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Rabi oscillations and Ramsey-type pulses in ultracold bosons: Role of interactions
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Double-well systems loaded with one, two, or many quantum particles give rise to intriguing dynamics,
ranging from Josephson oscillation to self-trapping. This work presents theoretical and experimental results for
two distinct double-well systems, both created using dilute rubidium Bose-Einstein condensates with particular
emphasis placed on the role of interaction in the systems. The first is realized by creating an effective two-level
system through Raman coupling of hyperfine states. The second is an effective two-level system in momentum
space generated through the coupling by an optical lattice. Even though the noninteracting systems can, for a
wide parameter range, be described by the same model Hamiltonian, the dynamics for these two realizations
differ in the presence of interactions. The difference is attributed to scattering diagrams that contribute in the
lattice coupled system but vanish in the Raman coupled system. The internal dynamics of the Bose-Einstein
condensates for both coupling scenarios is probed through a Ramsey-type interference pulse sequence, which
constitutes a key building block of atom interferometers. These results have important implications in a variety
of contexts including lattice calibration experiments and momentum-space lattices used for quantum analog
simulations.
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I. INTRODUCTION

We consider the famous model in which two isolated states
are resonantly coupled by a monochromatic field, e.g., two
energetically separated atomic states that are coupled by an
oscillating electric field. Starting with all particles populat-
ing one of the states, the population oscillates periodically
between the two states under the influence of the external
field. In the presence of a positive or negative detuning δ,
the population still oscillates back and forth; however, the
oscillation period and the maximum transfer probability (am-
plitude) of these Rabi oscillations are modified. This coupled
two-level system, which finds applications in many areas of
physics, is discussed in nearly every quantum text book [1–3].
For an interacting ensemble of particles, the Rabi oscillations
are, in general, further modified. In particular, the population
oscillations may not be fully periodic and the amplitude of the
oscillations may decrease or drift (dephase) due to many-body
effects [4–6].

This work considers Rabi oscillations in the context of
ultracold atoms, specifically a degenerate 87Rb Bose-Einstein
condensate (BEC). The two-level system is realized in two
different ways. In scenario 1, one-dimensional Raman cou-
pling along the z direction, realized using two Raman lasers,
generates an effective pseudo-spin- 1

2 system of two cou-
pled internal hyperfine states [7–9]. In scenario 2, a one-
dimensional moving optical lattice along the z direction
couples momentum states with momenta of nh̄kL, where n
is an even integer and kL the lattice wave vector [10–12].
Considering only the n = 0 and 2 states, the lattice Rabi
coupling case can, in the absence of interactions, be mapped
to the same two-state description as the Raman coupling case

considered in scenario 1, with the velocity of the moving
lattice determining the effective detuning.

In the presence of atom-atom interactions, the Rabi oscilla-
tions for scenarios 1 and 2 are found to differ. The reason for
this is traced back to how the two-level systems are realized.
In second quantization, the interaction potential takes the form

v̂ =
∫

�̂†(r1)�̂†(r2)V (r1, r2)�̂(r1)�̂(r2)dr1dr2, (1)

where �̂†(r) creates a particle at position r. Parametrizing
V (r1, r2) in terms of a contact interaction of strength g,
V (r1, r2) = gδ(r1 − r2), and assuming that the field operator
�̂†(r) can be expressed in terms of two states

�̂†(r) = ĉ†
a�

∗
a (r) + ĉ†

b�
∗
b (r) (2)

(ĉ†
a and ĉ†

b create a particle in states �a and �b, respectively),
it can be seen that v̂ contains 16 terms. Some of these vanish
in the Raman coupling case but contribute appreciably in the
lattice coupling case.

We write �a(r) = ψa(r)| ↑〉 and �b(r) = ψb(r)| ↓〉. In
the Raman coupling case, | ↑〉 and | ↓〉 represent two dif-
ferent hyperfine states and ψa(r) and ψb(r) correspond to
states with momentum 0 and 2h̄kR (h̄kR is the Raman mo-
mentum). The resulting nonvanishing interaction terms or
scattering diagrams are shown in the first row of Fig. 1.
The first scattering diagram is proportional to ĉ†

aĉ†
aĉaĉa, the

second scattering diagram is proportional to ĉ†
bĉ†

bĉbĉb, and
the third and fourth scattering diagrams are proportional to
ĉ†

aĉ†
bĉaĉb. The last two processes can be written as |�a〉1 +

|�b〉2 → |�a〉1 + |�b〉2 and |�b〉1 + |�a〉2 → |�b〉1 + |�a〉2,
where the notation |�a〉1 means that particle 1 occupies state
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FIG. 1. Scattering diagrams. The scattering diagrams in the first
row contribute in the Raman and lattice coupling cases. The scatter-
ing diagrams in the second row vanish in the Raman coupling case. In
the first diagram of the first row, particle 1 (top incoming arrow) and
particle 2 (bottom incoming arrow) are both in the same state (both
arrows are black solid); the scattering process does not change the
state (the arrows are black solid after the scattering has occurred).
In the first diagram of the second row, particle 1 (top incoming
arrow) and particle 2 (bottom incoming arrow) are in different states
(black solid and red dotted arrows, respectively); after the scattering
process, the states of particle 1 (top outgoing arrow) and particle
2 (bottom outgoing arrow) are changed (red dotted and black solid
arrows, respectively).

�a. The “mixed scattering diagrams” that are shown in the
second row of Fig. 1, which are also proportional to ĉ†

aĉ†
bĉaĉb,

vanish in the Raman coupling case due to the orthogonality
of the two hyperfine states | ↑〉 and | ↓〉. They correspond
to the processes |�a〉1 + |�b〉2 → |�b〉1 + |�a〉2 and |�b〉1 +
|�a〉2 → |�a〉1 + |�b〉2.

In the lattice system, all the atoms occupy the same hy-
perfine state and �a(r) and �b(r) correspond to states with
momentum ≈0 and ≈2h̄kL, respectively. In this case, | ↑〉 and
| ↓〉 represent two different plane-wave states and �a(r) and
�b(r) are not orthogonal to each other. As a consequence,
the scattering diagrams in the second row of Fig. 1 are finite,
leading to an enhancement of the interaction terms that are
proportional to ĉ†

aĉ†
bĉaĉb. This factor of 2 enhancement can

be thought of as being due to an exchange process; it is
not specific to bosons and also exists in fermionic systems.
The doubling of the mixed scattering diagrams for the lattice
coupling case compared to the Raman coupling case leads,
in certain parameter regimes, to distinct Rabi oscillations for
scenarios 1 and 2. Good agreement between experimental and
theoretical results is found and implications for, e.g., lattice
calibration experiments are discussed.

Working in a parameter regime where the Rabi oscilla-
tions are noticeably impacted by the interactions, we probe
the internal dynamics of condensed atom clouds through
a Ramsey-type π/2-hold-π/2 pulse sequence [13], which
is of direct relevance to atom interferometry applications.
Expanding upon earlier work [14–16], a theoretical frame-
work is developed that explains the experimentally observed
interference fringes. π/2 pulses play an important role in
momentum-space engineering [17,18]. For example, the split-
ting of an initial wave packet as well as the preparation of a
variety of target states can be accomplished by π/2 pulses.
Perfect splitting may, however, be hampered by interactions
and wave-packet broadening. Intriguingly, combining Raman
and lattice coupling schemes, which are considered sepa-
rately in this paper, one might be able to realize looplike

plaquette systems. Specifically, the work presented in this
paper provides a stepping stone for realizing a plaquette
system, in which two momentum-space lattices, occupied by
two different hyperfine states, are coupled by Raman lasers.

The remainder of this article is organized as follows.
Section II discusses the experimental setup for the Raman
and lattice coupling schemes. Section III presents theory
background and numerical results for the Raman coupling
case. It also develops a fully analytical framework for the
Ramsey-type pulse sequence. The agreement between the
theoretical and experimental data for the Rabi oscillations
is excellent. Section IV discusses the lattice coupling case;
particular emphasis is placed on contrasting the dynamics for
the lattice coupling scenario with that for the Raman coupling
scenario. Experimental results are found to agree with the
theoretical predictions quantitatively for the Rabi oscillation
data and qualitatively for the Ramsey-type pulse-sequence
data. Finally, Sec. V summarizes our key findings and presents
an outlook.

II. EXPERIMENTAL SETUP

The experiments are performed with a 87Rb BEC consist-
ing of approximately N = 105 atoms. Nearly pure BECs are
confined in an elongated harmonic trap with trap frequen-
cies of approximately {ωx, ωy, ωz} = 2π{140, 160, 25} Hz.
The spin-independent trapping potential is produced by two
crossed, optical dipole beams with a wavelength of 1064 nm.
Anharmonic corrections for this trapping configuration are
estimated to be negligible for the purpose of this work.
After preparation of the initial state, we remove the trapping
potential at time t = 0. For all practical purposes, the turning
off of the external confinement is done instantaneously,

Vtrap(r, t ) =
{m

2

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)

for t < 0,

0 for t � 0,
(3)

where m denotes the atom mass. The trap frequencies and
atom number are calibrated daily by fitting dipole oscillation
data and cloud widths during expansion, respectively. The
relevant values are reported in the figure captions.

Scenario 1 is realized by applying two 789.1-nm Raman
lasers with effective coupling strength �R and Raman detun-
ing δR to couple the |F, mF 〉 = |1,−1〉 = | ↑〉 and |F, mF 〉 =
|1, 0〉 = | ↓〉 hyperfine states of 87Rb under an external mag-
netic field of approximately 10 G. Here, F denotes the total
angular momentum of the 87Rb atom and mF the correspond-
ing projection quantum number. The two-photon Raman cou-
pling scheme follows the procedure described in Ref. [19].
In momentum space, the two hyperfine states are separated
by 2h̄kR, where kR is determined by the wave number and
orientation of the Raman lasers. Specifically, the two Raman
lasers with wave vectors k1 and k2 cross at an angle of
θR. Defining 2kR = |k1 − k2| and using |k1| = |k2|, we have
kR = |k1| sin(θR/2); in our setup, θR ≈ π/2 or kR ≈ |k1|/

√
2.

The difference between the angular frequencies ω1 and ω2

of the two lasers allows one to set the Raman detuning δR,
δR = 4ER − h̄ωR + EZeeman, where ωR = ω1 − ω2 and

ER = h̄2k2
R

2m
. (4)
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Here, EZeeman is the Zeeman splitting between the two coupled
hyperfine states. The hyperfine state |1, 1〉, which is off reso-
nant due to the quadratic Zeeman shift, is not included in our
theoretical description. We have checked that inclusion of this
state does not notably change the dynamics in the parameter
regime of interest.

Scenario 2 is realized by preparing all atoms in the
|F, mF 〉 = |1,−1〉 = | ↑〉 state and loading the BEC into a
moving optical lattice [20]. Spin-changing collisions play a
negligible role in the magnetic fields used in this work. The
lattice is created by crossing two 1064-nm lasers at an angle of
θL (θL ≈ π/2), with polarization perpendicular to the trapping
beams, wave vectors k1 and k2 (|k1| = |k2|), and angular
frequencies ω1 and ω2. The resulting lattice is characterized
by the effective coupling strength �L, the wave vector kL, and
the detuning δL (kL ≈ |k1|/

√
2 and δL = 4EL − h̄ωL, where

ωL = ω1 − ω2). Energies and lengths are measured in units
of EL [Eq. (4) with the subscript “R” replaced by “L”] and
1/kL, respectively. Specific values are given in the context
of the experiments described below. In all cases, the external
harmonic confinement is turned off at time t = 0.

In the remainder of this paper, we denote the coupling
strength by �(t ) when the discussion is independent of the
specific scheme, i.e., when the discussion applies to both the
Raman and lattice coupling cases. When the discussion is spe-
cific to one of the scenarios, we use, respectively, �R(t ) and
�L(t ) for the Raman and lattice coupling cases [correspond-
ingly, �0 in Eqs. (5) and (6) below are replaced by �0,R and
�0,L, respectively]. The coupling, which is assumed to be real,
is turned on at time tstart, where t = 0 is the time at which the
trapping potential is removed. For tstart > 0, the initial BEC
expands in the absence of the Raman or lattice drive, thereby
reducing the interaction strength during the subsequent pulse
sequence. For the Rabi oscillation measurements, we keep
�(t ) on for a time interval tseq = tend − tstart:

�(t ) =
⎧⎨
⎩

0 for t < tstart,

�0 for tstart � t < tend,

0 for t � tend.

(5)

For the Ramsey-type pulse sequence of length tseq = τ1 +
thold + τ2, the coupling strength �(t ) reads as

�(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for t < tstart,

�0 for tstart � t < tstart + τ1,

0 for tstart + τ1 � t < tstart + τ1 + thold,

�0 for tstart + τ1 + thold � t < tend,

0 for t � tend.

(6)

In the experiment, the turning on of the coupling strength is
not quite instantaneous but instead occurs over about 75 μs.
To facilitate the comparison between theory and experiment,
we choose tstart to be the time at which �(t ) has reached half
of its maximum. In many applications that involve momentum

transfer, a π/2-wait-π -wait-π/2 pulse sequence is used in-
stead of the shorter π/2-wait-π/2 pulse sequence. The reason
we decided to apply the simpler pulse sequence is that the
“π -reversal pulse” does not, as in other scenarios, remove the
linear phase in our systems due to the presence of interactions.

The imaging is done at time tend + tToF, i.e., after an addi-
tional expansion time of tToF. In the absence of the trapping
potential, the momentum components separate naturally due
to the fact that the states �a and �b have different velocities.
For the lattice case, e.g., an expansion time of tToF ≈ 10 ms
corresponds to a separation of the cloud centers by about
85 μm along the z direction. This distance is larger than the
size of the clouds after the expansion. For an initial cloud with
Thomas-Fermi radius 22 μm, e.g., the size of the cloud at time
tseq + tToF is about 43 μm.

Depending on the observable, the time-of-flight expansion
plays no role, a negligible role, or an essential role when
comparing experimental and theoretical data. For the Raman
coupling case, the populations of the states �a and �b do not
change during the time-of-flight expansion. This implies that
theoretical results for the populations, calculated by neglect-
ing the time-of-flight expansion, can be compared directly
with experimentally measured populations. Correspondingly,
we do not simulate the time-of-flight sequence when we com-
pare Rabi oscillation data. Experiment-theory comparisons of
the Ramsey-type pulse sequence, in contrast, require that the
time-of-flight expansion be simulated to explain the observed
fringe structures.

For the lattice case, the situation is slightly different. The
populations of the states �a and �b, which are distinguished
only by their momentum, can change during the time-of-flight
expansion due to atom-atom collisions that involve states with
momenta ≈nh̄kL, where n = −2,±4,±6, . . . . However, such
population transfer is typically small; note that this is the rea-
son why the two-state model introduced in Sec. IV A provides
a reliable description for a fairly large parameter window. The
small population transfer implies that the dynamics during
the time-of-flight expansion can, in a first approximation,
be neglected when analyzing populations. Understanding the
internal dynamics such as the formation of density patterns, in
contrast, requires that the time-of-flight sequence be modeled
explicitly.

III. RAMAN COUPLING CASE

A. General framework

Our theoretical analysis of the Raman-coupled system
is based on the standard mean-field formulation [9], which
writes the mean-field spinor in terms of the components
ψa(r, t ) and ψb(r, t ). Here and in what follows, ψa and ψb

are time dependent; note that the discussion in Sec. I adopted
a stationary framework for simplicity. The unrotated 2 × 2
mean-field Hamiltonian Ĥ reads as

Ĥ =
(

p̂2

2m
+ Vtrap(r, t )

)
⊗ I2 +

(
gaa|ψa(r, t )|2 + gab|ψb(r, t )|2 0

0 gba|ψa(r, t )|2 + gbb|ψb(r, t )|2
)

+
(

0 �R (t )
2 exp(−2ıkRz + ıωRt )

�R (t )
2 exp(2ıkRz − ıωRt ) EZeeman

)
, (7)
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where I2 is the 2 × 2 identity matrix and the normalization,
expressed in terms of the fractional populations Na and Nb, is

Na + Nb = 1 (8)

with ( j = a or b)

Nj =
∫

|ψ j (r, t )|2dr. (9)

The interaction strengths gi j between atoms in hyperfine states
i and j are given by

gi j = 4π h̄2(N − 1)ai j

m
. (10)

For 87Rb, we have aaa = 100.4 aB, aab = aba = 100.4 aB, and
abb = 100.9 aB [21], where aB denotes the Bohr radius. In
the arguments presented in Sec. I, the four gi j were assumed
to be the same; this simplifying assumption is again made in

Sec. III E. The time dynamics of the system is governed by

ı h̄
∂

∂t

(
ψa(r, t )
ψb(r, t )

)
= Ĥ

(
ψa(r, t )
ψb(r, t )

)
. (11)

Defining the rotated states ψ̃a(r, t ) and ψ̃b(r, t ),(
ψ̃a(r, t )
ψ̃b(r, t )

)
= Û (z, t )

(
ψa(r, t )
ψb(r, t )

)
, (12)

in terms of the rotation operator Û (z, t ),

Û (z, t ) =
(

1 0
0 exp(−2ıkRz + ıωRt )

)
, (13)

we obtain Eq. (11) with ψa(r, t ), ψb(r, t ), and Ĥ replaced
by ψ̃a(r, t ), ψ̃b(r, t ), and ˆ̃H , respectively, where the rotated
Hamiltonian ˆ̃H is given by

ˆ̃H =
(

p̂2

2m
+ Vtrap(r, t )

)
⊗ I2 +

(
gaa|ψ̃a(r, t )|2 + gab|ψ̃b(r, t )|2 0

0 gba|ψ̃a(r, t )|2 + gbb|ψ̃b(r, t )|2
)

+
(

0 �R (t )
2

�R (t )
2

2h̄kR p̂z

m + δR

)
.

(14)

To obtain Eq. (14), we used the relation |ψ̃ j (r, t )|2 =
|ψ j (r, t )|2, where j = a or b. Importantly, the position-
and time-dependent phase γ̃b(r, t ) of the rotated component
ψ̃b(r, t ) differs from the phase γb(r, t ) of the unrotated
component ψb(r, t ). Since the change of the phases of the
unrotated spinor components is dominated by the laser cou-
pling term, thereby masking the change due to the internal
dynamics, it is more convenient to analyze the phases of the
spinor components in the rotated basis, whose phase dynamics
is governed by “internal effects” as opposed to the laser
coupling.

For the Rabi oscillation measurements and the Ramsey-
type pulse sequence, the BEC is initially (i.e., at t = 0) pre-
pared in the state ψa(r, t )| ↑〉 = ψ̃a(r, t )| ↑〉, which is charac-
terized by a vanishing average mechanical momentum along
the z direction, i.e., 〈p̂z〉initial = 0. Our calculations assume
an axially symmetric harmonic trap with ωx = ωy = ωρ . The
trapping potential defines the harmonic oscillator lengths aho,z

and aho,ρ :

aho,z/ρ =
√

h̄

mωz/ρ
. (15)

The coupled mean-field equations are solved using standard
techniques. The initial state is obtained by imaginary-time
propagation. The real-time dynamics is implemented by ex-
panding the time-evolution operator in terms of Chebychev
polynomials [22,23]. We use equally spaced grid points in
z and ρ. The convergence of the results presented has been
tested with respect to the size of the simulation box, the
number of grid points, and the time step.

B. Rabi oscillations: Vanishing Raman detuning

This section discusses Rabi oscillation results for the
Raman coupling case with δR = 0. The numerical solutions

are obtained by solving the time-dependent mean-field equa-
tion for ˆ̃H [see Eq. (14)] with ER/h = 1960 Hz. The Ra-
man coupling is turned on at t = 0, i.e., we have tstart = 0.
Figures 2(a)–2(c) show the difference Na − Nb between the
fractional populations as a function of the dimensionless time
tseq�0,R/h for different N , ωz, and �0,R, respectively.

Figure 2(a) shows numerical results for �0,R = ER and
three different N , namely, N = 1, N = 3 × 105, and N = 106.
Even though the Rabi coupling lasers are turned on, at time
t = 0, after the trapping potential has been switched off,
the figure caption quotes the trapping frequencies since they
determine the initial state and thus the distribution of the
kinetic and potential energy, including the mean-field energy,
in the system. For the noninteracting single-atom system
[black solid line in Fig. 2(a)], the Rabi oscillation period is
nearly constant for the times considered; the amplitude, how-
ever, is visibly damped. While this “nonperfect” sinusoidal
behavior might be surprising at first sight, it can be explained
as follows: The center of mass of the component ψ̃b(r, t )
moves relative to the center of mass of the component ψ̃a(r, t )
during the Rabi oscillations. Thus, the two components are not
perfectly overlapping spatially. As a consequence, the relative
phase of the spinor components at fixed r is changing slightly
due to the relative motion of the two components with respect
to each other. This phase difference is responsible for the
nonperfect population transfer (“damping”). An alternative
but equivalent picture is that the finite-momentum width of
the initial state corresponds to a small effective momentum-
dependent detuning. This effective detuning decreases with
increasing mean-field interactions due to the decrease of the
width of the initial state in momentum space.

When mean-field interactions are present [the red dashed
and blue dotted lines in Fig. 2(a) are for N = 3 × 105 and
N = 106, respectively], the amplitude of the Rabi oscilla-
tion data changes somewhat while the oscillation period is
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FIG. 2. Rabi oscillations for Raman coupling case (numerical
results). The lines show the difference Na − Nb between the frac-
tional populations as a function of the dimensionless time tseq�0,R/h
for tstart = 0, ER/h = 1960 Hz, δR = 0, and ωρ = 2π × 200 Hz.
(a) Changing the particle number N . The black solid, red dashed,
and blue dotted lines are for N = 1, N = 3 × 105, and N = 106,
respectively. The weak trapping frequency is ωz = 2π × 40 Hz and
the coupling strength is �0,R = ER. (b) Changing the angular trap-
ping frequency ωz. The black solid, red dashed, and blue dotted lines
are for ωz = 2π × 10 Hz, ωz = 2π × 20 Hz, and ωz = 2π × 60 Hz,
respectively. The coupling strength is �0,R = ER and the number
of particles is N = 3 × 105. (c) Changing the coupling strength
�0,R. The black solid, red dashed, and blue dotted lines are for
�0,R = ER/2, �0,R = 3ER/2, and �0,R = 5ER/2, respectively. The
number of particles is N = 3 × 105 and the weak trapping frequency
is ωz = 2π × 40 Hz.

essentially unaffected by the interactions. For these two N
values, the chemical potential (in units of h) of the initial state
is ≈3303 Hz and 5347 Hz (corresponding to 1.685ER and
2.728ER), i.e., the chemical potential at t = 0 is larger than
�0,R.

To highlight the effect of the interactions, Fig. 2(b) shows
the Raman-induced Rabi oscillations for N = 3 × 105 [same
atom number as used for the red dashed line in Fig. 2(a)] for
weaker and stronger confinement along the z direction than
used in Fig. 2(a). Stronger confinement leads to higher den-
sity and thus to enhanced interaction effects. For the largest
ωz considered [blue dotted line in Fig. 2(b)], the fractional
population difference Na − Nb deviates appreciably from a
simple sinusoidal curve after a few oscillations. This indicates
that care needs to be taken when calibrating the effective
Raman coupling strength �0,R; in particular, a fit to a simple
sinusoidal function, applicable to the ideal two-level model,
might not yield the correct effective coupling strength.

The results presented in Figs. 2(a) and 2(b) are for
�0,R = ER. Figure 2(c) shows the dynamics for smaller
and larger coupling strengths, namely, �0,R = ER/2, �0,R =
3ER/2, �0,R = 5ER/2, and the same trap confinement as in
Fig. 2(a). Even though the particle number is quite moderate
(namely, N = 3 × 105), the oscillation amplitude and period
for �0,R = ER/2 [solid line in Fig. 2(c)] deviate strongly from
perfect sinusoidal behavior due to the enhanced effects of
the mean-field energy with decreasing �0,R. This implies that
care needs to be exercised if the calibration of the effective
Raman coupling strength is done for low coupling strengths.
In this regime, one has to make sure that the particle number
is sufficiently low or that one allows for sufficient time-of-
flight expansion prior to turning on the Raman Rabi coupling
(Fig. 2 is for tstart = 0). If this is not done, the value of
the effective Rabi coupling strength, which enters into the
underlying system Hamiltonian, may be impacted by inter-
action effects, potentially leading to errors in experiments that
require reliable precision, such as quantum analog simulations
and many-body studies. Alternatively, explicit comparisons
with Gross-Pitaevskii equation results, as done in this work,
would be very useful when interactions are present. Last, one
may consider performing the calibration in the “large-power”
regime and extrapolating the resulting calibration curve in-
stead of performing the calibration in the “low-power” regime.

C. Rabi oscillations: Theory-experiment comparison

Figure 3 shows a comparison between theory and exper-
iment for the Raman-induced Rabi oscillations for an initial
state with chemical potential μ = 0.8436 ER. This chemical
potential corresponds to a mean-field energy per particle at
t = 0 of 0.5206 ER. To reduce the mean-field energy in
the system, a 0.5-ms free expansion step was inserted after
turning off the trap and prior to turning on the Raman cou-
pling lasers. At the end of the free expansion, the mean-field
energy per particle is about 20% smaller than at t = 0. The
resulting Rabi oscillations are slightly damped. Although the
experimental data (red dots) are obtained for a small negative
detuning δR, the detuning is not the only cause for the damp-
ing. Extrapolating the mean-field Gross-Pitaevskii results for
finite detuning to zero detuning, we conclude that even the
zero detuning case displays damping [explicit calculations for
δR = 0 (not shown) confirm this]. Combining the good agree-
ment between the experimental data and theoretical curves
with the discussion of the previous section, we conclude
that the damping can be partially attributed to the mean-field
interactions. Indeed, if we let the BEC expand longer prior to
turning on the Raman coupling, the damping or dephasing, for
the same detuning δR, is reduced.

Interestingly, fitting of the mean-field Gross-Pitaevskii
results for δR/h = −200 Hz (this detuning gives the best
agreement with the experimental data) to a damped periodic
function of the form

Na − Nb = cos(2π f t ) exp(−t/τ ) (16)

yields a frequency f of 2578 Hz. This “fitted Rabi coupling
strength” is about 1.2% larger than the Rabi coupling strength
�0,R used in the simulations. This indicates that the inter-
actions impact, for the parameter combinations considered,
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FIG. 3. Theory-experiment comparison for Raman Rabi oscil-
lations for a 87Rb BEC. The red dots show the experimentally
determined difference in the fractional populations as a function of
time. The experimental parameters are ωx = 2π × 155 Hz, ωy =
2π × 179 Hz, ωz = 2π × 24.8 Hz, N = 1.5 × 105, ER/h = 1960
Hz, �0,R/h = 2548 Hz, and tstart = 0.5 ms. The experiments were
performed for a small negative detuning δR/h that is estimated to
be between −200 and −600 Hz, where the uncertainty is due to
fluctuations in the external magnetic field responsible for the Zeeman
splitting. The solutions to the mean-field Gross-Pitaevskii equation
(lines) are obtained for an axially symmetric trap characterized by
the experimentally measured ωz and ωρ = 2π × 167.0 Hz (ωρ is
taken to be the mean of the experimental ωx and ωy). The black
dotted, green solid, and blue dashed lines show results for δR/h =
−200, −400, and −600 Hz, respectively; the other parameters are
taken from experiment. The results for δR/h = −200 Hz describe the
experimental data the best. The chemical potential μ prior to turning
off the trap is 0.8436 ER. The mean-field energy per particle prior to
turning off the trap and after the 0.5-ms expansion is 0.5206 ER and
0.4076 ER, respectively.

the oscillation frequency much less than the amplitude. More
specifically, for the parameter combination considered in
Fig. 3, the effect of the interactions on the Rabi oscillations
can be described, to a good approximation, phenomenologi-
cally by the time constant τ .

D. Ramsey-type pulse sequence: Theory overview

Throughout this section, the initial BEC (N = 3 × 105)
is prepared in a harmonic trap with ωρ = 2π × 200 Hz and
ωz = 2π × 40 Hz. The dynamics is analyzed for the Ramsey-
type pulse sequence with Raman coupling strength �0,R =
ER, detuning δR = 0, and, as in Sec. III B, ER/h = 1960
Hz and tstart = 0. The main emphasis lies on developing,
motivated by numerical simulations of the time-dependent
mean-field equation for the Hamiltonian given in Eq. (14), a
benchmark and physical picture that provides the motivation
for the analytical treatment presented in Sec. III E.

When the Raman coupling is turned on, population is
transferred from the component ψ̃a(r, t ) to the component
ψ̃b(r, t ). As discussed in the previous sections, the interac-
tions can notably impact the Rabi oscillations, in particular
for longer times. Despite of this, we measure the lengths
of our pulses in terms of the characteristic timescale of the
noninteracting system, i.e., we refer to a π/2 pulse as a pulse
that transfers, in the absence of interactions and assuming
an infinitely narrow momentum-space wave packet, half of
the atoms from the state ψ̃a(r, t ) to the state ψ̃b(r, t ). For

the parameters employed in Fig. 4, a π/2 pulse corresponds
to πh/(2�0,R) ≈ 0.1276 ms. Figure 4(ai) shows that the
population of state ψ̃b(r, t ) after the first π/2 pulse is close
to 50% (it is 49.95%). In addition, it can be seen that the
population in the component ψ̃b(r, t ) moves a tiny bit relative
to the population in the component ψ̃a(r, t ) during the first
π/2 pulse. The reason is that the population in state ψ̃b(r, t )
has an average mechanical momentum of about 2h̄kR along
the z direction while the population in state ψ̃a(r, t ) has an
average mechanical momentum very close to zero along the z
direction.

During the variable hold time, no population transfer oc-
curs since the Raman coupling lasers are turned off. The two
key characteristics during the hold time are as follows: First,
the population in state ψ̃b(r, t ) continues to move relative to
that in state ψ̃a(r, t ). Second, the interacting BEC expands a
tiny bit. Figures 4(aii) and 4(aiii) show ρ = 0 cuts and are for
thold = 1 and thold = 2 ms, respectively.

To “reunite” the populations of the states ψ̃a(r, t ) and
ψ̃b(r, t ), a second π/2 pulse is applied. For the example
shown in Fig. 4, the population of state ψ̃a(r, t ) after the
second π/2 pulse is 51.74% for thold = 1 ms and 50.15%
for thold = 2 ms. After the second π/2 pulse, the density
profiles [see Figs. 4(aiv) and 4(av) for ρ = 0 cuts] show
interference fringes in the “central” or “overlap” region, i.e.,
in the spatial region where the two clouds overlapped prior
to the application of the second π/2 pulse. The interference
fringes establish themselves through out-of-phase oscillations
of |ψ̃a(z, 0)|2 and |ψ̃b(z, 0)|2. We observe analogous fringes
for other ρ values. The total density of the two components
(not shown), in contrast, exhibits oscillations with compara-
tively small amplitude in the outer region and no oscillations
in the central region.

Quite generally, the appearance of fringes such as those
displayed in Figs. 4(aiv) and 4(av) suggests the existence
of two interfering pathways, i.e., the existence of a spatially
dependent phase difference. In the following, we introduce a
theoretical framework that highlights how the fringe pattern
develops for the Ramsey-type pulse sequence with Raman
coupling. To this end, it is instructive to visualize the time-
evolving rotated spinor on the Bloch sphere. Since the two
components ψ̃a(r, t ) and ψ̃b(r, t ) can each be written in
terms of one complex number for each z, ρ, and t (the axial
symmetry suggests the use of cylindrical coordinates), we
define(

ψ̃a(z, ρ, t )
ψ̃b(z, ρ, t )

)
= R(z, ρ, t ) exp[ıγ̃a(z, ρ, t )]

×
(

cos
(

θ (z,ρ,t )
2

)
exp [ıφ(z, ρ, t )] sin

(
θ (z,ρ,t )

2

)), (17)

where

R(z, ρ, t ) =
√

|ψ̃a(z, ρ, t )|2 + |ψ̃b(z, ρ, t )|2, (18)

θ (z, ρ, t ) = 2 arctan

( |ψ̃b(z, ρ, t )|
|ψ̃a(z, ρ, t )|

)
(19)

and

φ(z, ρ, t ) = γ̃b(z, ρ, t ) − γ̃a(z, ρ, t ). (20)
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FIG. 4. Density cuts and local spin expectation values for the Ramsey-type pulse sequence with ER/h = 1960 Hz, �0,R = ER, and δR = 0
(theory results). The 87Rb BEC consists of N = 3 × 105 atoms and is prepared in an axially symmetric trap with ωρ = 2π × 200 Hz and
ωz = 2π × 40 Hz. This corresponds to a chemical potential, in units of h, of ≈3303 Hz. All results are obtained for tstart = 0. The first and
second columns are obtained by solving the time-dependent mean-field equation for the Hamiltonian given in Eq. (14) numerically. The third
and fourth columns show the same observables as the first and second columns but are, instead, calculated using the fully analytical framework
developed in Sec. III E; the agreement is very good. The black solid and red dashed lines in panels (ai)–(av) show the density cuts |ψ̃a(z, 0, t )|2
and |ψ̃b(z, 0, t )|2, respectively. The black solid and red dashed lines in panels (avi)–(ax) show the local spin expectation values σy(z, 0, t )
and σz(z, 0, t ), respectively. The time increases from the first row, to the second and third row, to the fourth and fifth row (the value of the
time is given in the panels); the second and fourth rows correspond to a hold time of 1 ms, and the third and fifth rows correspond to a
hold time of 2 ms. It can be seen that the agreement between the mean-field Gross-Pitaevskii results and the fully analytical results is quite
good. The figure illustrates that the second π/2 pulse transfers the information encoded in σy(z, 0, t ) to σz(z, 0, t ), making the interference
visible in the population difference.

Here, γ̃a(z, ρ, t ) can be interpreted as an overall spatially
dependent phase of the spinor wave function. This phase has
no effect on the physical observables considered in this work.
The quantity R(z, ρ, t ) corresponds to a “weight” at each
spatial point. The spinor dynamics for a given z and ρ is
thus conveniently visualized by a vector of length R(z, ρ, t )
on the Bloch sphere. The direction of the vector is given
by θ (z, ρ, t ) and the relative phase φ(z, ρ, t ) between the
components ψ̃b(z, ρ, t ) and ψ̃a(z, ρ, t ).

To visualize the motion of the spinor on the Bloch sphere,
we define the local spin expectation values σ j (z, ρ, t ), where
j = x, y, or z, through

σ j (z, ρ, t ) =
(

[ψ̃a(z, ρ, t )]∗

[ψ̃b(z, ρ, t )]∗

)T

σ̂ j

(
ψ̃a(z, ρ, t )
ψ̃b(z, ρ, t )

)
, (21)

where σ̂x, σ̂y, and σ̂z denote the “usual” Pauli matrices. Note
that we use the term “spin expectation value” for convenience
throughout this paper even though our definition in Eq. (21)
excludes the conventional h̄/2 factor. Physically, σz(z, ρ, t )
corresponds to the local (z, ρ)-specific population difference
at time t . Mathematically, one finds

σx(z, ρ, t ) = |R(z, ρ, t )|2 cos[φ(z, ρ, t )] sin[θ (z, ρ, t )], (22)

σy(z, ρ, t ) = |R(z, ρ, t )|2 sin[φ(z, ρ, t )] sin[θ (z, ρ, t )], (23)

and

σz(z, ρ, t ) = |R(z, ρ, t )|2 cos[θ (z, ρ, t )]. (24)

The initial state at t = 0 corresponds to a vector pointing
to the north pole on the Bloch sphere. From the Hamiltonian
ˆ̃H [Eq. (14)], it can be seen that the nonvanishing Raman
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coupling term introduces a torque along the positive x axis.
Thus, neglecting interactions, the first π/2 pulse rotates the
spinor wave function by −π/2 about the x axis on the Bloch
sphere. As a result, the spinor points along the negative y axis
on the Bloch sphere after the first π/2 pulse. Our numerical
mean-field results, which show that θ and φ are approximately
equal to π/2 and −π/2 across the entire BEC after the first
π/2 pulse are consistent with this simple picture. Correspond-
ingly, σz(z, 0, t ) is approximately zero and σy(z, 0, t ) has,
except for a minus sign, the same z dependence as the density
[red dashed and black solid lines in Fig. 4(avi)]. We conclude
that mean-field effects can, in a first-order approximation, be
neglected during the first π/2 pulse.

During the hold time, two effects need to be accounted for:
First, as already pointed out earlier, the population in state
ψ̃b(r, t ) moves relative to that in state ψ̃a(r, t ). Second, the
phases of the spinor components ψ̃a(z, ρ, t ) and ψ̃b(z, ρ, t )
evolve independently. For each (z, ρ), the combination of
these two effects leads to a rotation of the two-component
spinor on the Bloch sphere. As an example, Figs. 4(avii) and
4(aviii) show σz(z, 0, t ) and σy(z, 0, t ) for two different hold
times. For both hold times, σz(z, 0, t ) changes approximately
linearly with z in the region where the two components
overlap. This follows immediately from the approximately
parabolic shapes of the two density components, which are
offset from each other: the difference leads to a term that
is, to leading order, linear in z. The local spin expectation
value σy(z, 0, t ) develops “wiggles” during the hold time in
the region where the two components overlap. The number
of wiggles increases with increasing hold time. The wiggles
arise from the relative phase dynamics and indicate interfer-
ence; importantly, the densities do not show any indication of
interference prior to the application of the second π/2 pulse.

The second π/2 pulse “rotates” σy(z, ρ, t ) to σz(z, ρ, t ).
This can be seen clearly by comparing Fig. 4(aix) with
Fig. 4(avii) (both these figures are for a hold time of 1 ms)
and by comparing Fig. 4(ax) with Fig. 4(aviii) (both these
figures are for a hold time of 2 ms). Since the relative phase
information has been “moved” from σy(z, ρ, t ) to σz(z, ρ, t )
and since σz(z, ρ, t ) is equal to |ψ̃a(z, ρ, t )|2 − |ψ̃b(z, ρ, t )|2,
the interference is, after the second π/2 pulse, visible in the
densities of the components [Figs. 4(aiv) and 4(av)].

E. Ramsey-type pulse sequence: Analytical treatment

The numerical results presented in the previous section are
obtained using the scattering lengths ai j for 87Rb. Repeating
the numerical calculations for equal scattering lengths ai j

reveals that the effects due to the difference in the scat-
tering lengths are quite small for the timescales considered
in this paper. Motivated by this observation, the analytical
treatment presented in this section makes the simplifying
assumption that the scattering lengths are all equal (aaa =
aab = aba = abb). Moreover, the treatment assumes that δR

and tstart are equal to zero. Our analytical model is motivated
by Refs. [14,15]; however, the application to the Ramsey-
type pulse sequence discussed here has, to the best of our
knowledge, not been discussed previously.

We assume that the initial state ψ̃a(r, t = 0) is described
well within the Thomas-Fermi approximation. We addition-

ally assume that the population transfer process commutes
with the relative moving and expansion processes during the
first π/2 pulse. Specifically, our analytical model treats the
population transfer associated with the first π/2 pulse as
occurring instantaneously and then subsequently treats the
relative moving and expansion of the two components for the
duration τ1 of the actual π/2 pulse. For the second π/2 pulse,
we reverse the order of the operations, i.e., we first treat the
relative moving and expansion of the two components for the
duration τ2 and then treat the population transfer associated
with the second π/2 pulse as occurring instantaneously. In
the following, we provide an analytical framework that yields
approximate expressions for ψ̃a(z, ρ, t ) and ψ̃b(z, ρ, t ) right
after the first instantaneous π/2 pulse (t = 0+), during the
time 0+ < t < τ1 + thold + τ2, and right after the second in-
stantaneous π/2 pulse (t = t+

end).
Motivated by the discussion in Sec. III B, we make the

ansatz that |ψ̃a(r, t )|2 has an inverted parabolalike form dur-
ing the “effective” hold time, i.e., for 0+ < t < tend,

|ψ̃a(r, t )|2

= 1

λz(t )λ2
ρ (t )

[
−αz

(
z

λz(t )

)2

−αρ

(
ρ

λρ (t )

)2

+ μ

2g

]
, (25)

where μ denotes the chemical potential of the initial state, i.e.,
of the system prior to the application of the first π/2 pulse
[24],

μ = 1

2

[
ω4

ρω
2
z m3

(
15g

4π

)2
]1/5

(26)

and

αz/ρ = mω2
z/ρ

4g
. (27)

Compared to the “standard case” [14], αρ and αz are smaller
by a factor of 2 since the population for t = 0+ is assumed
to be equally distributed between the two components, i.e.,
|ψ̃b(r, 0+)| = |ψ̃a(r, 0+)|. In Eq. (25), it is understood that
|ψ̃a(r, t )| is zero when the right-hand side of the equation
takes negative values. The dimensionless scaling parameters
λz(t ) and λρ (t ) obey the initial conditions λz(0+) = λρ (0+) =
1. The differential equations that govern the time evolution of
λz(t ) and λρ (t ) are discussed below. We set γ̃a(r, 0+) = 0 and
assume that the first π/2 pulse introduces a −π/2 phase shift
onto the second component, i.e., γ̃b(r, 0+) = −π/2.

For 0+ < t < tend, ψ̃b(r, t ) moves with approximately con-
stant velocity vz,

vz = 2h̄kR

m
, (28)

along the z direction while the center of mass of |ψ̃a(r, t )|2
remains essentially unchanged. Due to the symmetry of the
system, we enforce

ψ̃b(r, t ) = ψ̃a(vzt êz − r, t ) exp
(
−ı

π

2

)
. (29)

Thus, once we have expressions for |ψ̃a(vzt êz − r, t )| and
γ̃a(vzt êz − r, t ), ψ̃b(r, t ) is determined through Eq. (29). To
eliminate ψ̃b(r, t ), we insert Eq. (29) into the coupled set of
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time-dependent mean-field equations. This yields

ı h̄
∂

∂t
ψ̃a(r, t ) = ˆ̃Hholdψ̃a(r, t ), (30)

where

ˆ̃Hhold = p̂2

2m
+ g|ψ̃a(r, t )|2 + g|ψ̃a(vzt êz − r, t )|2. (31)

From Eq. (25), we find

|ψ̃a(vzt êz − r, t )|2

= |ψ̃a(r, t )|2 + 2αzvztz

λ3
z (t )λ2

ρ (t )
− αzv

2
z t2

λ3
z (t )λ2

ρ (t )
. (32)

Plugging Eq. (32) into Eq. (31), we obtain

ˆ̃Hhold = p̂2

2m
+ 2g|ψ̃a(r, t )|2 − Fz(t )z + C(t ). (33)

Equation (33) implies that C(t ), which is independent of
r, contributes an overall phase to ψ̃a(r, t ) at each time t .
The effective time-dependent force Fz(t ) along the negative
z direction,

Fz(t ) = − 2gαzvzt

λ3
z (t )λ2

ρ (t )
, (34)

is due to the relative motion of the two components with
respect to each other and the mean-field interactions.

We now make the assumption that the effective force term
in Eq. (33) does not notably affect the time evolution of the
density |ψ̃a(r, t )|2. Under this assumption, the time evolution
of the scaling factors λz(t ) and λρ (t ) is governed by the
differential equations derived by Castin and Dum from the
scaling ansatz for a single-component BEC [14]:

d2λz(t )

dt2
= ω2

z

λ2
ρ (t )λ2

z (t )
(35)

and

d2λρ (t )

dt2
= ω2

ρ

λ3
ρ (t )λz(t )

. (36)

The black solid lines in Fig. 5(a) show λρ (t ) and λz(t ), ob-
tained by solving Eqs. (35) and (36) numerically for the same
parameters as those employed in Fig. 4. Using these solutions,
the solid line in Fig. 5(b) shows the effective force Fz(t ) as
a function of the dimensionless time tER/h. The magnitude
of the effective force first increases and then decreases with
increasing time. As shown below, the turnaround time is, to
leading order, given by the inverse of the transverse trapping
frequency ωρ .

While we assumed that the time dynamics of |ψ̃a(r, t )|
is largely independent of the effective force Fz(t ), we de-
duce from Sec. III D that the time evolution of the phase
γ̃a(r, t ) is non-negligibly impacted by Fz(t ). According to the
momentum-impulse relationship, the impulse Iz(t ) imparted
by the effective force on the system at time t reads as

Iz(t ) =
∫ t

0
Fz(τ )dτ. (37)

The black solid line in Fig. 5(c) shows that the magnitude of
Iz(t ) increases monotonically with increasing effective hold
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FIG. 5. Characteristics of the analytical framework discussed in
Sec. III E: scaling parameters, effective force, and impulse during
the hold time of the Raman Ramsey-type pulse sequence for a
87Rb BEC. Results are shown for ER/h = 1960 Hz, �0,R = ER,
δR = 0, N = 3 × 105, ωρ = 2π × 200 Hz, and ωz = 2π × 40 Hz.
(a) The red dashed and blue dashed-dotted lines show the scaling
parameters λz(t ) and λρ (t ), respectively, obtained using the formula
given in Eqs. (41) and (42); note that the vertical axis employs
a logarithmic scale. (b) The red dashed line shows the effective
force Fz(t ) calculated using our analytical expressions for the scaling
parameters in Eq. (34). (c) The red dashed line shows the impulse
Iz(t ) calculated using our analytical expressions for the scaling pa-
rameters in Eq. (37). For comparison, the solid lines in (a)–(c) show
results obtained by numerically solving the differential equations for
λρ (t ) and λz(t ). The excellent agreement between the analytical and
numerical results validates the use of the analytical expressions for
the scaling parameters.

time. Using that the change of the momentum during the hold
time is equal to Iz(t ), we estimate that the effective force Fz(t )
changes the phase γ̃a(r, t ) by φlin(z, t ),

φlin(z, t ) = Iz(t )

h̄
z, (38)

where 0+ < t < tend. We refer to this phase as “linear phase”
since it depends linearly on z. It vanishes in the limit that the
population of state ψ̃b(r, t ) does not move relative to that in
state ψ̃a(r, t ).

The expansion of the two components for 0+ < t < tend

introduces an additional contribution to the phase γ̃a(r, t ),
which we refer to as quadratic phase φquad(z, ρ, t ) due to its
quadratic dependence on z2 and ρ2. The quadratic phase is
independent of vz and analogous to the phase that develops
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during the expansion of a single-component BEC [14],

φquad(z, ρ, t ) = mz2

2h̄λz(t )

dλz(t )

dt
+ mρ2

2h̄λρ (t )

dλρ (t )

dt
. (39)

Combining the linear and quadratic phases, the expression for
γ̃a(r, t ) reads as

γ̃a(r, t ) = φlin(z, t ) + φquad(z, ρ, t ). (40)

The second π/2 pulse, applied at t = tend, rotates the spinor at
each r by −π/2 about the x axis on the Bloch sphere.

The division of the phase γ̃a(r, t ) into a linear and a
quadratic contribution was, to the best of our knowledge, first
discussed in Ref. [25]. For later work see Refs. [16,26]. Refer-
ence [25] measured, employing a theory framework motivated
by Ref. [14], the linear and quadratic phases of a 23Na BEC
using matter-wave Bragg interferometry (see Ref. [27] for a
related measurement of the linear phase). Even though the
π/2 Bragg pulses are notably shorter than our π/2 pulses,
the scenario considered in Secs. IV D and IV E, namely, the
Ramsey-type pulse sequence for the lattice coupling case, is
closely related to Ref. [25].

To push the analytical treatment even further, we approxi-
mate λz(t ) and λρ (t ) by [14]

λρ (t ) ≈
√

1 + ω2
ρt2 (41)

and

λz(t ) ≈ 1 +
(

ωz

ωρ

)2[
ωρt arctan(ωρt ) − ln

√
1 + ω2

ρt2
]
.

(42)

The red dashed and blue dashed-dotted lines in Fig. 5(a) show
λz(t ) and λρ (t ) obtained using these analytical expressions.
The agreement with the numerical solutions to Eqs. (35)
and (36) [see the solid lines in Fig. 5(a)] is excellent. As
a consequence, the effective force Fz(t ) and impulse Iz(t ),
calculated using the approximate results for the scaling pa-
rameters, nearly coincide with the results that are obtained
using the numerically determined scaling factors [compare
the red dashed and black solid lines in Figs. 5(b) and 5(c)].
While Fig. 5 focuses on one specific parameter combination,
similarly convincing agreement is found for other parameter
combinations.

To understand the nonmonotonic behavior of the effective
force displayed in Fig. 5(b), we plug Eqs. (41) and (42)
into Eq. (34). Taylor expanding around small ωz/ωρ and
neglecting terms of order (ωz/ωρ )2 and higher, we obtain

Fz(t ) ≈ −2gαzvz

ωρ

(
1

ωρt
+ ωρt

)−1

. (43)

Thus, for ωρt � 1 and ωρt � 1, Fz(t ) is proportional to
−ωρt and −(ωρt )−1, respectively. Within the approximations
made, Fz(t ) takes on a global minimum for ωρt = 1. For
comparison, the minimum in Fig. 5(b) occurs at tER/h ≈ 1.5,
which corresponds to ωρt ≈ 0.96.

Equipped with fully analytical expressions for ψ̃a(r, t )
and ψ̃b(r, t ), we are ready to compare the spin dynamics
obtained within this Thomas-Fermi approximationlike frame-
work to the spin dynamics obtained by solving the Gross-
Pitaevskii equation numerically. To this end, the third and

fourth columns of Fig. 4 show the same observables as the
first and second columns. While the first and second columns
are obtained, as discussed in detail in Sec. III D, by analyzing
the solutions to the full Gross-Pitaevskii equation, the third
and fourth columns are obtained using our fully analytical
solutions derived above. A quick comparison indicates that
the overall agreement is strikingly good. This a posteriori
justifies the assumptions made in developing the analytical
framework presented in this section. Most importantly, the
good agreement allows us to unambiguously state that both
the linear phase and the quadratic phase need to be accounted
for to obtain a faithful description of the interference fringes.

Section IV D returns to the theoretical framework de-
veloped in this section. The analytical framework for the
Raman Ramsey-type sequence, which relies heavily on the
assumption that all four coupling strengths gi j are (approxi-
mately) equal to each other, cannot be applied directly to the
lattice Ramsey-type sequence since the corresponding two-
state model is described by coupling strengths gaa = gbb =
gab/2 = gba/2. Despite of this, it is argued in Sec. IV D that
the model developed here provides important insights for the
lattice coupling case as well.

IV. LATTICE COUPLING CASE

A. Two-state model

For the lattice case, all atoms occupy the same hyperfine
state; our calculations reported below are for 87Rb atoms in the
|F, mF 〉 = |1,−1〉 state. Assuming a single mean-field wave
function �(r, t ), the Hamiltonian Ĥ to be used in the time-
dependent Gross-Pitaevskii equation reads as [28]

Ĥ = p̂2

2m
+ Vtrap(r, t ) + Vlat(r, t ) + gaa|�(r, t )|2, (44)

where the one-dimensional moving lattice potential Vlat(r, t )
is given by

Vlat(r, t ) = 2�L(t ) cos2
(

kLz − ωL

2
t
)

(45)

and �(r, t ) is normalized according to
∫ |�(r, t )|2dr = 1.

Figure 6(a) shows the density |�(r, t )|2, obtained by solving
the time-dependent mean-field equation for the Hamiltonian
given in Eq. (44) for typical experimental parameters, as a
function of z for ρ = 0 and a time corresponding to a π/2
pulse, i.e., for t = πh/(2�0,L). In this example, the BEC is
prepared in the ground state of the harmonic trap. At time
t = 0, the trapping potential is turned off and the lattice with
EL/h = 1960 Hz, ωL = 4EL/h̄, and �0,L = EL is flashed on
for 0.1276 ms. Here, the coupling strength �0,L is chosen
to be comparable to the chemical potential μ of the BEC at
t = 0 (�0,L ≈ 0.59 μ). The size of the BEC does not change
notably during the duration of the lattice pulse: it extends
over approximately 80 lattice sites. Figure 6(a) shows that the
lattice pulse “imprints” fine oscillations along the z direction
onto the mean-field density.

To facilitate the analysis, it is desirable to bring out the
intrinsic dynamics by rotating the lattice-induced oscillations
away. As we discuss in the next paragraphs, this can be
accomplished within the framework of an approximate two-
state model, which assumes that the BEC only occupies
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FIG. 6. 87Rb BEC density after the application of a π/2 lattice
pulse (numerical results). The solid lines in (a) and (b) show density
cuts as a function of zkL (real space) and kz/kL (momentum space),
respectively, for tstart = 0, N = 3 × 105, EL/h = 1960 Hz (corre-
sponding to kL = 5.81 μm−1), �0,L = EL , δL = 0, ωρ = 2π × 200
Hz, and ωz = 2π × 40 Hz. The real-space density cut |�(z, 0, τ1)|2
is governed by fine oscillations that are related to the fact that the
BEC contains, after the application of the lattice pulse, nonzero mo-
mentum components. The momentum-space cut [|�kz (kz, 0, τ1)|2 is
obtained by taking the square of the Fourier transform of �(z, 0, τ1)]
shows that the BEC density is governed by momenta centered around
h̄kz ≈ 0 and h̄kz ≈ 2h̄kL .

momenta along the z direction near h̄kz = 0 and 2h̄kL and
not near nh̄kL with n = −2,±4,±6, . . . . This assumption is
well justified for the example shown in Fig. 6(a). The density

cut in momentum space [Fig. 6(b)] shows peaks centered
near h̄kz = 0 and 2h̄kL; the populations of these peaks are
65.46% and 33.79%, respectively. Since the peaks centered
near h̄kz = −2h̄kL and 4h̄kL have tiny populations (0.665%
and 0.084%, respectively), the two-state model developed
below is expected to capture the dynamics of this system
semiquantitatively. More generally, the applicability of the
two-state model requires that the lattice pulse or pulses are
sufficiently short and sufficiently weak. The two-state model
introduced below can be improved systematically by account-
ing for successively more “momentum components,” i.e., by
increasing the number of n values included in Eq. (46). In
the limit of an infinite-state model that accounts for all n
(n = 0,±2, . . . ) the description is equivalent to that captured
by the original mean-field Hamiltonian [Eq. (44) with Vlat(r, t )
given by Eq. (45)].

To derive the two-state model, we make the ansatz [29,30]

�(r, t ) = ψ̃a(r, t ) + ψ̃b(r, t ) exp(2ıkLz), (46)

where ψ̃a(r, t ) and ψ̃b(r, t ) are assumed to be localized in
the vicinity of the momenta h̄kz = 0 and 2h̄kL, respectively.
The functions ψ̃a(r, t ) and ψ̃b(r, t ) are normalized according
to Eqs. (8) and (9) with ψ j (r, t ) replaced by ψ̃ j (r, t ). Since
the widths of the momentum distributions associated with the
states ψ̃a(r, t ) and ψ̃b(r, t ) are assumed to be narrow com-
pared to 2h̄kL [this is, indeed, the case for the example shown
in Fig. 6(b)], we demand that the “separation condition”∫

exp(ı2kLz)ψ̃a(r, t )
[
ψ̃b(r, t )

]∗
dr = 0 (47)

holds.
Following the standard mean-field approach, we write

the N-body wave function as a product over single-particle
orbitals, namely, as �(r1, t )�(r2, t ) . . . �(rN , t ). Variation
of the energy functional with respect to [ψ̃a(r, t )]∗ and
[ψ̃b(r, t )]∗ then yields two coupled nonlinear equations,
namely, Eq. (12) with Ĥ replaced by ˆ̃H2-st, where

ˆ̃H2-st =
(

p̂2

2m
+ Vtrap(r, t )

)
⊗ I2 +

(
g|ψ̃a(r, t )|2 + 2g|ψ̃b(r, t )|2 0

0 2g|ψ̃a(r, t )|2 + g|ψ̃b(r, t )|2
)

+
(

0 �L (t )
2

�L (t )
2

2h̄kL p̂z

m + δL

)
.

(48)

In deriving Eq. (48), we assumed that integrals such as∫
|ψ̃ j (r, t )|2 exp(±nıkLz)dr (49)

(n = 2, 4, . . . ), which have rapidly oscillating integrands,
vanish. This means that portions of the kinetic energy, lattice
potential, trap potential, and mean-field energy contributions
are neglected in Eq. (48).

Comparison of the approximate two-state lattice Hamilto-
nian [Eq. (48)] and the rotated Raman Hamiltonian [Eq. (14)]
shows that the two Hamiltonians agree if we enforce that ER,
�R(t ), and δR are equal to EL, �L(t ), and δL, respectively, and
if additionally the following holds: gaa = gbb = g and gab =
2g. For the F = 1 hyperfine manifold of 87Rb, the mean-field
interactions of the two Hamiltonians do not agree since we

have gaa ≈ gbb ≈ gab. Consequently, the dynamics for the
Raman coupled and lattice coupled systems are expected to
differ even if the single-particle coupling mechanisms are
characterized by matching parameters. In what follows, we
will focus on the interaction-induced differences.

Since the population in state ψ̃a(r, t ) [ψ̃b(r, t )] experiences
a mean-field interaction due to the population in state ψ̃b(r, t )
[ψ̃a(r, t )] that is about two times larger for the lattice cou-
pled Hamiltonian than for the Raman coupled Hamiltonian,
the lattice coupled system has a stronger tendency to phase
separate than the Raman coupled system (this argument uses
the fact that g is positive for the F = 1 hyperfine manifold of
87Rb). Phase separation has been discussed in the literature
in the context of multicomponent BECs [31]. The framework
developed here may also provide an intuitive understanding
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FIG. 7. Rabi oscillations for lattice coupling case (numerical results). The lines show the difference Na − Nb between the fractional
populations as a function of the dimensionless time tseq�0,L/h for tstart = 0, EL/h = 1960 Hz, δL = 0, and ωρ = 2π × 200 Hz. The black solid,
red dashed, and blue dotted lines show results obtained by solving the time-dependent mean-field equation for the full lattice Hamiltonian
[Eqs. (44) and (45)], the approximate two-state Hamiltonian [Eq. (48)], and the approximate four-state Hamiltonian (this Hamiltonian is not
written out explicitly in the text). The black solid and blue dotted lines nearly coincide (in particular, the blue dotted lines are hardly visible
on the scale shown). (ai)–(aiii) Changing the particle number N (the values are given in the panels). The weak angular trapping frequency is
ωz = 2π × 40 Hz and the coupling strength is �0,L = EL . (bi)–(biii) Changing the angular trapping frequency ωz (the values are given in the
panels). The coupling strength is �0,L = EL and the number of particles is N = 3 × 105. (ci)–(ciii) Changing the coupling strength �0,L (the
values are given in the panels). The number of particles is N = 3 × 105 and the weak trapping frequency is ωz = 2π × 40 Hz.

of the formation of the ferromagnetic domains observed in
Ref. [32].

The difference between the Raman and lattice coupling
cases can also be interpreted from an alternative viewpoint.
To this end, we rewrite the mean-field terms from Eq. (48) as

g|ψ̃a(r, t )|2 + 2g|ψ̃b(r, t )|2
= geff[|ψ̃a(r, t )|2 + |ψ̃b(r, t )|2] − g|ψ̃a(r, t )|2 (50)

and

g|ψ̃b(r, t )|2 + 2g|ψ̃a(r, t )|2
= geff[|ψ̃a(r, t )|2 + |ψ̃b(r, t )|2] − g|ψ̃b(r, t )|2, (51)

where geff is defined to be equal to 2g. The right-hand sides
of Eqs. (50) and (51) suggest that the difference between
the lattice and Raman coupling cases is due to two things:
First, gaa, gbb, and gab can be identified to be equal to geff,
suggesting that the lattice coupled system is characterized
by a two times stronger repulsion than the Raman coupled
system. Second, there exists an effective onsite attraction in
the two-state model of the lattice coupled system of strength
−g [33] that has no analog in the Raman coupled system.

We emphasize that the two interpretations introduced
above are consistent with the scattering diagram arguments

outlined in Sec. I. The “factor of 2” in the second 2 × 2
matrix on the right-hand side of Eq. (48) is due to nonva-
nishing scattering matrix elements; the analogous scattering
matrix elements vanish in the Raman coupled case due to the
orthogonality of the two different hyperfine states.

B. Rabi oscillations: Theory overview

This section discusses lattice coupling induced Rabi os-
cillations. Figure 7 compares the mean-field results for the
full lattice Hamiltonian [Eqs. (44) and (45); solid black lines]
with those obtained using the approximate two- and four-
state Hamiltonians (red dashed and blue dotted lines, respec-
tively). For all nine parameter combinations considered in
Fig. 7, the four-state model reproduces the dynamics obtained
for the full mean-field lattice Hamiltonian extremely well.
While the two-state model results deviate somewhat from the
results for the full lattice Hamiltonian, the two-state model
captures the main features of the Rabi oscillations such as the
change of the damping of the Rabi oscillations with increasing
number of particles [Figs. 7(ai)–7(aiii)] and with increasing
strength of the weak trapping frequency [Figs. 7(bi)–7(biii)].
Moreover, the rapid reduction of the oscillation amplitude
for small coupling strength [Fig. 7(ci) is for �0,L = EL/2]
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is remarkably well captured by the approximate two-state
model. For larger lattice strengths [Figs. 7(bii) and 7(biii) are
for �0,L = 3EL/2 and 5EL/2, respectively], in contrast, the
two-state model captures the period of the Rabi oscillations
comparatively poorly. The reason is that larger lattice coupling
strengths lead to enhanced and non-negligible occupations of
momenta centered near h̄kz ≈ −2h̄kL and h̄kz ≈ 4h̄kL.

Since the approximate two-state model provides a qual-
itatively and for some parameter combinations even a
(semi)quantitatively correct description of the dynamics, it
is instructive to compare the Rabi oscillations for the lattice
and Raman coupled systems. If the two-state lattice model
is exact, the difference between the Rabi oscillations for
the lattice and Raman coupled systems will be, assuming
that the small differences between gaa, gbb, and gab do not
play a role, solely due to the “factor of 2” discussed in
Sec. IV A. The parameters in Figs. 2 and 7 are chosen such
that the solid line in Fig. 2(a) can be directly compared with
the curves in Fig. 7(ai), the dashed line in Fig. 2(a) with
the curves in Fig. 7(aii), and the dotted line in Fig. 2(a)
with the curves in Fig. 7(aiii). An analogous correspondence
exists for Fig. 2(b) and Figs. 7(bi)–7(biii) as well as for
Fig. 2(c) and Figs. 7(ci)–7(ciii). A careful comparison of
Figs. 7 and 2 indicates that the most prominent effect of
the factor of 2 is to significantly enhance the damping or
dephasing of the Rabi oscillations.

In what follows we attempt to pinpoint why the factor of 2
(lattice coupling case) enhances the damping compared to the
case where this factor is equal to 1 (Raman coupling case). To
start this discussion, we remind the reader that the analytical
treatment in Sec. III E, which assumes vanishing detuning,
relies heavily on the assumption that there exists a symmetry
between the components ψ̃a(r, t ) and ψ̃b(r, t ) [see Eq. (29)].
In fact, one can show that this symmetry is, within the
Thomas-Fermi approximation, an exact symmetry provided
gaa = gbb = gab. Intuitively, this symmetry can be understood
by realizing that the strength of the scattering between two
atoms in the same hyperfine state is identical to that of the
scattering between two atoms in different hyperfine states.
This implies that neither the two-body interactions nor the
Raman coupling (recall, we are considering the zero detuning
scenario) bias populations to one hyperfine state over another.
In the lattice coupling case with δL = 0, the factor of 2 breaks
the symmetry. The effective attractive onsite interactions [see
the discussion in the context of Eqs. (50) and (51)], which can
alternatively be interpreted as effective repulsive off-site inter-
actions, favor configurations that reduce the overlap between
the densities |ψ̃a(r, t )|2 and |ψ̃b(r, t )|2. Since the effective
repulsive off-site interactions depend on the density, they vary
spatially. This spatial dependence can result in a shape of the
density |ψ̃a(r, t )|2 that is different from that of the density
|ψ̃b(r, t )|2. If this occurs, the fractional population difference
varies locally, leading to a spatially dependent population
transfer and, correspondingly, a damping or dephasing of the
Rabi oscillations. In a complementary picture, the effective
repulsive off-site interactions can be thought of as an effective
spatially and temporally varying coupling term. In this pic-
ture, the damping of the Rabi oscillations emerges naturally.
Section IV D makes this discussion concrete for a π/2 pulse
(first step of the Ramsey-type sequence).
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FIG. 8. Theory-experiment comparison for lattice Rabi oscilla-
tions with strong- and weak-coupling strengths for a 87Rb BEC. The
symbols show experimental data and the black solid lines show re-
sults from the Gross-Pitaevskii simulations for the full lattice Hamil-
tonian. For comparison, the blue dotted lines show results obtained
for the approximate two-state model. The experimental parameters
common to both panels are EL/h = 1080 Hz and tstart = 0.5 ms.
(a) “Strong coupling” (�0,L/h = 2646 Hz): the experimentally mea-
sured parameters are ωx = 2π × 172 Hz, ωy = 2π × 139 Hz, ωz =
2π × 33.6 Hz, δL/h = −264 Hz, and N = 1.1 × 105. The calcula-
tions set ωρ equal to the mean of ωx and ωy; all other parameters are
taken from the experiment. The chemical potential μ prior to turning
off the trap is 1.439 EL . The mean-field energy per particle prior
to turning off the trap and after the 0.5-ms expansion is 0.8881 EL

and 0.7149 EL , respectively. The red circles show the result from
one experimental run. (b) “Weak coupling” (�0,L/h = 980 Hz):
the experimentally measured parameters are ωρ = 2π × 146 Hz,
ωz = 2π × 28 Hz, δL = 0, and N = 2.7 × 105. The transverse trap
frequency is determined by performing measurements along one
axis. The calculations use the parameters from the experiment. The
chemical potential μ prior to turning off the trap is 1.830 EL . The
mean-field energy per particle prior to turning off the trap and after
the 0.5-ms expansion is 1.129 EL and 0.9297 EL , respectively. The
red circles and green squares show the results from two separate
experimental runs.

C. Rabi oscillations: Theory-experiment comparison

The symbols in Figs. 8(a) and 8(b) show experimental
data for Rabi oscillations induced by a moving optical lattice
with weak and strong coupling, respectively. The excellent
agreement between the solutions to the Gross-Pitaevskii equa-
tion for the full lattice Hamiltonian (solid lines) and the
experimental data indicates that the experiments operate in
the mean-field regime, i.e., the Gross-Pitaevskii framework
captures the population transfer between the two momentum
components quantitatively. The approximate two-state model
(dotted lines) provides, as already discussed in the previous
section, a semiquantitative description of the lattice-induced
Rabi oscillations in the weak-coupling regime [Fig. 8(b)];
as such, it provides a meaningful conceptual framework for
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FIG. 9. Density cuts and local spin expectation values for the Ramsey-type pulse sequence with EL/h = 1960 Hz, �0,L = EL , and δL = 0
(numerical results); these are the same parameters as used in Figs. 6 and 7(aii). The 87Rb BEC consists of N = 3 × 105 atoms and is prepared
in an axially symmetric trap with ωρ = 2π × 200 Hz and ωz = 2π × 40 Hz (these are the same parameters as those used in Fig. 4). All results
are obtained for tstart = 0. The first and second columns are obtained by solving the time-dependent mean-field equation for the full lattice
Hamiltonian [Eq. (44) with Vlat(r, t ) given by Eq. (45)] numerically. The third and fourth columns show the same observables as the first and
second columns but are, instead, obtained using the approximate two-state model introduced in Sec. IV A; the agreement is quite good. The
black solid and red dashed lines in panels (ai)–(av) show the density profiles |ψ̃a(z, 0, t )|2 and |ψ̃b(z, 0, t )|2, respectively. The black solid and
red dashed lines in panels (avi)–(ax) show the local spin expectation values σy(z, 0, t ) and σz(z, 0, t ), respectively. The time increases from
the first row, to the second and third row, to the fourth and fifth row (the value of the time is given in the panels); the second and fourth rows
correspond to a hold time of 1 ms, and the third and fifth rows correspond to a hold time of 2 ms. Unlike in Fig. 4, the first π/2 pulse does
not lead to 50/50 mixture. This population imbalance after the first π/2 pulse contributes to the development of unequally spaced interference
fringes.

interpreting the results and contrasting the lattice- and Raman-
induced Rabi oscillations.

A fit of the Rabi oscillation data obtained by solving the
Gross-Pitaevskii equation for the full lattice Hamiltonian to
Eq. (16) yields coupling strengths that are, respectively, 5%
and 6% lower than those used in the simulations. This shows
that the interactions do impact the Rabi oscillations and that
calibration of the experimental lattice strength needs to pro-
ceed with care. We note that the fit to the data in Fig. 8(a) has
a significantly lower χ2 than the fit to the data in Fig. 8(b). For
the experimental data shown in Fig. 8, the coupling strength is
calibrated by inducing Rabi oscillations of a very dilute 87Rb
BEC for a relatively large lattice coupling strength; in this
case, the Rabi oscillation data display essentially no damp-
ing. This calibration run yields a power-to-coupling-strength
conversion. Assuming that the coupling strength scales as the
square root of the power, the calibration curve can be used

in subsequent science runs that operate at other powers. The
outlined approach assumes that the power fluctuations are
negligible over the course of several hours; we have checked
that this is the case in our setup.

D. Ramsey-type pulse sequence: Numerical results

This section discusses numerical results for the Ramsey-
type pulse sequence with lattice coupling (vanishing detuning,
i.e., δL = 0). Figure 9 shows lattice coupling results for the
same parameters as used in Fig. 4 (recall, Fig. 4 shows results
for the Ramsey-type sequence with Raman coupling). The
first and second columns in Fig. 9 are obtained by solving
the time-dependent mean-field equation for the full lattice
Hamiltonian while the third and fourth columns are obtained
by solving the time-dependent mean-field equation for the
approximate two-state lattice model. It can be seen that the
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results for the approximate two-state lattice Hamiltonian agree
with those for the full lattice Hamiltonian rather well. Since
the approximate two-state lattice model describes the dynam-
ics faithfully, we use it below to gain insights into the results
after the first π/2 pulse [Figs. 9(bi) and 9(bvi)], after the hold
time [Figs. 9(bii), 9(bvii), 9(biii), and 9(bviii)], and after the
second π/2 pulse [Figs. 9(biv), 9(bix), 9(bv), and 9(bx)].

After the first π/2 pulse [Figs. 9(ai) and 9(avi)], the pop-
ulation is distributed unequally among the two components,
i.e., component ψ̃a(r, t ) has a larger population than compo-
nent ψ̃b(r, t ); a 50/50 mixture is realized for a pulse of length
0.2958 ms, i.e., for a pulse that is 2.3 times longer than the
π/2 pulse employed in Fig. 9. Near the edge of the cloud,
the density cuts |ψ̃a(z, 0, τ1)|2 and |ψ̃b(z, 0, τ1)|2 coincide
to a good approximation. In the central region, in contrast,
they differ. While the first component profile, |ψ̃a(z, 0, τ1)|2,
approximately follows a Thomas-Fermi profile, the second
component profile, |ψ̃b(z, 0, τ1)|2, is flatter than a Thomas-
Fermi profile. Correspondingly, the local spin expectation
value σz(z, 0, τ1) has a roughly Gaussian shape as opposed
to following a linear curve as in the Raman coupled case. This
indicates, in agreement with the more general discussion at the
end of Sec. IV B, that population from the center of the cloud
is pushed toward the edge of the cloud due to the larger local
effective repulsive off-site interaction at the center of the cloud
compared to the edge. Using the Bloch-sphere picture, the
spatially and temporally dependent effective repulsive off-site
interaction or coupling leads to a spatially and temporally
dependent torque along the x direction during the first π/2
pulse. This is confirmed by the local spin expectation value
σy(z, 0, τ1), whose spatial dependence differs from that of the
densities of the components.

Altogether, the discussion shows that the interactions can,
for the relatively weak lattice coupling strength of �0,L =
EL considered in Fig. 9, not be neglected during the first
π/2 pulse, i.e., the lattice coupling is not sufficiently strong
to prevent the system from rearranging structurally. As a
consequence, the Rabi oscillations are damped or dephased.
For the parameters chosen in Fig. 9, the factor of 2 leads to
a notable cloud deformation during the first π/2 pulse. For
other parameter combinations, the densities of the compo-
nents may deform more slowly, thereby leading to a slower
damping or dephasing of the Rabi oscillations.

During the hold time, the amplitude and phase evolution
is, as in the Raman coupled case, governed by the interplay
between the interactions and the expansion. Because of the
deviation of the component densities from the Thomas-Fermi
profile and the “absence of symmetry” (see the discussion
above), we were not able to develop an analytical framework
that describes the dynamics during the hold time. However,
comparing the second and third rows of Fig. 9 with the second
and third rows of Fig. 4, rough similarities between the time
dynamics during the hold time for the two distinct coupling
mechanisms can be recognized. Thus, while we do not have
an analytical description, the formulation developed in the
context of the Raman coupling case can serve as a crude
zeroth-order guide.

In what follows, we point out three aspects that are distinct
for the lattice coupling case: (i) The local spin expectation
value σy(z, 0, τ1) is not symmetric with respect to z = 0; this

asymmetry persists during the hold time. (ii) During the hold
time, the shapes of the densities |ψ̃a(z, 0, t )|2 and |ψ̃b(z, 0, t )|2
continue to change appreciably. (iii) The densities of the
components and the local spin expectation value σy(z, 0, t )
develop spatial modulations during the hold time in the region
where the two components are not spatially overlapping.
These spatial modulations are more pronounced than in the
Raman coupling case.

The second π/2 pulse “transfers” the information encoded
in σy(r, t ) to the population difference σz(r, t ). Since the cloud
expands a fair bit during the hold time, the interactions can,
to a good approximation, be neglected during the second π/2
pulse. Consequently, the resulting densities of the components
display a fringe or interference pattern. However, unlike in the
Raman coupled case, the densities in the lattice coupled case
are highly nonsymmetric. As argued above, this asymmetry
can be interpreted as a fingerprint of the fact that one of the
terms on the diagonals in the second 2 × 2 matrix on the right-
hand side of Eq. (48) is multiplied by a factor of 2.

E. Ramsey-type pulse sequence: Theory-experiment
comparison

Figures 10(a) and 10(b) compare experimentally deter-
mined integrated densities (red circles) and theoretical results
(black solid lines) for the Ramsey-type pulse sequence with
lattice coupling for hold times of 0.5 and 1 ms, respectively.
The black solid lines are obtained by solving the Gross-
Pitaevskii equation for the full lattice Hamiltonian and explic-
itly simulating the 12 ms of time-of-flight expansion after the
Ramsey-type pulse sequence. For comparison, the blue dotted
and green dashed lines show the results from the two-state
model; the agreement with the full Gross-Pitaevskii equation
results is quite good. For these experimental runs, the length of
the first pulse was adjusted such that half the population was in
the state with zero momentum and half in the state with finite
momentum. We emphasize that the resulting pulse length of
0.207 ms does not correspond to a 50% population transfer in
the absence of interactions and vanishing momentum spread
along the z direction of the initial state. The second pulse
was taken to be 0.200 ms. To calibrate the coupling strength,
we performed calculations for different �0,L and picked the
value that yields, using a 0.207-ms pulse, a 50/50 population
distribution after the first pulse.

While the agreement between the symbols and solid lines
in Fig. 10 is not perfect, the theoretical and experimental
data share several key characteristics: (i) The number of
fringes increases with increasing hold time. (ii) The density
pattern is not characterized by a single fringe spacing;
rather, the fringe spacings seem to vary across the expanded
cloud. (iii) The density displays a small amplitude for z
values around −75 and 150 μm; these peaks correspond
to momentum-space components centered around −2h̄kL

and 4h̄kL, respectively. (iv) The density distributions
centered around z ≈ 0 (corresponding to the component
with momentum along the z direction of ≈0) and centered
around z ≈ 75 μm (corresponding to the component with
momentum of ≈2h̄kL) have fairly distinct shapes, i.e., they
are not mirror images of each other. All these observations
are consistent with the discussion presented in the previous
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FIG. 10. Theory-experiment comparison for lattice Ramsey-type
pulse sequence for a 87Rb BEC for two different hold times thold

and particle numbers N : (a) thold = 0.5 ms (N = 3.8 × 105) and
(b) thold = 1 ms (N = 4.3 × 105). The red symbols show the experi-
mentally measured integrated density n(z), n(z) = ∫ |�(r, t )|2dx dy,
as a function of z for tstart = 0.5 ms, tToF = 12 ms, δL = 0, and
EL/h = 1080 Hz; the results shown are from a single experimental
run. The solid black lines show results obtained by solving the Gross-
Pitaevskii equation for the full lattice Hamiltonian for �0,L/h =
1372 Hz. For comparison, the blue dotted and green dashed lines
show results obtained from using the two-state model (see text).
Both sets of theory data are convolved using a Gaussian with
the experimentally measured resolution width of 2 μm. The pulse
sequence is τ1 = 0.207 ms (first π/2 pulse), hold for time thold (see
above), and τ2 = 0.200 ms (second π/2 pulse). The experimentally
determined trap frequencies are ωx = 2π × 119 Hz, ωy = 2π × 163
Hz, and ωz = 2π × 25.7 Hz; the theory calculations set ωρ equal to
the mean of ωx and ωy.

section. If the interaction effects played less of a role, the
interference pattern would be “cleaner,” i.e., more regular.

As already alluded to earlier, Ref. [25] measured the linear
and quadratic phases using a Ramsey-type Bragg pulse se-
quence. Their analysis assumed equally spaced fringes. While
the fringe pattern in Fig. 2 of Ref. [25] is more “regular”
than the fringe pattern displayed in Fig. 10, the density peaks
in Fig. 2(f) of Ref. [25] are, just as in our case, not fully
symmetric with respect to the midpoint. We speculate that
this might be due to the structural dynamics that is driven by
mean-field effects (“factor of 2”) discussed in our work for the
lattice coupling case.

While the overall agreement between the experimental and
theoretical data in Fig. 10 is satisfactory, the experimental
data hint at the presence of beyond-mean-field physics. In
particular, we consistently observe a significant fraction of
atoms “between” the two clouds, i.e., with a momentum of
around h̄kL. It is presently unclear if this is due to quantum
correlations that are not captured by the mean-field Gross-
Pitaevskii equation or if, possibly, the thermal cloud plays a
non-negligible role. A detailed investigation of these ques-
tions is beyond the scope of this work.

V. SUMMARY AND OUTLOOK

This paper investigated two realizations of a two-state
model; in both realizations, the two states are represented
by a spatially and time-dependent mean-field wave function
or orbital. The description goes beyond a class of simpler
mean-field models, where the dynamics of each mode is
described by one complex number that encodes the population
and phase of the mode, thereby assuming that the spatial
dynamics of the modes plays a negligible role [29,30,34].
Our work demonstrates that time-dependent deformations of
the spatial profile of the mean-field wave functions play an
important role when the two-state model is realized by loading
a single-component 87Rb BEC into a moving one-dimensional
optical lattice that introduces a coupling between two distinct
momentum states of the atom. When the two-state model is,
instead, realized by coupling two different hyperfine states of
87Rb BEC atoms through a two-photon Raman process, time-
dependent deformations of the spatial profile of the mean-field
wave functions are notably less pronounced.

The difference in the dynamics for the two physical real-
izations (lattice and Raman coupling, respectively) of the two-
mode model was traced back to the contribution of different
scattering diagrams; in particular, there exist two scattering
diagrams (these are depicted in the second row in Fig. 1) that
contribute in the lattice coupling case but not in the Raman
coupling case (due to the “factor of 2”). Said differently, the
mean-field interactions for the lattice and Raman coupling
cases differ: the effective two-state model for the lattice
coupling case contains two repulsive “off-site” interaction
terms that are absent in the Raman coupling case. As a
consequence, the lattice coupled system is characterized by an
enhanced tendency for phase separation, which “competes”
with the lattice coupling term that has a tendency to keep
the components together. This competition gives rise to the
internal mean-field dynamics in the lattice coupled system that
is different from the mean-field dynamics displayed by the
two-state Hamiltonian for the Raman coupling case.

While the discussion throughout this paper focused on
87Rb BECs, the lattice coupling results, which rely on the
occupation of a single hyperfine state, apply to any BEC with
positive two-body s-wave scattering length. The Raman cou-
pling results were obtained assuming that the four coupling
strengths gaa, gbb, gab, and gba are approximately equal or
equal to each other; this assumption holds for the F = 1 states
of 87Rb but not necessarily for other elements.

This work has a number of practical and conceptual impli-
cations:

(i) The Rabi oscillation data (see Figs. 2, 3, 7, and 8)
show, especially for weak-coupling strengths, pronounced
nonsinusoidal behavior. This indicates that the analysis of
experimental Rabi oscillation data, taken to calibrate the
coupling strength, has to proceed with care. A simple fit to a
sinusoidal function (or damped sinusoidal function) may yield
an imprecise coupling strength due to interaction effects. Such
data can be used for calibration purposes if compared with
mean-field simulations that account for the interaction effects.
Alternatively, experiments can operate in the dilute regime
where interaction effects are negligible. Related discussions of
lattice potential calibrations can be found in Refs. [28,35–37].
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(ii) In the “weak” lattice coupling case, this is the regime
where, as discussed in Sec. IV, the effective two-state model
Hamiltonian provides a reliable description of the system
dynamics, the internal dynamics leads to a deformation of
the density profiles of the components. We argued that these
density deformations can be interpreted as corresponding
to an effective position-dependent detuning. For example,
starting with all population in one of the two states, a π/2
pulse (defined for a single atom in free space), realized using
a comparatively weak-coupling strength, yields a state with
a population distribution that differs from a 50/50 mixture.
This fact, together with the build-up of spatial deformations
during the hold time, has implications for momentum-space
engineering protocols, which aim to implement beam splitters
and other operations that are commonly realized in quantum
optics [17,26].

(iii) Integrating out the spatial degrees of freedom, the dy-
namics of the two-state Hamiltonian considered in this work
reduces to coupled mean-field equations that are characterized

by two complex numbers, representing the populations and
phases of the two modes [29,30,34,38]. In the lattice case,
this reduced dimensionality model has been shown to support
intriguing swallow-tail lattice structures [29,39–42], which
support, e.g., mean-field induced nonexponential tunneling
[29,34]. The internal spatial dynamics highlighted in this work
suggests that the validity regime of these reduced dimension-
ality models needs to be assessed carefully.

ACKNOWLEDGMENTS

We thank V. Gokhroo for her contributions during the
initial stage of this project. Support by the National Sci-
ence Foundation through Grants No. PHY-1806259 (Q.G.
and D.B.), No. PHY-1607495 (T.M.B., S.M., and P.E.), and
No. PHY-1912540 (T.M.B., S.M., and P.E.) are gratefully ac-
knowledged. This work used the OU Supercomputing Center
for Education and Research (OSCER) at the University of
Oklahoma (OU).

[1] D. J. Griffiths, Introduction to Quantum Mechanics (Prentice
Hall, Englewood Cliffs, NJ, 2005).

[2] L. Allen and J. H. Eberly, Two-level Atoms and Optical Reso-
nance (Dover, New York 1987).

[3] I. I. Rabi, S. Millman, P. Kusch, and J. R. Zacharias, The molec-
ular beam resonance method for measuring nuclear magnetic
moments, Phys. Rev. 55, 526 (1939).

[4] T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D.
Yavuz, T. G. Walker, and M. Saffman, Rabi Oscillations be-
tween Ground and Rydberg States with Dipole-Dipole Atomic
Interactions, Phys. Rev. Lett. 100, 113003 (2008).

[5] H. De Raedt, B. Barbara, S. Miyashita, K. Michielsen, S.
Bertaina, and S. Gambarelli, Quantum simulations and exper-
iments on Rabi oscillations of spin qubits: Intrinsic vs extrinsic
damping, Phys. Rev. B 85, 014408 (2012).

[6] C.-H. Li, C. Qu, R. J. Niffenegger, S.-J. Wang, M. He, D. B.
Blasing, A. J. Olson, C. H. Greene, Y. Lyanda-Geller, Q.
Zhou, C. Zhang, and Y. P. Chen, Spin current generation and
relaxation in a quenched spin-orbit-coupled Bose-Einstein con-
densate, Nat. Commun. 10, 375 (2019).

[7] Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Spin-orbit-
coupled Bose-Einstein condensates, Nature (London) 471, 83
(2011).

[8] V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum
gases, Nature (London) 494, 49 (2013).

[9] H. Zhai, Degenerate quantum gases with spin-orbit coupling: a
review, Rep. Prog. Phys. 78, 026001 (2015).

[10] M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon,
Bloch Oscillations of Atoms in an Optical Potential, Phys. Rev.
Lett. 76, 4508 (1996).

[11] M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak,
K. Helmerson, S. L. Rolston, and W. D. Phillips, Coher-
ent Splitting of Bose-Einstein Condensed Atoms with Op-
tically Induced Bragg Diffraction, Phys. Rev. Lett. 82, 871
(1999).

[12] O. Morsch, J. H. Müller, M. Cristiani, D. Ciampini, and
E. Arimondo, Bloch Oscillations and Mean-Field Effects of

Bose-Einstein Condensates in 1D Optical Lattices, Phys. Rev.
Lett. 87, 140402 (2001).

[13] N. Ramsey, Molecular Beams (Clarendon, Oxford, 1985).
[14] Y. Castin and R. Dum, Bose-Einstein Condensates in Time

Dependent Traps, Phys. Rev. Lett. 77, 5315 (1996).
[15] P. B. Blakie and R. J. Ballagh, Mean-field treatment of Bragg

scattering from a Bose-Einstein condensate, J. Phys. B: At.,
Mol. Opt. Phys. 33, 3961 (2000).

[16] A. O. Jamison, J. N. Kutz, and S. Gupta, Atomic interactions
in precision interferometry using Bose-Einstein condensates,
Phys. Rev. A 84, 043643 (2011).

[17] M. Edwards, B. Benton, J. Heward, and C. W. Clark,
Momentum-space engineering of gaseous Bose-Einstein con-
densates, Phys. Rev. A 82, 063613 (2010).

[18] B. Gadway, Atom-optics approach to studying transport phe-
nomena, Phys. Rev. A 92, 043606 (2015).

[19] C. Qu, C. Hamner, M. Gong, C. Zhang, and P. Engels, Obser-
vation of Zitterbewegung in a spin-orbit-coupled Bose-Einstein
condensate, Phys. Rev. A 88, 021604(R) (2013).

[20] C. Hamner, Y. Zhang, M. A. Khamehchi, M. J. Davis, and
P. Engels, Spin-Orbit-Coupled Bose-Einstein Condensates in a
One-Dimensional Optical Lattice, Phys. Rev. Lett. 114, 070401
(2015).

[21] The values of the scattering lengths are taken from M. A.
Khamehchi, Y. Zhang, C. Hamner, T. Busch, and P.
Engels, Measurement of collective excitations in a spin-orbit-
coupled Bose-Einstein condensate, Phys. Rev. A 90, 063624
(2014).

[22] H. Tal-Ezer and R. Kosloff, An accurate and efficient scheme
for propagating the time dependent Schrödinger equation, J.
Chem. Phys. 81, 3967 (1984).

[23] C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R.
Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein,
H. D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, A
comparison of different propagation schemes for the time
dependent schrödinger equation, J. Comput. Phys. 94, 59
(1991).

063620-17

https://doi.org/10.1103/PhysRev.55.526
https://doi.org/10.1103/PhysRevLett.100.113003
https://doi.org/10.1103/PhysRevB.85.014408
https://doi.org/10.1038/s41467-018-08119-4
https://doi.org/10.1038/nature09887
https://doi.org/10.1038/nature11841
https://doi.org/10.1088/0034-4885/78/2/026001
https://doi.org/10.1103/PhysRevLett.76.4508
https://doi.org/10.1103/PhysRevLett.82.871
https://doi.org/10.1103/PhysRevLett.87.140402
https://doi.org/10.1103/PhysRevLett.77.5315
https://doi.org/10.1088/0953-4075/33/19/311
https://doi.org/10.1103/PhysRevA.84.043643
https://doi.org/10.1103/PhysRevA.82.063613
https://doi.org/10.1103/PhysRevA.92.043606
https://doi.org/10.1103/PhysRevA.88.021604
https://doi.org/10.1103/PhysRevLett.114.070401
https://doi.org/10.1103/PhysRevA.90.063624
https://doi.org/10.1063/1.448136
https://doi.org/10.1016/0021-9991(91)90137-A


Q. GUAN et al. PHYSICAL REVIEW A 101, 063620 (2020)

[24] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory
of Bose-Einstein condensation in trapped gases, Rev. Mod.
Phys. 71, 463 (1999).

[25] J. E. Simsarian, J. Denschlag, M. Edwards, C. W. Clark, L.
Deng, E. W. Hagley, K. Helmerson, S. L. Rolston, and W. D.
Phillips, Imaging the Phase of an Evolving Bose-Einstein Con-
densate Wave Function, Phys. Rev. Lett. 85, 2040 (2000).

[26] B. Benton, M. Krygier, J. Heward, M. Edwards, and C. W.
Clark, Prototyping method for Bragg-type atom interferome-
ters, Phys. Rev. A 84, 043648 (2011).

[27] K. Bongs, S. Burger, S. Dettmer, D. Hellweg, J. Arlt, W. Ertmer,
and K. Sengstock, Waveguide for Bose-Einstein condensates,
Phys. Rev. A 63, 031602(R) (2001).

[28] O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein
condensates in optical lattices, Rev. Mod. Phys. 78, 179 (2006).

[29] B. Wu and Q. Niu, Nonlinear Landau-Zener tunneling, Phys.
Rev. A 61, 023402 (2000).

[30] O. Zobay and B. M. Garraway, Time-dependent tunneling of
Bose-Einstein condensates, Phys. Rev. A 61, 033603 (2000).

[31] E. Timmermans, Phase Separation of Bose-Einstein Conden-
sates, Phys. Rev. Lett. 81, 5718 (1998).

[32] C. V. Parker, L.-C. Ha, and C. Chin, Direct observation of
effective ferromagnetic domains of cold atoms in a shaken
optical lattice, Nat. Phys. 9, 769 (2013).

[33] F. A. An, E. J. Meier, J. Ang’ong’a, and B. Gadway, Correlated
Dynamics in a Synthetic Lattice of Momentum States, Phys.
Rev. Lett. 120, 040407 (2018).

[34] J. Liu, L. Fu, B.-Y. Ou, S.-G. Chen, D.-I. Choi, B. Wu, and Q.
Niu, Theory of nonlinear Landau-Zener tunneling, Phys. Rev.
A 66, 023404 (2002).

[35] M. Cristiani, O. Morsch, J. H. Müller, D. Ciampini, and E.
Arimondo, Experimental properties of Bose-Einstein conden-
sates in one-dimensional optical lattices: Bloch oscillations,
Landau-Zener tunneling, and mean-field effects, Phys. Rev. A
65, 063612 (2002).

[36] C. Cabrera-Gutiérrez, E. Michon, V. Brunaud, T. Kawalec,
A. Fortun, M. Arnal, J. Billy, and D. Guéry-Odelin, Robust
calibration of an optical-lattice depth based on a phase shift,
Phys. Rev. A 97, 043617 (2018).

[37] B. T. Beswick, I. G. Hughes, and S. A. Gardiner, Lattice-depth
measurement using continuous grating atom diffraction, Phys.
Rev. A 100, 063629 (2019).

[38] M. Jona-Lasinio, O. Morsch, M. Cristiani, N. Malossi, J. H.
Müller, E. Courtade, M. Anderlini, and E. Arimondo, Asym-
metric Landau-Zener Tunneling in a Periodic Potential, Phys.
Rev. Lett. 91, 230406 (2003).

[39] K. Berg-Sørensen and K. Mølmer, Bose-Einstein conden-
sates in spatially periodic potentials, Phys. Rev. A 58, 1480
(1998).

[40] B. Wu, R. B. Diener, and Q. Niu, Bloch waves and bloch bands
of Bose-Einstein condensates in optical lattices, Phys. Rev. A
65, 025601 (2002).

[41] D. Diakonov, L. M. Jensen, C. J. Pethick, and H.
Smith, Loop structure of the lowest Bloch band for
a Bose-Einstein condensate, Phys. Rev. A 66, 013604
(2002).

[42] M. Machholm, C. J. Pethick, and H. Smith, Band structure,
elementary excitations, and stability of a Bose-Einstein con-
densate in a periodic potential, Phys. Rev. A 67, 053613
(2003).

063620-18

https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/PhysRevLett.85.2040
https://doi.org/10.1103/PhysRevA.84.043648
https://doi.org/10.1103/PhysRevA.63.031602
https://doi.org/10.1103/RevModPhys.78.179
https://doi.org/10.1103/PhysRevA.61.023402
https://doi.org/10.1103/PhysRevA.61.033603
https://doi.org/10.1103/PhysRevLett.81.5718
https://doi.org/10.1038/nphys2789
https://doi.org/10.1103/PhysRevLett.120.040407
https://doi.org/10.1103/PhysRevA.66.023404
https://doi.org/10.1103/PhysRevA.65.063612
https://doi.org/10.1103/PhysRevA.97.043617
https://doi.org/10.1103/PhysRevA.100.063629
https://doi.org/10.1103/PhysRevLett.91.230406
https://doi.org/10.1103/PhysRevA.58.1480
https://doi.org/10.1103/PhysRevA.65.025601
https://doi.org/10.1103/PhysRevA.66.013604
https://doi.org/10.1103/PhysRevA.67.053613

