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We numerically investigate one-dimensional Bose-Hubbard chains with on-site disorder by means of exact
diagonalization. A primary focus of our work is on characterizing Fock-space localization in this model from the
single-particle perspective. For this purpose, we compute the one-particle density matrix (OPDM) in many-body
eigenstates. We show that the natural orbitals (the eigenstates of the OPDM) are extended in the ergodic
phase and real-space localized when one enters the many-body localization (MBL) phase. Furthermore, the
distributions of occupations of the natural orbitals can be used as measures of Fock-space localization in
the respective basis. Consistent with previous studies, we observe signatures of a transition from the ergodic
to the MBL regime when increasing the disorder strength. We further demonstrate that Fock-space localization,
albeit weaker, is also evidently present in the distribution of the physical densities in the MBL regime, for both
soft- and hard-core bosons. Moreover, the full distribution of the densities of the physical particles provides
a one-particle measure for the detection of the ergodic-MBL transition which could be directly accessed in
experiments with ultracold gases.

DOI: 10.1103/PhysRevA.101.063617

I. INTRODUCTION

Closed quantum systems with an interplay of interac-
tions and disorder represent a paradigmatic case of systems
where thermalization is believed to fail [1–5]. The original
concept of disorder-driven Anderson localization [6] and its
generalization to systems of interacting electrons developed
into the more generic framework of many-body localization
(MBL) [7,8] for closed quantum systems. The delocalization-
to-MBL (or ergodic-MBL) transition is an unconventional
phase transition at finite energy density, i.e., not related to
symmetry and not seen in thermodynamics. It is often referred
to as an eigenstate transition [2]. The MBL phase is a state
of matter with emergent local integrals of motion [9–12]
where eigenstates exhibit area-law entanglement [13–15] and
where slow logarithmic entanglement-entropy growth can be
observed in global quenches [9,16,17]. For an overview of this
rapidly evolving field, we refer to recent reviews [1–5].

Insights from numerical investigations of MBL in spin-1/2
XXZ chains (or the equivalent model of spinless fermions)
[4,14–26] by means of exact diagonalization or by means
of tensor-network methods greatly contributed to the current
understanding of the MBL phase. Most of the numerical
simulations investigated either the properties of the eigenspec-
trum and the eigenstates and the violation of the eigenstate
thermalization hypothesis, e.g., the level statistics, the number
variance, the entanglement entropy, and Fock-space localiza-
tion, or the real-time evolution after a global quench starting
from pure, spatially inhomogeneous initial states. We note
that, recently, a controversial discussion emerged on whether
the existence of MBL can be inferred from finite-size data
at all [27–30], also questioning the existence of the MBL

phase in the thermodynamic limit [27]. This is related to
the intensely discussed question of the exact nature of the
transition (see [26,31–36]). These discussions are ongoing,
without a final conclusion yet.

Experimental progress has been made with ultracold atoms
[37], trapped ions [38], and superconducting qubits [39,40]
where various lattice models with disorder can be emu-
lated. The observation of signatures of the MBL phase was
achieved in the quasiperiodic Aubry-André Fermi-Hubbard
model [37,41], the disordered Ising model [38], the disordered
Bose-Hubbard model (BHM) [42,43], and the quasiperiodic
Aubry-André Bose-Hubbard model [44,45]. Recently, the dis-
ordered BHM was also realized with interacting photons in an
array of superconducting qubits [46]. Most of the experiments
carried out with different platforms measure the dynamics
of the imbalance decay [37,41,42] or the dynamics of the
entanglement entropy [44,46].

However, so far, only a few numerical studies considered
the experimentally relevant disordered BHM [47–52] (or the
BHM with random interactions [53]). One reason, perhaps, for
the lack of numerical studies is the numerical costs: Full exact
diagonalization is feasible only for small system sizes and the
studies are thus limited to one dimension [47,48,50,52]. For
larger one-dimensional (1D) or 2D systems, using approxi-
mative methods is unavoidable [49,51]. Nevertheless, these
numerical studies suggest that an MBL phase exists in the
disordered 1D BHM. The MBL phase was characterized by,
for example, the imbalance decay [47], the entanglement-
entropy growth [50], the level statistics of many-body eigen-
spectra [47,48,50], the gap ratio and the fractal dimension
statistics of the full low-energy quasiparticle spectra [51], or
the entanglement entropy [49,50]. Furthermore, the existence
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of one (inverted) [47,49,52] or more many-body mobility
edges [51] was proposed. Several studies suggest that the
existence of double and higher local occupancies may favor
localization [54–56], even in the absence of disorder [57,58].
The understanding of MBL in the disordered BHM, however,
is still far from complete.

Motivated by all these considerations, we follow here an
approach based on the one-particle density matrix (OPDM)
computed in many-body eigenstates [23]. By diagonalizing
the OPDM, one obtains the natural orbitals and their oc-
cupations which can be used to characterize the real-space
localization and Fock-space localization, respectively. This
was introduced previously for spinless fermions in [23] and
has been studied in [59–64]. As a main result of this anal-
ysis, a steplike discontinuity in the disorder-averaged occu-
pations of the natural orbitals was observed, a consequence
of Fock-space localization [8,21,65,66]. The ergodic phase,
by contrast, exhibits a smooth OPDM occupation function,
consistent with thermal behavior [23,59].

Here we extend these ideas to the bosonic case. In particu-
lar, we aim at elucidating the connection between Fock-space
and real-space localization in the BHM from the one-particle
perspective. We first revisit the spin-1/2 Heisenberg model,
which is equivalent to a model of hard-core bosons and is,
at the same time, a standard model for the study of MBL.
We demonstrate that by diagonalization of the spin-correlation
matrix instead of the fermionic OPDM, we also obtain natural
orbitals and a set of eigenvalues, the occupations. The devel-
opment of a steplike discontinuity in the disordered-averaged
spin projections and the disordered-averaged occupations of
the natural orbitals is observed, analogously to the fermionic
case [23] (see also [67]). Furthermore, we define a quantitative
Fock-space localization measure from the full distributions
of the physical spin projections and the occupations of nat-
ural orbitals. This measure, which we refer to as occupation
distance, quantifies the discrete character of the distributions
in the MBL phase, related to the proximity of many-body
eigenstates to Slater determinants (permanents) for fermions
(bosons). The system-size dependence of this measure is
different in the ergodic and the MBL phase and the change in
the finite-size dependence occurs close to the transition point
estimated from other measures [21,31,36].

Second, we focus our investigation on the disordered
BHM, concentrating on densities relevant for recent experi-
ments [42]. We consider the entanglement entropy to show
that the disordered BHM indeed exhibits the ergodic-MBL
crossover consistent with previous studies [47,48,50]. Then
we diagonalize the bosonic OPDM to obtain the natural
orbitals and their occupations to characterize the real-space
localization and Fock-space localization. We observe that
the natural orbitals are extended in the ergodic phase and
real-space localized when one enters the MBL phase. We
show that the disorder-averaged occupations of the natural
orbitals exhibit a steplike structure. Furthermore, using our
quantitative measure for the degree of Fock-space localiza-
tion, the occupation distance, we extract information about
the Fock-space localization. Analogously to spins, the system-
size dependence of the occupation distance is different in the
ergodic and in the MBL phase. Interestingly, the Fock-space
localization is also evident in the distributions of physical

densities, which we analyze in the same way as the dis-
tributions of the natural-orbital occupations. We argue that
this type of analysis of the distribution of physical densities
may provide an additional means to investigate MBL and the
ergodic-MBL transition in quantum-gas experiments.

The plan of the paper is the following. We start with the
introduction of the one-particle measures both for the spin-
1/2 case and for bosons in Sec. II. We apply the one-particle
characterization to the 1D spin-1/2 Heisenberg model in the
random magnetic field in Sec. III. Then we apply the one-
particle characterization to the disordered BHM in Sec. IV.
We summarize our study in Sec. V.

II. MODEL AND METHODS

We first investigate the 1D spin-1/2 Heisenberg model with
L sites

H =
L∑

i=1

[
J

2
(Ŝ+

i Ŝ−
i+1 + H.c.) + JŜz

i Ŝz
i+1 + hiŜ

z
i

]
. (1)

Here Ŝ+
i (Ŝ−

i ) is a raising (lowering) spin-1/2 operator at site
i, Ŝz

i measures the z component of the spin, and hi represents
a random local magnetic field drawn from a box distribution
of width 2W , i.e., hi ∈ [−W,W ]. From now on, all energies
are expressed in units of the nearest-neighbor spin-exchange
constant J .

Before we introduce the one-particle measure for spins,
we review the one-particle characterization for interacting
fermions on a tight-binding chain as originally introduced
in Ref. [23]. By virtue of a Jordan-Wigner transformation,
Eq. (1) can be rewritten as (up to a constant)

Ĥ =
L∑

i=1

[
− J

2
(ĉ†

i ĉi+1 + H.c.) + Jn̂in̂i+1 + hin̂i

]
, (2)

where ĉ†
i (ĉi) is a creation (annihilation) operator for a fermion

at site i and n̂i = ĉ†
i ĉi.

For a given many-body state |ψn〉, we measure the one-
particle density matrix

ρi j = 〈ψn|ĉ†
i ĉ j |ψn〉. (3)

The natural orbitals |φα〉 are obtained by diagonalization of
the OPDM (α = 1, . . . , L)

ρ|φα〉 = nα|φα〉. (4)

The eigenvalues nα are interpreted as occupations of the
natural orbitals which sum up to the total number of particles∑

α nα = N . We can introduce an associated density operator
n̂α = ĉ†

α ĉα , where ĉ†
α creates a fermion in the natural orbital

|φα〉. In the MBL phase, the natural orbitals exhibit real-space
localization and the occupation spectrum reveals the distinc-
tive Fock-space structure of the many-body eigenstates [23].
The occupation spectrum has a steplike structure with most
eigenvalues close to either one or zero and a discontinuity,
thus resembling the momentum distribution of a Fermi liquid
[23,59].

We now return to the spin representation as used in Eq. (1).
We introduce the expectation value of the z component of
the spin at site i defined as si = 〈ψn|Ŝz

i |ψn〉 in a many-body
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eigenstate |ψn〉. We will argue that the expectation values si

can be used as a measure of both real-space and Fock-space
localization. We now introduce the spin-correlation matrix

S±
i j = 〈ψn|Ŝ+

i Ŝ−
j |ψn〉, (5)

which is the analog of the OPDM for spinless fermions. Note
that the spin-correlation matrix does not transform exactly
to the OPDM for spinless fermions under the Jordan-Wigner
transformation. Compared to the fermionic OPDM, it acquires
additional phases from the string operators. However, the
spin-correlation matrix still provides similar information as
the OPDM in the case of fermions, as we show in Sec. III A.
The spin-correlation matrix and the z components are con-
nected via si = S±

ii − 1
2 .

The spin-correlation matrix is brought to its diagonal form

S±|φα〉 = sα|φα〉, (6)

where |φα〉 are the associated natural orbitals with sα being the
respective eigenvalues, i.e., their occupations. The eigenval-
ues sα will be used as a measure for Fock-space localization
whereas the natural orbitals |φα〉 will be used as a measure for
real-space localization.

We further investigate the 1D Bose-Hubbard model with L
sites

H =
L∑

i=1

[
− J

2
(â†

i âi+1 + H.c.) + U

2
n̂i(n̂i − 1) + εin̂i

]
, (7)

where â†
i (âi) is a creation (annihilation) operator for a boson

at site i, n̂i = â†
i âi is the density operator at site i, U > 0

accounts for on-site bosonic repulsion, and εi represents an
on-site (diagonal) disorder drawn from a box distribution, i.e.,
εi ∈ [−W,W ]. Similarly to spins, from now on, all energies
are expressed in units of the nearest-neighbor hopping con-
stant J . Note that we use a prefactor of J/2 instead of the usual
J in front of the hopping term to facilitate the comparison to
the hard-core boson version of the spin Hamiltonian (1).

For a Bose-Hubbard chain in a given many-body state
|ψn〉, we measure the set of real-space site occupations {ni}
where the occupation of site i is defined as ni = 〈ψn|n̂i|ψn〉.
Additionally, we construct the one-particle density matrix ρi j

defined as

ρi j = 〈ψn|â†
i â j |ψn〉. (8)

Note that the OPDM and the site occupancies are connected
via ρii = ni. The natural orbitals |φα〉 and their occupations nα

are obtained by diagonalization of the OPDM

ρ|φα〉 = nα|φα〉. (9)

Note the connection between the spins defined in Eq. (1)
and the bosons, i.e., the spins can be represented as hard-core
bosons Ŝ+

i = â†
i , Ŝ−

i = âi, and Ŝz
i = n̂i − 1/2 [68]. The hard-

core bosons fulfill the commutation relations

[â†
i , â j] = [â†

i , â†
j ] = [âi, â j] = 0 (i �= j) (10)

for different sites and the anticommutation relations

{â†
i , âi} = 1, {â†

i , â†
i } = {âi, âi} = 0 (11)

for the same site [69]. Then the spin-correlation matrix S±
i j

corresponds to the OPDM ρi j in the bosonic picture, i.e.,

S±
i j � ρi j and si � ni − 1/2. This also justifies the use of the

spin-correlation matrix. Therefore, we refer to this object as
an OPDM as well.

Apart from the one-particle measures, we also compute
the bipartite entanglement entropy. We split the system into
subsystems A and B, both of size L/2, and we expand the
eigenstate |ψn〉 as |ψn〉 = ∑

i αi|ϕi〉A|χi〉B, where the αi are
positive Schmidt coefficients of the expansion and {|ϕi〉A} and
{|χi〉B} are orthonormal basis sets in A and B, respectively. The
von Neumann entropy between the two parts is then defined as
the Shannon entropy of the square of the Schmidt coefficients

SvN = −
∑

i

α2
i ln α2

i . (12)

The models introduced above are investigated on systems
of finite sizes up to L = 18 (and 103 disorder realizations) for
the Heisenberg model and up to L = 14 (and 103 disorder real-
izations) for the Bose-Hubbard model and periodic boundary
conditions are imposed. For spins, the overall magnetization
is kept zero Sz = ∑

i〈Ŝz
i 〉 = 0 and for bosons, we set the filling

to n = N/L = ∑
i〈n̂i〉/L = 0.5.

For the spin-1/2 system, we define the target energy den-
sity via ε = 2(E−Emin )

Emax−Emin
, where E is the many-body energy of

a particular eigenstate and Emax and Emin are the maximum
and the minimum energy for each disorder realization, respec-
tively. The energy density ε = 1 corresponds to the middle
of the many-body spectrum. Full exact diagonalization can
be used for system sizes up to L = 16 (spins) and L = 12
(bosons), yet we also use the shift-and-invert method here
to reduce the computational effort. For the largest system
sizes considered here, L = 18 (spins) and L = 14 (bosons),
we exclusively use the shift-and-invert method [70] (without
massive lower-upper decomposition parallelization). We take
the six eigenstates closest to the target energy ε for each
disorder realization. The definition of an energy density for
the BHM is more subtle and will be discussed in Sec. IV A.

III. MBL IN THE 1D HEISENBERG MODEL

A. Disorder-averaged spin projections and OPDM eigenvalues

We start our discussion with the 1D Heisenberg model.
In Fig. 1 we show the values of the disorder-averaged spin
projections si and sα , which are first reordered from the largest
value to the smallest one for each eigenstate. The disorder
average is indicated by the bars. We can clearly observe the
development of gaps between the values of si and sα for
i, α = L/2 and i, α = L/2 + 1 as the disorder strength W/J
increases. These gaps are defined as 	i = si=L/2 − si=L/2+1

and 	α = sα=L/2 − sα=L/2+1. Such gaps (or occupation dis-
continuities) were previously reported for spinless fermions
[23,59] and for S = 1/2 spins (and equivalently for hard-core
bosons) [67]. The gaps reflect the fact that the sites and natural
orbitals are either nearly occupied or nearly empty, i.e., the
particles are more real-space localized and the eigenstates
are more Fock-space localized. This is a consequence of the
existence of emergent local integrals of motion [59,67] in
the MBL phase. It was also argued that the natural-orbital
occupations give a better global approximation to the quasi-
particle occupations (i.e., the occupations of the local integral
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FIG. 1. For the spin-1/2 Heisenberg chain, (a) disorder-averaged spin projection si and (b) disorder-averaged OPDM eigenvalues sα for
L = 16 and ε = 1. Both exhibit gaps 	i and 	α when first ordered (s1 � s2 � · · · � sL) and then averaged over disorder realizations.

of motions) than the site occupations or the occupations of
Anderson orbitals [59]. In this respect, the creation operators
of natural orbitals are the closest ones to the creation operators
of quasiparticles (local integrals of motions) globally [59].

In Fig. 2 we show these gaps as a function of disor-
der strength W/J and energy density ε for a fixed system
size. In the ergodic phase, both 	α (shown previously in
[23,59,61]) and 	i need to go to zero as L increases, while
the occupation discontinuity is expected to persist in the
MBL phase, supported by its L dependence as discussed in
[23,59]. Figures 2(a) and 2(b) also include the numerical
results from [21] for the transition line between the ergodic
and the MBL phase extracted from a number of measures
(see the caption of Fig. 2 for details). According to these data
and at energy density ε = 1, the transition occurs at about
Wc/J ≈ 3.6 [21]. This comparison with the behavior of the
gaps is rather encouraging. The crossover is more visible for
	α as the natural-orbital occupations are the superior single-
particle measure for Fock-space localization [59]; however,
	i is the experimentally more accessible quantity as it only

vN vN

FIG. 2. For the spin-1/2 Heisenberg chain, the dependence of the
gaps (a) 	i and (b) 	α on W/J and ε for L = 16. See Figs. 1(a) and
1(b) for the definitions of 	i and 	α , respectively. The figures
include the data from [21] for the ergodic-to-MBL phase boundary
from various measures [SvN, an estimate of the boundary between
volume and area-law scaling of entanglement entropy; F , bipartite
fluctuations of magnetization; f , the dynamic fraction; r, the ra-
tio of consecutive level spacings; and σSvN , entanglement entropy
(fluctuations)].

requires the measurement of spin projections or densities.
This motivates our study of distributions of densities for the
disordered BHM.

Before moving on, we remark that it is well known that
finite-size data extracted from system sizes L � 26 can suffer
from severe finite-size effects in the crossover region [26–30].
Different quantities exhibit different drifts of transition points
(see, e.g., [14]). Moreover, there is a range of values reported
for the critical disorder strength at, e.g., energy density ε = 1
in the literature. For instance, numerical linked-cluster expan-
sion simulations [71] or a study of the imbalance decay in
Heisenberg chains of L = 100 spins [72] find substantially
larger values for the transition point of Wc/J ≈ 4.5–6. More
recent studies [36,73] obtain Wc/J ≈ 4.2 with varying error
bars. Notably, the results of one-parameter scaling Ansätze
(see, e.g., [21]) violate the Harris bound [26,74,75], sug-
gesting that the accessible system sizes may not be in the
scaling regime yet. Some studies propose estimates of how
large system sizes need to be to capture the behavior at the
transition (see, e.g., [30]). Even the existence of the MBL
phase in the model (1) is discussed controversially [27–30].
The key issue, though, appears to be that there is no agreement
yet on the exact nature of the transition (see, e.g., [26,31–36]
for a discussion).

B. Full distributions of spin projections and OPDM eigenvalues

To better illustrate the behavior of the one-particle observ-
ables, it is instructive to plot the full distributions of si and
sα deep in the ergodic regime [see Figs. 3(c) and 3(d)] and
deep in the localized regime [see Figs. 4(c) and 4(d)]. At the
same time, we also show the distributions of the von Neumann
entanglement entropy SvN in Figs. 3(a) and 4(a). Finally, we
define the inverse participation ratio (IPR)

IPR = 1

Sz + L/2

L∑
α=1

sα

L∑
i=1

|φα (i)|4 (13)

as a localization measure which contains information about
the real-space localization of the natural orbitals φα (i). This
quantity is shown in Figs. 3(b) and 4(b).

The system-size dependence of the entanglement-entropy
distributions for spin-1/2 chains was considered before
[24,76,77]. On the ergodic side, the maximum of the
distribution shifts with system size towards higher values
[76] [see Fig. 3(a)]. Close to the transition, long tails of low
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vN

vN

FIG. 3. For the spin-1/2 Heisenberg chain, the ergodic phase
(W/J = 1 and ε = 1). Full distributions of (a) von Neumann en-
tanglement entropy, (b) IPR, (c) spin projections, and (d) OPDM
occupations for L = 10, 12, 14, 16 are shown.

entanglement entropy develop [76] whereas in the MBL
phase, the entanglement-entropy distribution does not change
with the system size [24] [see Fig. 4(a)]. A similar behavior
was found for the L dependence of the IPR. In the ergodic
phase, the maximum of the IPR distribution shifts towards
lower values [see Fig. 3(b)], while in the localized regime,
the IPR distribution does not change with system size [see
Fig. 4(b)], consistent with the results for spinless fermions
[23].

The distribution of the spin projections si develops a binary
peak structure around the minimal (si + 1/2 = 0) and maxi-
mal (si + 1/2 = 1) possible values with increasing disorder

vN

vN

FIG. 4. For the spin-1/2 Heisenberg chain, the MBL phase
(W/J = 8 and ε = 1). Full distributions of (a) von Neumann en-
tanglement entropy, (b) IPR, (c) spin projections, and (d) OPDM
occupations for L = 10, 12, 14, 16 are shown.

strength W/J [24,76,78]. For low disorder, the distribution
depends on system size and becomes sharper as L increases.
Moreover, P(si ) is centered around the average spin projec-
tion si + 1/2 = 1/2 [see Fig. 3(c)]. For the higher disorder
strength, the distribution is practically L independent [see
Fig. 4(c)]. The distribution of the occupations sα shows a
similar L dependence [see Figs. 3(d) and 4(d)]. It develops
two peaks when the disorder strength is increased and the
peaks are located around the integer values sα = {0, 1}, re-
flecting Fock-space localization [23]. We also see that the
OPDM occupations can exceed one. This is due to the bosonic
character of the spin system, i.e., the spins can be mapped to
hard-core bosons and the hard-core bosons do not obey the
strict hard-core constraint in the basis of the natural orbitals.
Such behavior was reported before [67].

C. Quantitative one-particle measure for Fock-space
localization

We have seen that the distributions P(si ) and P(sα ) develop
peak structures around the integers si + 1/2 = {0, 1} or sα =
{0, 1}, respectively, which reflects Fock-space localization.
In order to quantify this aspect, we introduce a measure
called occupation distance computed from each element of the
distributions. For the OPDM eigenvalues sα , this is defined as

δsα = |sα − [sα]|, (14)

where [sα] is the closest integer to sα . For the spin projections
of physical particles, we alter the definition to

δsi = ∣∣si + 1
2 − [

si + 1
2

]∣∣, (15)

where [si + 1/2] is the closest integer to si + 1/2. These
quantities thus measure the distance to the closest integers
or, more generally, the distance to the eigenvalues of the
corresponding density operators.

In Fig. 5 we illustrate the dependence of the gaps 	i and
	α as well as of the disorder-averaged occupation distances
δsi and δsα on the disorder strength W/J for the energy
density ε = 1. We observe that both gaps 	i and 	α are
increasing functions of the disorder strength and that the gap
	α increases faster than the gap 	i, which reflects the fact
that the basis of natural orbitals is the better measure for
Fock-space localization. When plotted as a function of 1/L
(not shown here), both gaps extrapolate to a finite value for
W � 4J , with 	α extrapolating to larger values than 	i (see
Ref. [23] for the L dependence of 	α). Moreover, 	α goes to
zero in the ergodic phase as the OPDM occupation function
nα becomes thermal there [23,59]. It cannot be ruled out that
	i and 	α exhibit a discontinuity at the transition.

The disorder-averaged distances δsi and δsα exhibit almost
no L dependence for W/J > 4, while for lower disorder
strengths there is a clear L dependence. To better observe
the change of the behavior, we plot the L dependences of δsi

and δsα as a function of 1/L in Fig. 6. At weak disorder,
δsi increases with L and approaches 0.5 as L increases, as
expected for this magnetization sector (Sz = 0). Note that a
special case of our δsi has recently been studied in [36]. There,
specifically δsmin

i = 1/2 − maxi=1,...,L{si} has been analyzed,
which appears to go to zero as L increases in the MBL phase.

A similar increase with L is observed for δsα , where now
0.5 is an upper bound for δsα . Since the distribution of sα is
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FIG. 5. For the spin-1/2 Heisenberg chain, gaps (a) 	i and
(b) 	α (dashed lines) together with occupation distances, i.e., the
average distances (a) δsi and (b) δsα (symbols) to the closest integer
as a function of W/J for ε = 1. See Figs. 1(a) and 1(b) for the
definitions of 	i and 	α and the main text, Sec. III C, for the
definitions of δsi and δsα , respectively. The arrows specify increasing
system size. The horizontal dashed line in (a) indicates the filling (of
hard-core bosons). The average distance δsi is expected to approach
this value for L → ∞ in the ergodic regime. The horizontal dashed
line in (b) indicates an upper bound for δsα . For comparison, the
vertical lines in gray and blue mark the position of the ergodic-to-
MBL transition estimated from other measures from Refs. [21,31]
and Ref. [36], respectively.

temperature dependent in the ergodic phase [59], the limit
δsα → 0.5 is only reached at exactly infinite temperature.
Note that the limit of δsi and δsα that is approached in the
ergodic phase depends sensitively on the magnetization sector.
We will return to this point in the discussion of the BHM. For
strong disorder, δsi and δsα seem to saturate to values much
smaller than 0.5.

Remarkably, the point separating these two different L
dependences of δsi and δsα is close to the estimate of the
ergodic-MBL transition point extracted from other measures
in Ref. [21] or recently from the multifractal scaling theory
discussed in Refs. [31,36]. The data in the insets of Fig. 6
show an increase with L for W/J = 4.1 but a decrease with
L for W/J = 4.9, while there is no clear L dependence for
W/J = 4.5 suggesting that the change of the behavior happens
somewhere in the interval W/J ∈ (4.1, 4.9). Thus, there is
consistency of our data with those other recent finite-size
studies [31,36] even though one cannot exclude a drift of the
transition point due to finite-size effects [26–30,71–73]. The
results presented above suggest that δsi and δsα are useful
quantitative measures for the degree of Fock-space localiza-
tion (and better suited than 	i and 	α) and motivate us to
use analogous measures to study the Fock-space localization
in the disordered BHM.

IV. MBL IN THE 1D BOSE-HUBBARD MODEL

A. Technical aspects and definition of an energy density

We now turn our discussion to the disordered BHM. Since
we consider systems of finite-size L with particle numbers

FIG. 6. For the spin-1/2 Heisenberg chain, the average
occupation distances (a) δsi and (b) δsα as a function
of 1/L for ε = 1 for disorder strengths W/J = 0.1, 0.9,

1.7, 2.5, 3.3, 4.1, 4.5, 4.9, 6.1, 8.1, 10.1, 12.1 (various symbols).
The arrow specifies increasing disorder strength. The curly
brackets indicate those data sets that we assign to the localized
phase. The insets contain regions zoomed in to the data sets for
W/J = 4.1, 4.5, 4.9 showing the change of the L-dependence trends
around the point W/J ≈ 4.5.

N = L/2 and without any hard-core constraint, the local
Fock space grows linearly with system size, where Mloc =
{0, 1, 2, 3, . . . , N = L/2}. For L = 8, 10, and 12, we con-
struct the Hamiltonian in the full many-body basis of size
M = 330, 2002 and 12 376, respectively [79,80]. For L = 14,
we perform truncations of the local site occupations in the
basis states to two and three bosons (resulting in manageable
sizes of the many-body basis of M = 45 476 and 69 680,
respectively).

In Fig. 7 we show a sketch of the typical eigenspectrum
for a system in the low-interaction (U/J = 1) regime [see
Fig. 7(a)] and in the high-interaction (U/J = 25) regime [see
Fig. 7(b)]. The high-interaction regime is more relevant for
the actual experiments [42]. For the low-interaction regime
(U/J = 1), the spectrum appears to be continuous. On finite
systems, in the high-interaction limit (U/J = 25) and for
low disorder, the spectrum is divided into well-separated
bands. The bands are determined by the interaction energies
of their eigenstates. Typically, the L highest eigenstates in
the highest band [see Fig. 7(b)] correspond to configurations
with N bosons occupying mostly one site. By going lower in
energy in the many-body spectrum, the bosons are allowed to
be delocalized. The configurations in the lowest bands [see
Fig. 7(b)] can accommodate typically one or two bosons per
site, respectively.
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FIG. 7. For the Bose-Hubbard model, a sketch of the many-body
eigenspectra in the ε-W plane for (a) U/J = 1 and (b) U/J = 25.
The sketch corresponds to chains of size L = 8 where, for low
disorder, the spectra develop five bands in the high-interaction limit
U/J = 25 and where the three lowest bands can be characterized
by the energy density ε2 defined over the sector of eigenstates with
maximally two bosons per site.

For a system of finite size, the many-body spectrum has
a maximum energy, which is a function of the total boson
number N , and consequently the BHM with a fixed filling
has an unbounded energy per site in the thermodynamic limit.
In the highest-energy states, all bosons are located mostly at
the same site and energies of such states are approximately
given by Emax ≈ UN (N − 1)/2. Then, considering the filling
with N = L/2, the maximum energy can be written as Emax ≈
UL(L − 2)/8 and thus the maximum energy per site of such
states Emax/L ≈ U (L − 2)/8 is a linear function of the system
size L. This is different from the case of hard-core bosons
where the maximum energy per site is bounded from above.
One has to keep this in mind when considering the definition
ε = 2(E−Emin )

Emax−Emin
from Sec. II, where now ε cannot be taken as the

energy density.
To obtain a quantity which can be interpreted as an energy

density, we look at only the part of the spectrum up to a chosen
maximal average energy per site. For the system sizes studied
here (up to L = 14), we consider states with at maximum
doubly occupied sites as such states (for L = 14, these are
the states which have seven bosons and three doubly occupied
sites). The corresponding energy density ε2 is defined as ε2 =
2(E−Emin )
E2

max−Emin
with respect to the maximum energy of the selected

part of the spectrum E2
max [see Fig. 7(b) for an illustration]. In

practice, we first compute the size of the truncated basis Mred

by selecting all basis state which have the local occupancy

vN

vN vN

2nd

FIG. 8. For the Bose-Hubbard model, full distributions of the
entanglement entropy of the second band (L = 12, U/J = 25, and
ε = 0.15) in (a) the ergodic phase and (b) the MBL phase.

truncated to 2. We then construct and diagonalize the Hamilto-
nian in the basis of size M and finally we compute the energy
density ε2 with respect to the Mred lowest eigenenergies.

One should note that with an increasing number of sites the
number of bands in the ε2 sector of the many-body spectra, as
defined above, also increases. In the thermodynamic limit, the
number of bands will be infinite and the bands will span the
whole range of ε2. However, for the system sizes considered
here, the bands remain well separated for low disorder. In the
following, we focus on the energy density of the second band
that roughly corresponds to the middle part of the ε2 sector,
i.e., ε2 ≈ 1 [see Fig. 7(b)], and we discuss the numerical
signatures of the ergodic-to-MBL transition there.

B. Entanglement entropy

The first quantity we look at is the bipartite entanglement
entropy as a measure for the ergodic-MBL transition [13]. In
Fig. 8 we show representative results for L = 12 in the second
lowest band for U/J = 25. For the low disorder W/J = 1
[see Fig. 8(a)], the entanglement-entropy distributions have a
maximum at a finite value which is the typical shape of this
distribution in an ergodic system [76]. For higher disorder [see
Fig. 8(b)], the distribution takes the typical shape in the MBL
phase with a maximum close to zero and a local maximum
around SvN = ln(2) [24,76].

In Fig. 9 we show the L dependence of the entanglement
entropy. The second lowest bands for L = 8, 10, 12, and
14 have a similar energy density ε2 [see Fig. 9(a)]. For
low disorder W/J = 1, the distributions of the entanglement
entropy exhibit a shift of the position of their maxima towards
higher values [see Fig. 9(b)]. This is the typical L dependence
in the ergodic regime [76]. At high disorder W/J = 10, the
distribution is L independent (not shown). In Figs. 9(c) and
9(d) we plot the average entanglement entropy SvN and the
average fluctuation σSvN of the entanglement entropy as a func-
tion of the disorder strength W/J , respectively. We observe
a high and system-size-dependent average entropy for values
W/J ∈ (0, 2.5). By contrast, for values W/J > 4, the entropy
is close to zero for all considered system sizes. This is also
reflected in the fluctuation of the entanglement entropy, which
has a maximum value close to W/J ≈ 2. This maximum shifts
to larger values with increasing system size. The large fluc-
tuations of the entanglement entropy are usually interpreted
as a numerical signature of the ergodic-MBL transition and
they are expected to diverge at the transition for L → ∞ [14].

063617-7



MIROSLAV HOPJAN AND FABIAN HEIDRICH-MEISNER PHYSICAL REVIEW A 101, 063617 (2020)

4th

3rd

2nd

1st

vN

vN

vN

vN

2nd

FIG. 9. For the Bose-Hubbard model, (a) typical bands of the
many-body eigenspectrum expressed in the energy density ε2 defined
over the sector of eigenstates with maximally two bosons per site
for system sizes of L = 8, 10, 12, 14 (with the L = 14 data from
the truncated basis). The arrows specify increasing system size. The
dotted lines denote the energy densities of the second bands used for
the L-dependence analysis in (b)–(d). (b) Plot of the L dependence of
the full distributions of the von Neumann entanglement entropy for
the parameters corresponding to the dotted line in (a). (c) Plot of the
L dependence of the average entanglement entropy SvN as a function
of W/J . (d) Plot of the L dependence of the average fluctuation σSvN

of the entanglement entropy as a function of W/J . The arrows specify
increasing system size.

Thus, from a visual inspection of our finite-size numerical
data, we can estimate that the transition happens somewhere
at Wc/J ≈ 2. By using the one-parameter scaling Ansatz of
Refs. [21,26], namely, SvN/SPage

vN = g[L1/ν (W − Wc)], where
SPage

vN is the Page value for a random pure state [81], we find an
estimate for the transition point of Wc/J = 2.0(1). However,
similarly to the study of spins in Ref. [21], the estimate for
the exponent ν = 0.80(5) violates the Harris bound [26,74,75]
and one can expect that the true transition point is at a higher
value of W/J than the one obtained from the one-parameter
scaling estimate.

C. Natural orbitals and IPR

In this section we show that the ergodic-MBL transition is
also reflected in properties of the natural orbitals. In Fig. 10(a)
we plot all natural orbitals for one randomly chosen eigenstate
in the ergodic phase for a low disorder strength (W/J = 1),
while in Fig. 10(b) we plot all the natural orbitals for one
eigenstate in the MBL phase for a high disorder strength
(W/J = 10). For low disorder, the natural orbitals are delo-
calized spanning the whole system [see Fig. 10(a)]. On the
other hand, in Fig. 10(b), a localization of the natural orbitals
by disorder can clearly be observed, similar to the localization
of the natural orbitals for fermionic systems.

2nd

2nd

FIG. 10. For the Bose-Hubbard model, an example of all nat-
ural orbitals of the OPDM (various symbols) computed from one
randomly chosen eigenstate of the second band (L = 12, U/J = 25,
and ε = 0.15) in (a) the ergodic regime (W/J = 1) and (b) the MBL
regime (W/J = 10).

Following Ref. [23], we define the IPR for bosons as

IPR = 1

N

L∑
α=1

nα

L∑
i=1

|φα (i)|4. (16)

The IPR measures the real-space localization of the natural
orbitals |φα〉. In Fig. 11 we show the L dependence of the
IPR in the second lowest band (for U/J = 25) for the same
parameters as in Fig. 9. For low disorder W/J = 1, the IPR
distribution has a maximum for lower values of IPR with
a high-IPR tail, which means that the orbitals are mostly
delocalized. The distribution of the IPR exhibits a shift in the
position of its maximum towards lower values with increasing

2nd
2nd

2nd
2nd

FIG. 11. For the Bose-Hubbard model, system-size dependence
of the full distributions of the IPR in (a) the ergodic phase and (b) the
MBL phase. The parameters correspond to the energy densities
denoted by the dotted line in Fig. 9(a), i.e., to the second band of
the many-body eigenspectra. The arrows specify increasing system
size.
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2nd

FIG. 12. For the Bose-Hubbard model, disorder-averaged and
ordered (a) real-space occupations and (b) occupations of natural
orbitals for the second band (L = 12, U/J = 25, and ε = 0.15). Both
exhibit gaps 	

j
i and 	 j

α ( j = 1, 2) when first ordered according
to n1 � n2 � n3 � · · · � nL and then averaged over disorder real-
izations. The vertical dashed lines indicate the location of these
discontinuities.

system size [see Fig. 11(a)]. In the high-disorder regime
W/J = 10, the maxima of the IPR distributions are closer
to the maximum value of 1, meaning that the orbitals are
mostly localized. Moreover, in the high-disorder regime, the
IPR distributions are almost L independent [see Fig. 11(b)].
This is consistent with the behavior of the IPR distributions
for fermionic systems [23].

D. Occupations

In the preceding section we saw that the natural orbitals
contain information about real-space localization. In this sec-
tion we focus on how the occupations, both of the physical
sites |i〉 and of the natural orbitals |φα〉, reveal the degree of
Fock-space localization.

In analogy to the discussion of the spin model, we first
consider the disorder-averaged occupations. In Fig. 12 we
show the disorder-averaged occupations for the second band
for L = 12. For low disorder, the average occupations are a
smooth decreasing function. For high disorder, we observe
that the averaged occupations exhibit a steplike structure
where the occupations are mostly close to 0, 1, or 2. The
height of each step between these values is labeled as gaps 	

j
i

or 	
j
α ( j = 1, 2) (see Fig. 13). These gaps are analogous to the

gaps observed for spins (or hard-core bosons) and fermions.
In the following, we concentrate on the distributions and the
occupation distances as they are better-suited measures for
Fock-space localization.

2nd

FIG. 13. For the Bose-Hubbard model, full distributions of the
real-space occupations ni in (a) the ergodic regime and (c) the MBL
regime and full distributions of occupations of natural orbitals nα in
(b) the ergodic regime and (d) the MBL regime for the second band
(L = 12, U/J = 25, and ε = 0.15).

Examples of the distributions of the occupations ni and nα

for the second band for L = 12 are displayed in Fig. 13. The
first to be noted is that the distributions in the low-disorder
regime [see Figs. 13(a) and 13(b)] are smooth functions with
maxima close to the average density of 0.5 and with exponen-
tially decaying tails. In the high-disorder regime, we observe
the development of a peak structure. The peaks are located
at the integer values j ∈ {0, 1, 2}. Higher occupations in the
eigenstates are strongly suppressed, which is in agreement
with the interaction-energy contribution to the energy of the
eigenstates in this particular band. The development of the
peak structure in the distributions reflects the ergodic-MBL
transition. Thus, analogously to the distributions of si and sα

in the spin system discussed above, the distributions of ni and
nα indeed reveal the structure of the Fock-space localization.
The distribution of ni also indicates real-space localization.

E. Quantitative measure of Fock-space localization

We have seen that the distributions of the site occupations
ni and the natural-orbital occupations nα exhibit a peak struc-
ture in the high-disorder regime which reflects many-body
localization. To better quantify the localization, we measure,
similarly as for the spin system, the distance to the closest
integer of the site occupations

δni = |ni − [ni]| (17)

and the distance to the closest integer of the occupations of
natural orbitals

δnα = |nα − [nα]|, (18)
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2nd

FIG. 14. For the Bose-Hubbard model, full distributions of the
occupation distances δni of density and δnα of natural-orbital oc-
cupations in the ergodic regime (W/J = 1) and in the MBL regime
(W/J = 10) obtained from the distributions shown in Fig. 13.

where [ni] and [nα] are the closest integers to ni and nα ,
respectively. The results for the distributions of δni and δnα

for the second band for L = 12 are displayed in Fig. 14 and
they show the shift of the maximum of the distribution from
0.5 to 0 with increasing disorder strength. Note that for both
quantities, δni, δnα � 0.5.

In Fig. 15 we show δni and δnα as functions of disorder
strength W/J for the second band, i.e., for the same parameters
as in Fig. 9 and for different system sizes. We observe that
the values of δni and δnα are L dependent for the disorder
strength W/J � 3, while they are essentially L independent
for W/J � 3.

To better detect the change of the behavior, we illustrate
the L dependences of δni and δnα as a function of 1/L in
Fig. 16. Clearly, for W/J � 2.6, the values of δni and δnα are

2nd

FIG. 15. For the Bose-Hubbard model, system-size dependence
of the average occupation distance (a) δni of densities and (b) δnα of
natural-orbital occupations a function of W/J . The arrows specify
increasing system size. The parameters correspond to the energy
densities denoted by the dotted line in Fig. 9(a), i.e., to the second
band of the many-body eigenspectra. The horizontal dashed line in
(a) indicates the filling. The δni is expected to approach this value
for L → ∞ in the ergodic regime. The horizontal dashed line in
(b) indicates the upper bound for δnα . The vertical gray line marks
the estimate of the ergodic-MBL transition estimated from visual
inspection of the data in Fig. 16.

FIG. 16. For the Bose-Hubbard model, average occupation dis-
tances (a) δni and (b) δnα as a function of 1/L for ε = 1 for disorder
strength W/J = 0.1, 0.6, 1.1, 1.6, 2.1, 2.6, 3.1, 4.1, 6.1, 10.1 (vari-
ous symbols). The arrow specifies increasing disorder strength. The
curly brackets indicate those data sets that we assign to the localized
phase.

increasing functions of L and δni is expected to approach the
upper bound 1/2 for L → ∞, consistent with the data. On the
other hand, for W/J � 3.1 the values of δni and δnα appear to
saturate to values much smaller than 1/2 as a function of L.
From a visual inspection of the data in Fig. 16, the behavior
changes for W/J < 3.1 and we estimate that the transition
happens at 2.6 < Wc/J < 3.1. This is slightly higher than our
estimate from the one-parameter scaling of the entanglement
entropy of Wc/J ≈ 2.0(1).

The actual values that δni and δnα approach in the ergodic
phase clearly depend on filling. For instance, at unit filling,
one expects δni → 0, while δnα is expected to go to a small
but energy-dependent value. One can introduce a modified
occupation distance

δ̃ν = |nν − n|, (19)

where ν = i, α and n is the average density or filling. In

addition, δ̃i must approach zero in the ergodic phase but

remains finite in the MBL phase. For δ̃α , we expect a small
but in general nonzero value in the ergodic phase and a larger

limiting value in the MBL phase compared to δ̃i. We have
verified this behavior for n = 0.5 yet observe that the finite-

size dependences of δ̃ν are larger than for δν .
We note that the regimes where the occupations can reach

values larger than 2 can be studied in a similar fashion as the
states of the second band. In Fig. 17 we show an example of
the distributions for L = 12 and weak interaction strength in
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FIG. 17. For the Bose-Hubbard model, an example for the be-
havior in the low-interaction regime U/J = 1. Full distributions of
(a) the real-space occupations ni and (b) occupations of natural
orbitals nα are shown in the MBL regime for the middle of the
many-body eigenspectrum (L = 12 and ε = 1).

the high-disorder regime (U/J = 1 and W/J = 10) for states
from the middle of the spectrum. We observe an analogous
peak structure in the distributions of ni and nα with the peaks
located around integers j ∈ {1, 2, 3, 4, 5} (with exponentially
decreasing weights of the peaks) showing the localization in
Fock space. The relative weight of the height of the peaks
depends on energy density, filling, disorder, and interaction
strength.

We conclude that the L dependences of the average occupa-
tion distances δni and δnα are useful measures for Fock-space
localization in the MBL phase. Analyzing the monotonic
behavior of the L dependence yields a reasonable estimate for
the critical disorder strength, consistent with other measures.

F. Measuring densities in quantum-gas experiments

A measurement of P(ni ) should be feasible with quantum-
gas microscopes [37,41,42,44,45]. In order to obtain the den-
sities ni at a certain average density and disorder realization,
repeating projective measurements in the same disorder real-
ization is necessary. Such experiments with ultracold atomic
gases in optical lattices should be capable of reaching much
larger system sizes than exact diagonalization or the shift-and-
invert method, which could give better access to the transition.

In principle, there are also other states that can localize
particles such as Mott insulators [82]. In our case, we work at
half filling, where a Mott insulator would not be realized in the
BHM in the absence of a dimerization mechanism. Moreover,
one is generally interested in physics sufficiently high above
the ground state in the context of MBL, while the Mott

insulator is, strictly speaking, a ground-state phenomenon.
In the Mott insulator at, e.g., unit filling, the distribution of
densities is P(ni ) ∝ δ(ni − 1), which is clearly different from
the behavior in the putative MBL phase [see Fig. 13(c)].
Obviously, the full characterization of a disordered system
should rely on a set of experimental measures, including, e.g.,
decay of inhomogeneous density profiles [37,42] or density
distributions as suggested here.

V. CONCLUSION

We showed that the one-particle density matrix, natural
orbitals, and their occupations can be used to reveal the
structure of real-space and Fock-space localization in systems
of interacting disordered bosons. The real-space localization
is observed in the structure of the natural orbitals, in the
system-size dependence of the inverse participation ratio, and
in the full distribution of densities. The Fock-space localiza-
tion is uncovered via studying distributions of occupations
and densities. In particular, the distributions of the densities ni

and the occupations of natural orbitals nα are smooth func-
tions in the ergodic regime whereas they develop a peak
structure in the MBL regime where the peaks are at the
possible integer eigenvalues of n̂i and n̂α . Based on this ob-
servation, we devised a quantitative measure of localization,
the average distance to the closest integer of the occupations
called occupation distance, and we showed that its system-size
dependence is strikingly different in the two phases. This
measure can be used to study Fock-space localization for
spins, bosons, and fermions.

These findings further illustrate the conceptual picture that
many-body localization involves localization both in Fock
space and in real space. An interesting question pertains to
the construction of local conserved charges for the MBL
phase of the BHM, i.e., the generalization of l bits to a
system with a large local Hilbert space. The distributions of ni

should be accessible in quantum-gas microscope experiments
[37,41,42,44,45]. It would be interesting to extend our anal-
ysis beyond just the expectation values ni to a prediction of
projective measurements in the MBL phase.
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[17] M. Žnidarič, T. Prosen, and P. Prelovšek, Many-body localiza-
tion in the Heisenberg XXZ magnet in a random field, Phys.
Rev. B 77, 064426 (2008).

[18] L. F. Santos, Integrability of a disordered Heisenberg spin-1/2
chain, J. Phys. A: Math. Gen. 37, 4723 (2004).

[19] V. Oganesyan and D. A. Huse, Localization of interacting
fermions at high temperature, Phys. Rev. B 75, 155111 (2007).

[20] A. Pal and D. A. Huse, Many-body localization phase transition,
Phys. Rev. B 82, 174411 (2010).

[21] D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization
edge in the random-field Heisenberg chain, Phys. Rev. B 91,
081103(R) (2015).

[22] Y. Bar Lev, G. Cohen, and D. R. Reichman, Absence of
Diffusion in an Interacting System of Spinless Fermions on
a One-Dimensional Disordered Lattice, Phys. Rev. Lett. 114,
100601 (2015).

[23] S. Bera, H. Schomerus, F. Heidrich-Meisner, and J. H.
Bardarson, Many-Body Localization Characterized from a One-
Particle Perspective, Phys. Rev. Lett. 115, 046603 (2015).

[24] S. P. Lim and D. N. Sheng, Many-body localization and
transition by density matrix renormalization group and exact
diagonalization studies, Phys. Rev. B 94, 045111 (2016).

[25] V. Khemani, F. Pollmann, and S. L. Sondhi, Obtaining Highly
Excited Eigenstates of Many-Body Localized Hamiltonians by
the Density Matrix Renormalization Group Approach, Phys.
Rev. Lett. 116, 247204 (2016).

[26] V. Khemani, D. N. Sheng, and D. A. Huse, Two Universality
Classes for the Many-Body Localization Transition, Phys. Rev.
Lett. 119, 075702 (2017).
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