporting of atom-optic Kapitza-Dirac Bragg scatter-
ing by Pritchard et al. [20], Fig. 4 contains a plot of population
vs power. Although Pendellosung is observed, the phase and
frequency deviate appreciably from the theoretical curve. Lee
et al. in 1995 [26] refer to the discrepancies in the pioneering
work of Pritchard et al., as well subsequent experimental
work, between the predicted and measured Pendellosung as
a function of field strength in first-order Bragg scattering.
Precision experiments involving spatial quantization will re-
quire better understanding of the approximation techniques
and their limitations [27-30].

II. DOPPLER-SHIFTED LAUE GEOMETRY

In the symmetric Laue geometry, the atom enters the
light field at the Bragg angle and exits undeflected or at
the diffracted Bragg angle. In the Doppler-shifted geometry,
however, the incoming atomic beam is cooled transverse to
its classical trajectory such that the angle of incidence is
perpendicular to the light field as is shown in Fig. 1. This
transformed geometry requires that the counterpropagating
lasers are relatively detuned to mimic the Doppler-frequency-
shifted photons that the atom would see in symmetric Bragg
scattering. This detuning is analogous to a system of x rays in-
cident on moving crystals [31,32] and has a similar advantage
as the incident beam angle need not be recalibrated for vary-
ing Bragg conditions. The experimentalist sets the incoming
beam angle normal to the laser propagation direction while
adjusting the detector’s angle and the relative laser frequen-
cies. As field strength is varied, relative Pendellosung in the
populations of the outgoing beams is observed analogous to
Pendellosung in Bragg scattering of x rays in crystals in a
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Laue geometry where the field strength of the light grating
is the corollary to the thickness of the crystalline solid. [33].

In the Doppler-shifted Laue geometry, one sets the initial
transverse speed to 0, and the field frequencies the atom
sees are 2+ 4 and €2, respectively. The subsequent virtual
absorption and emission processes leading to the population
of scattering states with 27k are depicted in Fig. 2 where the
Raman resonance condition is ensured by matching the two-
photon process detuning & to the energy difference between
the bare and scattered states. The two states differ in energy by
four times the recoil frequency defined as wree = Hik?/(2m),
where the transverse momentum is /€2/c 4+ h(2 4 8)/c ~
2hk. This satisfies the Bragg condition for resonant scattering
into a transverse momentum state as

202
= (1)

mc

6 = 4w =

as the exchange leaves the field with an energy difference
of (2 + 8) — 2 = hd, equaling exactly the kinetic energy
gained by the diffracted atom. In the frame of the incoming
atom, the interaction is that of an atom experiencing two
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FIG. 2. Energy diagram showing off-resonant Raman scattering.
Note that w — 2 > §.

FIG. 3. The Raman-Nath and Bragg regimes.

counterpropagating pulses with an envelope defined by the
laser profile.

To obviate the effect of spontaneous emission or any
other losses affecting the electronic excited state, the laser
frequencies of the fields must be far-off-resonant with the
internal electronic level energy w inferring that w — € must
be large enough to guarantee that no electronic atomic states
are populated during the scattering event. We set the relevant
single-photon detuning A = @ — 2 and we assume it in the
following to be much larger than other involved rates, for
example A > 6. In the frame of the incoming particle, the
interaction is that of an atom experiencing two counterpropa-
gating pulses with an envelope defined by the laser profile. We
define an interaction time 7 defined as the laser beam width
divided by the longitudinal speed of the incoming atom beam.
Generally one distinguishes between short and long interac-
tion times based on the ratio between the two-photon detuning
8 and the inverse of t. Roughly speaking, for short interaction
times where the effective pulse bandwidth r=! > §, many
orders of energy nonconserving terms contribute during the
interaction; that is, nonadiabatic contributions should be
considered as leading to many scattering states (represented
in Fig. 3 as the Raman-Nath regime). However, we consider
in the following scattering output states strictly in the Bragg
regime, i.e., energy conserving. Therefore we require that the
two-photon effective pulse bandwidth be small such that one
can easily resolve the Bragg scattering state, i.e., 77! < 8.
Consequently, after the interaction the atom will be in one of
two outgoing states: undeflected or deflected with an angle,

2hk
9 = arctan [ — |, ()
Po

where py is the initial momentum and py, = 0. Short time
interactions in the Raman-Nath regime which allow for energy
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nonconserving output states, shown for comparison in Fig. 3,
are not examined here. It is important to recall that despite
being in the Bragg regime, intermittent energy nonconserving
processes are permitted and contribute to a reduction of
scattering into the deflected 2/ik Bragg deflected beam. We
analytically and numerically discuss the contributions of such
two-photon off-resonant contributions to the deflected beam
amplitude and show that even under standard conditions such
contributions are non-negligible.

III. VIRTUAL TWO-PHOTON RAMAN SCATTERING

In atomic Bragg scattering with symmetric Laue geometry,
the frequency of both lasers is identical. The incoming atom
has a transverse momentum that is reversed after virtual
excitation, and stimulated emission provides a recoil equal
to twice the incoming transverse momentum. There is no
change in the kinetic energy of the atom, and the counter-
propagating fields, albeit respectively losing and gaining a
photon, experience no net change in energy. The exchange is
achieved through two-photon-stimulated Rayleigh scattering
as the atom merely changes direction. In this symmetric
arrangement, the energy of the atom and the energy of the field
independently are equal at times before and after the scattering
event.

J

By contrast, an atom traversing the light crystal in the
Doppler-shifted Laue geometry virtually absorbs a photon
of frequency greater than that of the photon emitted via
stimulation. The energy gained by the atom in the form of
transverse kinetic energy is equal to the energy lost in the
field by the unequal exchange of the field photons whose
energies differ by 28. From the spectroscopic point of view,
the atom is involved in a virtual two-photon Raman scatter-
ing event as the virtually absorbed photon has a frequency
different than that of the photon stimulating the emission
[34]. The deflected atom gains a transverse velocity pro-
portional to the perpendicular momentum arising from the
collision of the photon scattered m radians by the recoil of
the atom. The scattering is a two-photon virtual process since
the field frequencies are far from resonance with the upper
electronic state of the atom. The atom’s initial O transverse
momentum is increased by 27k, although the internal elec-
tronic energy of the atom is left unaltered. The direct product
state is increased as the mechanical energy is increased by
2hk? /m while the atom is left in the electronic ground state.
The direct product states are as follows:

lg-s.) ® |[pL =0),
2mhs).

Undeflected (Incoming):

Deflected (Diffracted): lg.s.) ® |pL =

IV. EQUATIONS

Off-resonant stimulated Raman scattering describes an exchange of energy from one field to the field counterpropagating
with the incident atomic beam as the intermediary where adiabatic elimination of virtual transitions leads to a semiclassical
formulation of the equations of motion. The fields, ©2 and €2 4+ 4, are both far detuned by A from the electronic ground to
the excited state transition frequency w. The counterpropagating fields are detuned from each other such that their frequency
difference, §, will later define a new set of direct product ground states for the atom, in which electronically the atom is in the
ground state while mechanically it has transverse momentum p; = 2nhk for integer values of n.

In the Bragg regime there is only one pair of resonant states for each 8. Far from the scattering fields, the atom’s transverse
momentum is either 0 or 27k and off-resonant final state populations are negligible. Off-resonant final states are accessible in
the Raman-Nath regime where the time the atom spends in the field is small with respect to the inverse of the recoil frequency
of the Bragg diffracted atom; however, this regime is easily suppressed by a low atomic beam speed and a large laser waist.

A. Atom-optic equations of motion

To derive atom-optic equations of motion, we start in the frame of the atom in which it encounters two counterpropagating
pulses as in pump-probe spectroscopy. The two pulses are nearly identical in frequency (€2 and €2 + §) and are far off-resonance
with respect to the atom’s electronic level separation (A = w — 2). The two Rabi frequencies are denoted by r;(¢) (for field
at frequency 2) and r,(¢) (for field at frequency 2 + §). As we assume that the longitudinal speed of the atom is constant
throughout the propagation within the laser-covered area, the time variation of r(¢) and r,(¢) reflect the spatiotemporal variation
of the counterpropagating beams. We write the Schrodinger equation using the dipole operator to couple the electronic states to
the motion in position representation where a;(x, ) and a,(x, t) stand for the ground and excited electronic state amplitudes.
We then transform the equations of motion into a momentum basis where the momentum amplitudes a;(p, t) and a,(p, t) are
chosen to represent the deflected versus undeflected atoms. Following is a derivation of the equations of motion:

g i 2 1 —iQ ikx —i(Q+8) ,—ikx
itha(x,t) = —%V ay(x,t) — Eha)al(x, t)+ hlri(t)e "™ 4+ ra(t)e e + c.c.]ay(x, 1), (3a)

i 1 o . .
ifiay(x, 1) = —2—V2a2(x, 1)+ Eha)az(x, 1)+ Alr()e ¥ e 4y (1)e TS = ¢ e Jay (x, ). (3b)
m

Inserting the identity | f;o |P'Y{(p'|dp’ into Eq. (3b) and performing a Fourier transform yields the following:
2

. w —iQx ikx —i —ikx N /
ia(p,t) = ;;—maz(p,t)vLEaz(P,l)vL//(PIX)[n(t)e UM (1)e e 4 e )(x|p) (plar(x, ))dp'dx.  (4)
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Rewriting the last term of Eq. (4) by collecting exponents of equal spatial phase, we find

// (p|x)[rT([)eiQtefikx + rz(t)efi(9+5)tefikx +r (t)efiQteikx + r;(t)ei(QJra)teikx]al(p’, [)dp/dx (5)
Introducing R(¢) and R*(¢) as the positive and negative spatial phase terms, we obtain
R(t) — rT(t)eiQt 4 rz(t)e*i(9+5)t’ (6a)
R*(t) = ri(t)e ™ + 15 ()", (6b)
Substituting Egs. (6) into Eq. (5), we find
X (' =p)/h " "
// W(R(t)e” T+ R ()" Mai (p, t)dp'dx = hR(t)a(p + hk,t) + hiR*(t)a,(p — Tk, t). @)
Collecting the terms of Eq. (4) and dividing by i we find the following equations of motion in the momentum basis:
P o
ai(p,t) =i\ —5— + 5 Jai(p, ) — iR()ax(p + hik, 1) — iR*(t)az (p — Tik, 1), (8a)
2mh 2
P
a(p,t) =i| —5— — - |aa(p,t) — iR(t)ai (p + hik, t) — iR*(t)ar (p — ik, 1). (8b)
2mh 2
Introducing a momentum-interaction picture with the following redefined momentum amplitudes,
. p? @
ai(p,1) = & (p, e’ mit D (9a)
. 2 w
ax(p,1) = ax(p, 1)e' i3, (9b)
we find the following form:
5 N [T VR k2
ai(p,t) = —iR(t)ar(p + hk,t)e" m = 2 — iR*(t)ay(p — hk,t)e w ™ m , (10a)
. okl ok e
Ga(p, 1) = —iR()ay (p + fik, )™ =5+ _ iR (t)a, (p — Fik, 1)elCn =5 o) (10b)

In order to eliminate a,(p, t) and find 51(]9, t) in terms of &;(p, t) alone, we integrate 52(1), t), expand R(¢) and R*(¢) with
what they represent, and split the integrals:

. . . (2 . . 2
/&g(p,t)dt = —/irl(t)e_’mal(p—hk,t)e’(%k_%“")’dt —firf(t)e'ﬂf a1 (p + Bk, 1)e! =B ter gy

. ok k2 . . pk 2
- / iry ()e @ G (p + ik, 1) T TN gy — f ir;(t)em”)’al(p—hk,t)e“%-%ﬂ)”dt. (11)

After integration, and dropping terms with very large denominators, namely w + €2, recalling that A = @ — 2, and assuming
%k < A and % < A, we obtain

() . ok w2 ri(t) . 2
a(p. 1) = __22 ) i8-8 (p 4 ik, 1) — —‘i -5+ (p — Bk, ), (12)

The equation for &;(p, t) is in terms of @, (p + hk, t) and a,(p — hk, t), so we first substitute these momenta into the equation
for a(p, t):

t) . pk 3k t) . 2

& (p+ ik, 1) = —”T()e’“%”fﬁx FATNG (p + 2hik, 1) + ”T()e“%%wal(p, 0, (13a)
t ; < 12 t e L 3 2

la(p — ik, 1) = = 2D A5G, () ri Lo, (p— 2k 1), (13b)

Substituting Egs. (13) into a; (p, t), Eq. (10a), and eliminating rapidly oscillating terms of the form Q2 + w, we find an equation
for a;(p, t) where the virtual excited electronic state has been adiabatically eliminated from the equations of motion:

ip.1) = O Z ()

Z‘11(1)7 t)

SOr(t) ook am?
(20N cE gL onk 1), (14)

_ i 20k, t) —
A ai(p+ ) y

Label the level light shift

ri®n@) + 5 n@)
A

S@t)= 5)
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and introduce

@) _ BnMn@)

Bf@)=——~ A

(16)

where f(¢) is normalized to unity over the pulse duration, ff:: f()dt =1, and B quantifies the field intensity divided by the
detuning, A. The two-photon recoil frequency is given by
hk*>  20hk?
4— = = . a7

2m m

The Bragg condition is achieved by the detuning, § = wy, such that the recoil energy of the atom is equal to that of the loss
of energy in the field and Eq. (14) can be recast as
. - 2pk . 2pk
dy(p.1) = —iSOa (p. 1) — iBf ()™ 7 @ (p + 20k, 1 — iff(1)e
Equation (18) infers the coupling to an infinite number of states in the electronic ground state with varying momenta. We
introduce an atomic beam where p; = 0. The allowed outgoing states carry momenta indexed in multiples of p = £2/ik and
the equation of motion can be further simplified. The level light shift for first order is identical for all momentum states and can,
therefore, be dropped from the coupled equations. Further, we may drop the electronic indices as the upper state is always virtual
in the limit of large detuning (see discussion in Ref. [12]). Last, we introduce subscripts to indicate the momenta of the various
states:

20z, (p — 21k, 1). (18)

ik (1) =B )™ G () + BL ()™ a0y (1) (19)

This equation clearly couples an infinite number of states; however, we begin by retaining only resonant states. The resonant
states are those without phase factors and represent the states and couplings which arise from energy conservation between
mechanical states of the atom and the field. The resonant equations where all higher-order Bragg processes are neglected are as
follows with @, = a(nhk,t):

iao(t) = Bf (1)ax(t), (20a)
iay(1) = Bf(1)ao(r). (20b)
Including the next-order Bragg processes, the states @_, and dg,
ia_(t) = Bf ()™ an(r), (21a)
iao(t) = Bf(e” ™ a_s(t) + B (DA (1), (21b)
iay(t) = Bf ()™ au(t) + B O)ao(t), 2le)
iay(t) = Bf (e a(r), (21d)
where the couplings to the @_4(¢) and ag(¢) terms, each of which in turn couple to higher-order states, are neglected

symmetrically.
Our last transformation of basis is performed to remove exponentials in order to speed the computational calculations. For
the resonant states, we set

d_s(t) = ao(t)e ™, (22a)
do(t) = (), (22b)
do(t) = dr(t), (22¢)
da(t) = ap(t)e ™", (22d)

which leads to a truncated matrix equation:

268 Bf() 0 0
; Bfwy 0 Bf@t) O
d(t) = d(t). 23
AO=1"0 g 0 prao |10 @3)
0 0 Bf() 268
For each pair of higher-order processes, the expressions for d,(¢) include appropriate exponential terms such that the
transformations lead to matrices containing only terms proportional to S f(¢) and §.

B. Extended dressed basis and its consequence

Most solutions to the equations of motion are found solving the four truncated equations of motion shown by Eq. (22). When
the methods of approximation for the reduced four-level problem no longer suffice, we find that Eq. (24) gives arbitrarily precise
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solutions to the equations of motion in the form of a set of countably infinite coupled differential equations:

d_g(1) 208 Bf() 0 0 0
d_e(1) Bf () 126 Bf() 0 0
d—4(1) 0 Bf)y 65 Bf() 0
d_5(t) 0 0 Bf) 28 BfG)
| doo | _ 0 0 0 Bf@) 0
dy (1) 0 0 0 0 Bf@)
da(t) 0 0 0 0 0
de (1) 0 0 0 0 0
ds(1) 0 0 0 0 0
dio(t) 0 0 0 0 0

0 0 0 0 0 d_s(t)
0 0 0 0 0 d_e(t)
0 0 0 0 0 d_s(t)
0 0 0 0 0 d_»(t)
Bf @) 0 0 0 0 do (1)
0 Bf@) 0 0 0 dy(t)
Bf (@) 28 Bf@) 0 0 ds(t)
0 Bf@) 65 Bf() 0 de(t)
0 0 Bf() 128 Bf() ds(1)
0 0 0 Bf(t) 208 dio(t)
(24)

Numerical solutions are easily produced provided the dimensionless detuning is not too small. Note that the on-diagonal

coupling is found to be

n? —2n
4

V. NUMERICAL SOLUTIONS

Solutions to the bare four-state equations

The exact numerical solution of the four pairwise truncated
bare state equations (21) is plotted in Fig. 4 for f(¢) =
%sech(%’). All values for time and frequency, ¢, §, and S,
are dimensionless, where 7 is in units of the pulse width and
8 and B are in units of the inverse pulse width. The initial
states are unpopulated except for dy(—o0), i.e., py =0 at
t = oo. Although the final states are resonant in the limit of
large detuning, the off-resonant states are strongly populated
during the pulse. It is clear that the off-resonant states are in
fact contributing to the dynamics during the pulse. Neglecting
to calculate off-resonant states during the interaction, d_»(r)
and d4(¢) in Eqgs. (22), clearly introduces error.

e
>

population
o
(@)

o
~

VA

| \({

dimensionless time

2 2 4

FIG. 4. Bare state probabilities with 6 = 5. The solid black lines
represent the Bragg resonant |dy(t)|> and |d,(¢)|? states while the
dashed gray lines represent the off-resonant states |d_(¢)|*> and
|d4(¢)|?. The thick gray line shows the curve of the pulse where max-
imum heightis S f(t) = % sech(%"). Dimensionless time is zeroed at
the pulse maximum.

(25)

We seek the populations for r = oo, long after the atom
passes the light crystal when off-resonant states cease to play a
role in the dynamics of the system. The two resonant states are
designated by |dy(c0)|? and |d2(00)|?, where 8’s and B’s are
varied. Plotting the off-resonant probabilities, |d4(c0)|? with
f@)= ,3% sech(%’) against § and B we see evidence of the
nonadiabaticity of higher-order states (see Fig. 5). It is clear
that the system exhibits Pendellosung as well, analogous to
what is observed for altering the thickness of a crystal sample
with Bragg scattered x rays. We shall demonstrate that the
frequencies of these oscillations are strongly dependent on
off-resonant states. However, if the detuning § is too small,
the Pendellosung is washed out as the outgoing states become
indistinguishable as the corresponding spatial quantization
tends toward a continuum of momentum states.

FIG. 5. The off-resonant state population, |d;(c0)|?, is plotted
against detuning and the dimensionless field strength, 5. As § grows
larger, the final state population goes to zero. Note that we see
evidence of Pendellgsung.
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What must be determined is the number of states required
in the calculation of the resonant population probability to
assure adequate precision.

VI. THE NEED FOR MANY STATES

If the nonadiabatic contributions were small enough, the
various methods of approximation which only depend upon
the resonant states and one pair of off-resonant states would
suffice. We now demonstrate that such approximations break
down drastically as the field strength is increased. For large
enough detuning, the off-resonant populations can be made
exponentially small; however, the effects of the higher-order
momentum states are in fact necessary for correctly predicting
the Pendellosung frequencies of the resonant states and, there-
fore, the probabilities of finding atoms which are deflected
as a function of field strength. The equations of motion are
coupled, term by term, to higher off-resonant momentum
states whose numbers are countably infinite. We seek the
dependence of the number of states necessary for numerical
calculation of outgoing Bragg resonant momentum states as a
function of field strength for a fixed detuning.

As the field strength increases, the frequency of the Pen-
dellosung oscillations decreases. Although adequate detuning
ensures that the final population of off-resonant states is
negligible, the effects of high-order off-resonant states during
the pulse remain important. Using a hyperbolic secant pulse
in calculating the resonant two-state problem, we find the
analytic Rosen-Zener [35] solution for the outgoing Bragg
deflected beam,

ds,,, (00) = sech(8) sin(B), (26)

where &, the detuning, is usually kept fixed and g, the field
amplitude, indicates the frequency of Rabi oscillations. When
compared with the four-state solution for the Kapitza-Dirac
system we are analyzing, this solution is inadequate. At low
field strengths and large detuning, the frequency is identical;
however, as the field strength is increased, the frequency drops
precipitously.

In Fig. 6, we have plotted the solutions to Idsz(oo)|2 and
|da,, + ey (00)]? t0 show the variation of phase and period. The
dimensionless field strength ranges from 100 to 150, a region
where both Pendellosung frequencies appear to be stable.
Notice the Pendellosung frequency of the 14-state solution
is roughly 1/4 the frequency of the 2-state Rosen-Zener
solution. For the same range of field intensity, the solutions
calculated with fewer states are in fact monotonically greater
in frequency until the 2-state solution is reached. For 16-state
solutions and greater, for field intensities in the same range,
the frequency is stable. The 14-state solution in Fig. 6 is
close to converging on the physical solution of the resonant
momentum states, i.e., the correct Pendellosung frequency
and phase.

Although we do not vary the detuning in these plots, hold-
ing § = 5, it should be noted that for a very small detuning,
ie., 6 < 1, we see a significant coupling to all high-order
states. In fact, if the detuning is small, it may be impossible
to predict the population of any state. Looking at Fig. 7 where
the dimensionless detuning § = 0.1, the numerical solutions
quickly become chaotic for field intensities of almost any
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FIG. 6. Plots of the fraction of the deflected population versus
the field strength B. The solid gray line is the Rosen-Zener solution,
|d2RZ(oo)|2, and the dashed black curve is the 14-state solution,
214 quies) (00)|?. The deviation between the 14-state and higher so-
lutions is less than 1% and therefore represents a reasonably precise
physical solution.

magnitude. The final states may not be resonant, which indi-
cates energy nonconservation reminiscent of the Raman-Nath
regime [36]. Physically, this chaotic regime is only speculative
as stable computational solutions for § < 1 are practically
impossible to find. In the Raman-Nath regime, where the
interaction time is small compared to the inverse of the
recoil frequency, uncertainty leads to many spatially quantized
outgoing states. This can be understood by noting that when
§ is small, the corresponding recoil momentum is small,
and so the transverse momentum quantization is smeared
and outgoing states tend toward an angular continuum where
Bragg conditions are rendered moot. Therefore, to observe the
atomic KDE, the detuning § and the interaction time must both
be large enough to allow for spatial quantization and energy
conservation.

Here, we posit an upper limit of the number of states,
n, necessary to include in calculations achieving numerically
stable solutions for a given 8. The diagonal coupling between

%Z ; Rl M
P2 ? nlh“1LlLaﬁjli“‘nmmmmﬁmtn““.
< AR

100 150 0

dimensionless field strength [

FIG. 7. The population fractions as a function of field strength 8
for a detuning of § = 0.1. Each curve is the solution to |dy(c0)|* for
a successively higher number of states counted pairwise from 2.
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FIG. 8. Here the curve of n = ./B/8 is shown as the dashed
line superimposed on the graph of curves. Each of the seven curves
represents the difference of population fraction for |dy(t = 00)|?
when calculated respectively using n and n 4+ 2 number of states,
starting with the bottom-most curve on the graph with n = 2.

states given by Eq. (25) is suggestive of the following approx-

imation for n,
n \/g §>1, (27)

where 7 is the number of intermediate states used in calculat-
ing the final-state population probability of the deflected and
undeflected atoms.

To test Eq. (27), in Fig. 8 we plot Eq. (27) over a set of
graphs whose characteristics are similar to those of Fig. 7
in that each successively higher graph represents a higher
order of Bragg scattering included in the calculation and the
horizontal axis represents the dimensionless field amplitude.
However, instead of graphing the population, the graphs mea-
sure |P,+1 — P,| using

Pn = |d(2n slales)(oo)|2a (28)

where n is the order of the Bragg scattering included in the
calculation involving 2n coupled equations. The bottom graph
in Fig. 8 consequently represents the difference between the
two-state solution and the numerical four-state solution. It is
clear from this plot that as the dimensionless field amplitude
increases, the two-state Rosen-Zener solution is inadequate.
The region of Fig. 8 above the curve of Eq. (27) represents the
physical solution where the variations from each higher and
adjacent order are vanishingly small.

With a detuning § = 5, greater than 99.9% of the atoms
passing the light grating exit the field with a transverse mo-
mentum of 2/ or 0. Although the resonant states are the only
ones observed after passing the light crystal, the off-resonant
states are populated during the scattering interaction with the
light field analogous to multiple reflections of an x ray within
a crystal before leaving a material sample.

A precision calculation of the Pendellosung leads us to
ask how many states need be included in the calculation of
the exiting states’ populations, i.e., |dy(c0)|? and |dy(c0)|?.
Figure 8 can be decomposed into three regions: the numer-
ical, the unphysical, and the Rosen-Zener region as shown
in Fig. 9. The asymptotic solutions all fit in the unphysical
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9} —=
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o ] s
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FIG. 9. To the left of the line § = 3.5, we see the population
calculated by the two-level Rosen-Zener-like solution is sufficient
and this region is therefore called the Rosen-Zener region. Notice
that the curve denoting physical solutions misses this region as it is
essentially asymptotic, so this region must be evaluated on its own.

region and may therefore only be of interest theoretically. The
numerical and Rosen-Zener regions are both physical, and
therefore if one wishes to work with large dimensionless field
amplitudes, one can always find the number of states required
in the calculation from Eq. (24).

VII. CONCLUSIONS

Figure 8 clearly indicates that, unless the field strength is
very low, the values for the final-state amplitudes predicted
by the Rosen-Zener solutions will be incorrect. However, this
can be useful in that one can design an experiment in which
the dimensionless field amplitudes are small and the detuning
is large enough that the quasianalytic two-state solutions are
physical; that is, they properly predict the outgoing resonant
state populations. If one needs to work in a regime of larger
field amplitude, one can use Eq. (27) to ensure that enough
off-resonant states are included in the calculation to find
physical solutions. Practically, it is more reasonable to utilize
Eq. (24) starting with four states and increasing pairwise
until the solution is stable. In contrast, if one wanted instead
explicitly to probe the relevance of higher-order nonresonant
states, one could design an experiment in the Bragg regime
with B of 1 MHz and 4§, the recoil frequency, of 100 kHz,
as would be reasonable for a Bose-Einstein condensate. Here
the phase of Pendellosung in the populated states would be
noticeably different from the two-state Rosen-Zener solution
and four-state approximations, well within the measurement
capabilities of modern experiments.

The essential point of this paper is to make clear
that the approximations presuming negligible contributions
from the intermediate states are not reliable. The failure is
not in the method of approximation, but in the underlying
assumption that one need consider only the pair of resonant
states and the first pair of nonresonant states for precise
determination of the phase and the frequency of the deflected
atoms as a function of field strength.

What we propose is for the physicist performing an ex-
periment which utilizes spatial quantization from the KDE
to progressively include off-resonant intermediate states in
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the calculation of the final resonant state populations until
the Pendellosung curve becomes stable. Not shown in this
manuscript are calculations for a variety of pulse envelopes
and a range of recoil frequencies, as the broad conclusions
are the same; i.e., the final-state probabilities plotted against
field strength become stable as more off-resonant intermediate
states are added pairwise to the coupled differential equations
numerically solved. Note as well, the Pendellosung may seem
sinusoidal at first glance, but careful inspection of the plots
shows the period to vary with field strength.

In the decades that have passed since the pioneering ex-
periments of atomic Kapitza-Dirac effect Bragg scattering,
momenta transfers as high as 102/k have been achieved by

Kasevich et al. [37]. High-resolution interferometry based on
Bragg diffraction is being carried out by groups such as Miiller
et al. [38] and Gerlich et al. [39] as well as work by Leeuwen
et al. [40], where precise knowledge of the calculation of
the resulting Pendellosung is critical to understanding system
dynamics.
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