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Gravitational vortex mass in a superfluid
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We consider superfluid hydrodynamics of two-dimensional Bose-Einstein condensates. Interpreting the
curvature of the macroscopic condensate wave function as an effective gravity in such a superfluid universe,
we argue for a superfluid equivalence principle: that the gravitational mass of a quantized vortex should be
equal to the inertial vortex mass. In this model, gravity and electromagnetism have the same origin and are
emergent properties of the superfluid universe, which itself emerges from the underlying collective structure of
more elementary particles, such as atoms. The Bose-Einstein condensate is identified as the elusive dark matter
of the superfluid universe with vortices and phonons, respectively, corresponding to massive charged particles
and massless photons. Implications of this cosmological picture of superfluids to the physics of dense vortex
matter are considered.
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I. INTRODUCTION

The apparent equivalence of the inertial mass mi and the
gravitational mass mg has puzzled scientists at least since
the times of Newton [1]. Einstein’s equivalence principle
is a cornerstone of general relativity that necessitates this
equality, albeit provides no explanation for its origin [2]. More
recently, the repeated attempts to unify quantum mechanics
and general relativity, together with the growing mystery of
the dark matter paradigm [3–5], are calling for revision to
our understanding of the nature of gravity and the fabric of
spacetime.

Here we bypass such grand challenges and translate the
question of the equivalence between inertial and gravitational
masses to a superfluid toy universe, whose properties are
based on firm theoretical and experimental foundations. The
full superfluid spacetime of the atoms is 2 + 1 dimensional
whereas the spacetime of a particle dual of vortices of this
theory is 1 + 1 dimensional. A remarkable property of such
low dimensional spacetimes is that they may allow for a vari-
ety of well founded formulations of quantum gravity [6–9].
Further to this, it has been suggested that Einstein’s field
equations, and thereby gravity, could emerge as a consequence
of quantum fluctuations of a regular quantum field theory over
a background spacetime metric [10,11]. Meanwhile, a cor-
respondence between two-dimensional superfluid hydrody-
namics and relativistic electrodynamics is established [12–17]
and underpins the concept of the inertial mass of a vortex
[12,18–20]. In this work, we draw inspiration from these
theoretical considerations with a specific focus on aiming
to investigate the equivalence principle and the gravitational
mass of a quantized vortex within the context of such an
emergent superfluid universe.

It is prudent to digress here to emphasize that this work
is strictly concerned with analogs and does not address the
aforementioned issues of real quantum gravity or dark matter.
As such, all fundamental physics concepts and terminology

deployed in this work refer to analogs, unless explicitly stated
otherwise or made clear by the context.

In classical hydrodynamic theory of fluids the vorticity
ω = ∇ × v, the curl of the velocity potential, plays a pivotal
role. It is already at this elementary level that the connection
between hydrodynamics of fluids and classical electromag-
netic theory, as quantified by Maxwell’s equations, seems to
appear, since the magnetic field is equal to the vorticity of
the magnetic vector potential. This connection presumably
prompted Maxwell to contemplate the hypothesis of molec-
ular vortices and to state that “under the action of magnetic
forces something belonging to the same mathematical class
as angular velocity... forms a part of the phenomenon” [21].
Presently, it is thought that the unified electromagnetic field
describes all of the classical electromagnetic phenomena,
including the propagation of light. Quantum electrodynamics
further explains how charged particles may be spawned as
excitations of the electromagnetic field [22]. However, neither
Maxwell’s electrodynamics or quantum electrodynamics are
able to shed any light on the nature of the “substrate” (infa-
mously known as the aether) of the electromagnetic field.

Two-dimensional (plus one time dimension) superfluids
provide a mathematically appealing analogy to relativistic
electrodynamics [12,13]. In such a superfluid universe, the
electric field is associated with the superflow as determined
by the gradient of the spatial phase of the condensate order
parameter of the superfluid. The magnetic field may be asso-
ciated with the rate of change of the dynamic phase of the
condensate, and the quantized vortices (more precisely the
kelvons which are quasiparticles associated with the vortex)
correspond to the massive charged particles, analogous to
the electrons. In contrast to electromagnetic fields of our
Universe, the “substrate” of the electromagnetic fields of this
superfluid universe correspond to a well defined entity—a
Bose-Einstein condensate (BEC) composed of the underly-
ing “trans-Planckian” constituent particles such as rubidium
atoms [16].
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Once the Bose-Einstein condensate forms, the quasiparti-
cles of the condensate are elevated to the status of the ele-
mentary particles of the superfluid universe, and its vacuum,
the substrate for all fields, is the condensate itself. In this
sense, the whole superfluid universe together with all of the
fundamental forces are emergent. The trans-Planckian atoms
respect Galilean invariance but the quasiparticles of the super-
fluid with the linear phonon quasiparticle dispersion relation
allow for an interpretation in terms of an acoustic metric
with an effective Lorentz invariance [23]. In this picture,
the quantum field theory of the normal state atoms realize
the grand unified theory (GUT) of the superfluid universe
and the Bose-Einstein condensate corresponds to a low en-
ergy state that emerges via a spontaneous symmetry breaking
mechanism as the system cools. The superfluid universe fea-
tures a peculiar anti-GUT property whereby effective symme-
tries emerge in the “low energy corner” of the quasiparticles
[16], as quantified by the Bogoliubov dispersion relation

E (p) =
√

(pcs)2 +
(

p2

2m

)2

, (1)

where cs is the speed of sound and p is the quasiparticle
momentum. These are the “relativistic” Bogoliubov phonons
with an acoustic metric associated with the linear dispersion
relation at low momenta p → 0 that results in the emergent
Lorentz invariance. In contrast, the effective Lorentz invari-
ance violating term, ∝ p4 in the square root, results in a
quadratic dispersion relation for high momenta and at high
temperatures.

The true zero mode of this system, the Nambu-Goldstone
boson, is the vacuum (the condensate) of this theory. The
topological excitations (quantized vortices) with angular mo-
mentum quantum number � = −1 kelvons are the charged
particles of this superfluid universe. Their dispersion relation
ω = ωk + k2 ln(1/k) is approximately linear at low momenta
and may be viewed as the effective relativistic particles of the
theory [12]. The kelvon based inertial mass of a vortex, which
is the electron of the superfluid universe, is [19]

mv
i = 2π h̄n

ωk
, (2)

where ωk is the zero-point frequency of the kelvon and n
is the two-dimensional (2D) background condensate particle
density. The sound waves in the superfluid are the photons of
the superfluid universe and the fluctuating condensate density
gives rise to an emergent gravitational field via the resulting
nonvanishing quantum pressure field, as discussed in detail
later.

In Sec. II, we associate each term in the generalised
Gross-Pitaevskii energy functional with fields of the super-
fluid universe. Sections III and IV discuss the emergence
of electromagnetism and gravity, respectively. In Sec. V we
argue for the vortex correspondence principle proposing the
equality of the gravitational and inertial vortex mass. In a
(2 + 1)-dimensional superfluid the motion of quantized vor-
tices may be modeled in terms of Hamilton’s phase-space
equations for a one-dimensional massive particle. The result-
ing vortex-particle duality is considered in Sec. VI. In Sec. VII

we consider quantum Hall physics in the superfluid universe.
Concluding remarks are provided in Sec. VIII.

II. A (2 + 1)-DIMENSIONAL SUPERFLUID UNIVERSE

We consider a two-dimensional (plus one time dimen-
sion) superfluid universe governed by the complex valued
order parameter �(r, t ) normalized to the atom number Na =∫ |�|2dr2 and the usual Gross-Pitaevskii energy functional
[24,25]

E =
∫ (

h̄2

2m
|∇�|2 + c0

2
|�|4 + 2c0ñ|�|2 − μDE|�|2

)
dr2,

(3)
where m is the mass of the “trans-Planckian” particles (e.g.,
atoms) and c0 is the coupling constant that relates the con-
densate density to the energy per particle (chemical potential)
μDE of the superfluid vacuum. The evolution of this superfluid
universe is determined by the generalized Gross-Pitaevskii
equation

ih̄∂t�(r, t ) = H�(r, t ), (4)

where the Hamiltonian H = (1/�)δE/δ�∗ is

H =
(

− h̄2

2m
∇2 + c0n(r, t ) + 2c0ñ(r, t ) − μDE

)
, (5)

n(r, t ) = |�(r, t )|2, and ñ(r, t ) is the particle density of the
fluid not included in the condensate. Using the Madelung
transformation [26] �(r, t ) = |�(r, t )|eiS(r,t ), in the case of
static thermal cloud, Eq. (4) may be expressed equivalently in
its hydrodynamic form in terms of the continuity equation

∂n

∂t
= −∇ · (nvs) (6)

and an Euler-like equation

−h̄
∂S

∂t
= − h̄2

2m|�|∇
2|�| + m

2
v2

s + c0|�|2 + 2c0ñ − μDE,

(7)
where vs = h̄∇S/m is the superfluid velocity and S is the real-
valued phase function of the condensate [24,25].

To draw a distinction between the standard terminology
used in cold atom physics and that of the superfluid universe,
we change the notation in Eq. (3), expressing it as

E = GEM +
∫ [(c0

2
�2

DM + 2c0�
2
NM − μDE

)
�2

DM

]
dr2,

where GEM, defined later, stands for gravity and electro-
magnetism, the dark matter density �2

DM = |�(r, t )|2, and
the normal matter density �2

NM = ñ(r, t ). In equilibrium, the
normal matter

ñ(r) =
∑

q

{ f (T, Eq)[|uq(r)|2 + |vq(r)|2] + |vq(r)|2} (8)

exists in the form of Bogoliubov quasiparticles with energies
Eq and quasiparticle amplitudes uq and vq. The Bose-Einstein
distribution f (T, Eq ) determines the dependence of the nor-
mal matter density, and thereby also the dark matter density
via conservation of total atom number, on temperature T
of the atoms. As such, the atomic temperature T may also
be interpreted as the temperature of the cosmic microwave
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background of the superfluid universe, which controls the
ratio of ordinary matter to dark matter. The two main types
of quasiparticle matter in this theory are phonons (massless
particles) and kelvons (charged, massive particles), the latter
being confined to and carried along by quantized vortices.
The quasiparticles are oblivious to the existence of the trans-
Planckian world of atoms out of which the condensate and
thereby the whole superfluid universe emerged. Although
the whole superfluid universe including gravity and electro-
dynamics is emergent, the rules of quantum mechanics are
nevertheless inherited by the quasiparticles of the superfluid
from the laws governing the trans-Planckian world of true
atoms.

Next we reemploy the Madelung transformation to split
the GEM into a part involving superflow and another one
accounting for the effects of quantum pressure. This yields

GEM =
∫

h̄2

2m
|∇S(r)|2|�(r)|2 + h̄2

2m
{∇|�(r)|}2dr2, (9)

which we may also express as

GEM =
∫

�2
EM�2

DMdr2 +
∫

�2
G�2

DMdr2. (10)

The electromagnetic interaction �2
EM emerges due to the

motion (flow of the true atoms) of the vacuum and the
gravitational interaction �2

G emerges due to the curvature
(variation in the density of the true atoms) of the superfluid
spacetime. The effective interaction between gravitational and
electromagnetic fields is mediated by the dark matter �2

DM.
We will first consider the �2

EM facet of the GEM.

III. EMERGENT ELECTROMAGNETISM

Let us first consider the superfluid density n = n0 + δn
to be uniform (yet, oxymoronically allowing infinitesimal
density fluctuations δn) and the trans-Planckian atoms to
be confined to a quasi-2D regime such that the embedding
space is three dimensional but the vortex dynamics is planar
(two dimensional). This is a typical setting for instance in
experimental studies on two-dimensional quantum turbulence
in Bose-Einstein condensates [27,28]. The term

GEMEM =
∫

�2
EM|�(r)|2dr2, (11)

corresponds to the electromagnetic energy of the superfluid
universe and the classical electrodynamics are obtained by
considering the superfluid hydrodynamics within the afore-
mentioned uniform condensate density approximation such
that the continuity equation (6) becomes

∂n0

∂t
= −n0(∇⊥ · vs), (12)

where we have introduced the subscript ⊥ to remind us of the
fact that spatial gradients only exist in the two-dimensional
plane, and the equation for the phase evolution (7) may be
approximated by

−h̄
∂S

∂t
= 1

2
mv2

s + c0n0 + 2c0ñ − μDE. (13)

The superfluid electric and magnetic fields

Esf = mn0vs × ez and Bsf = h̄m

c0

∂S

∂t
ez, (14)

where ez is the unit vector normal to the condensate plane,
correspond to, respectively, spatial and temporal gradients of
the condensate phase. Defining the magnetic field to be pro-
portional to the phase change ∂t S, rather than the condensate
density n0, ensures that the mean value of the magnetic field
of the vacuum (ground state condensate) vanishes since then
−h̄∂t S = c0n0 − μDE = 0. The vortex current

jv = ρvvv,

where vv is the velocity field of the vortex phase singularities,
is expressed in terms of the vortex density

ρv = (∇⊥ × vs) · ez. (15)

The superfluid vacuum constants are

εv = 1

mn0
and μv = m2

c0
(16)

such that the speed of sound is

cs =
√

c0n0

m
= 1√

μvεv

. (17)

With these definitions, all of the classical electrodynamic
theory for the superfluid universe can be derived starting from
the generalized Gross-Pitaevskii energy functional.

A. Gauss-like E law

The Gauss-like law

∇⊥ · Esf = ρv

εv

(18)

states that the vortex “charges” are the sources of the electric
field, and is merely a restatement of the quantization of
circulation

∮
vs · dl = κw, where w is an integer winding

number and κ = 2π h̄/m is the quantum of circulation. Using
Eq. (14), the divergence of the electric field is

∇⊥ · Esf = mn0∇⊥ · (vs × ez )

= mn0∇⊥ · (vyex − vxey)

= mn0(∂xvy − ∂yvx ). (19)

The vortex density

ρv =
Nv∑
i=1

wiκδ(r − ri )

= ω · ez = (∇⊥ × vs) · ez

= (∂xvy − ∂yvx ), (20)

where Nv is the total number of vortices in the system and wi

is the integer winding number of the ith vortex, is equal to the
divergence of the electric field divided by the permittivity of
the vacuum, as stipulated by Gauss’s law. In the continuum
limit the Feynman criterion for the areal vortex density yields

ρv = κnv = κ
�rotm

h̄π
= 2�rot, (21)
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which states that the magnitude of the vorticity of a rigidly
rotating body equals twice its angular rotation frequency �rot.

B. Gauss-like B law

The Gauss-like law for the magnetic field

∇⊥ · Bsf = ∇⊥ · [B(x, y)ez] = 0 (22)

is trivially satisfied because B has only one component and
it is orthogonal to the x-y plane. In words, this superfluid
universe has no monopoles of magnetic kind.

C. Faraday-like law

The law of induced electric fields due to changing magnetic
field

∇⊥ × Esf = −∂Bsf

∂t
(23)

may be derived using the continuity equation for the superflow
of atoms. The curl of the electric field is

∇⊥ × Esf = mn0∇⊥ × (vs × ez ) = −mn0(∇⊥ · vs)ez, (24)

where the second equality follows from a vector identity. The
negative of the time derivative of the magnetic field

−∂Bsf

∂t
= − h̄m

c0

∂

∂t

(
∂S

∂t

)
ez = −mn0(∇⊥ · vs)ez (25)

is thus equal to the curl of the electric field. This can be shown
by differentiating the Euler-like equation (13) to yield

−h̄
∂

∂t

(
∂S

∂t

)
= ∂

∂t

(
1

2
mv2

s + c0n0 + 2c0ñ − μDE

)
. (26)

The assumption of a uniform condensate density implies that
mv2

s � c0n0 and since at ultralow temperatures ñ � n0, it
follows that for a constant μDE

− h̄m

c0

∂

∂t

(
∂S

∂t

)
= m

∂n0

∂t
= −mn0∇⊥ · vs, (27)

where the second equality is just the continuity equation.

D. Ampere-Maxwell-like law

The law of induced magnetic fields due to electric current
or changing electric field is

∇⊥ × Bsf = μvjv + μvεv

∂Esf

∂t
, (28)

which is consistent with the vortex current continuity equa-
tion ∇ · jv + ∂tρv = 0. As in classical electrodynamics, the
charges and currents must be explicitly introduced while in
the full theory they emerge naturally as excitations of the
superfluid. Once the charges have been introduced, Eq. (28)
may be derived by considering a transformation to a reference
frame moving at a local vortex velocity

ih̄∂t�v (r, t ) = [ih̄∂t − Jv · A]�(r, t ). (29)

For the case of a uniformly rotating vortex lattice with
p = mvs = m�rotrez × er , Eq. (29) reduces to the usual trans-
formation to a rigidly rotating frame,

Jv · A = �rot · (r × p). (30)

Since for a generic scalar function A(r)

∇⊥ × [A(r)ez] = [∇⊥A(r)] × ez, (31)

the curl of the superfluid magnetic field is

∇⊥ × Bsf = ∇⊥ ×
{

h̄m

c0

(
∂S

∂t
− Jv · A/h̄

)
ez

}

= h̄m

c0
∇⊥

(
∂S

∂t

)
× ez − �2

rotm
2

c0
∇⊥

(
r2

) × ez. (32)

The first term on the previous row is equal to

μvεv

∂Esf

∂t
= μv

∂vs

∂t
× ez = h̄m

c0
∇⊥

(
∂S

∂t

)
× ez (33)

and the second term yields the vortex current

μvjv = μv2�rotvs = −�2
rotm

2

c0
∇⊥

(
r2

) × ez. (34)

In Eq. (34) we have used the Feynman criterion ρv = 2�rot

and the approximation that the vortices would move at the
local superfluid velocity such that vv = vs, which is not true
in general when “gravitational” effects due to the spatial
condensate density variations become important such as in the
case of nonuniform condensates caused by external trapping
[29] or rapid rotation [30].

E. Lorentz-like force law

The exact equation of motion for a vortex is [29]

vv = vS + vn, (35)

where vv is the vortex velocity and the background superfluid
velocity

vS = h̄∇⊥S(r)/m|rv
(36)

equals the background condensate phase gradient (electric
field) at the location of the vortex after the vortex self-
induction velocity field is removed. The velocity component

vn = − h̄ez × ∇e(r)

2me(r)

∣∣∣∣
rv

(37)

due to the background condensate density gradient (gravity) is
expressed in terms of the function e(r) defined, to lowest order
in the multipole expansion of the condensate density in the
vicinity of the vortex core, by n(r) = e(r)(r − rv )2. Equation
(35) can be cast as a force equation by multiplying from the
right by the factor mn0 × κ to yield the superfluid counterpart
of the Lorentz force,

FB = FE + FG, (38)

where the three forces are

FB = κvv × Bsf , FE = κEsf , and FG = mvGsf . (39)

The first two are obtained by direct substitution of Eq. (14)
with Bsf ≈ mn0ez since the dynamical phase evolution at
the location of the vortex phase singularity where n|rv

= 0
is ∂S/∂t |rv

≈ c0n0/h̄. The gravitational force is discussed in
detail in Sec. V.
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Equation (38) may be regarded as the geodesic equation for
the vortex and may be expressed as Newton’s second law that
provides a definition for the vortex mass mv via

mva = FE + FG, (40)

where a is the acceleration of the vortex and is perpendicular
to the velocity of the vortex. There are two real forces FE and
FG acting on the vortex and they determine how the velocity of
the vortex changes when it is subjected to the external forces.
The equation of motion, Eq. (38), may also be expressed in
terms of the the Magnus force FMag = FE − FB, as FG +
FMag = 0. In strictly uniform systems FG = 0 and therefore
also FMag = 0, such that FE = FB = mva, which results in
the statement that vortices are frozen in the superfluid since
vv = vs.

F. Electromagnetic waves

The wave equations

∇2
⊥Esf = μvεv

∂2Esf

∂t2
(41)

and

∇2
⊥Bsf = μvεv

∂2Bsf

∂t2
(42)

may be derived directly using the hydrodynamic Maxwell
equations, Eqs. (18), (22), (23), and (28) in the usual way.
In the long-wavelength limit the waves described by these
equations are associated with the linearised (infinitesimal)
density perturbations of the Gross-Pitaevskii equation [24,25]

∇2δn(r) = 1

c2
s

∂2δn(r)

∂t2
. (43)

These Bogoliubov phonons have the well known dispersion
relation

ωphonon =
√(

h̄k2

2m

)2

+ (csk)2, (44)

which, in the long-wavelength limit, is a linear function E =
pcs of momentum p = h̄k with the constant of proportionality
cs = √

c0n/m equal to the speed of sound. These sound waves
have the remarkable property that they also correspond to
a propagating density perturbation of the condensate and
thereby a spatiotemporal variation in the quantum pressure,
which will later be associated with gravity. As the density
varies sinusoidally, the magnetic field oscillates in the axial
direction while the electric field oscillates in the plane of
the superfluid such that the Poynting vector S = E × B/μv is
parallel with the superflow and is directed in the propagation
direction of the phonon.

G. Quantum electrodynamics

The preceding assumptions meant that vortex charges were
frozen in the superfluid and this led to the Maxwellian approx-
imation of classical electrodynamics. However, accounting
for the fact that the superfluid is compressible intrinsically
enables vortex-antivortex pair creation and annihilation events
that are accompanied by emission and absorption of phonon

radiation [31,32] and enable relativistic effects such as Zitter-
bewegung and particle production via Kibble-Zurek mecha-
nism. Indeed, the full theory, Eqs. (3) and (4), self-consistently
describe the processes of relativistic electrodynamics [12], as
can readily be observed in numerical simulations, shown, e.g.,
in the supplementary movie of Ref. [33].

In order to generate more interesting kinds of stable matter
of composite particles, one needs to go beyond the superfluid
QED picture and introduce a diversity of particle types. This
can be achieved via vectorial extensions to the scalar BEC uni-
verse, which are a natural way to incorporate “new physics”.
For instance, Rabi coupled two-component condensates host
vortices that are predicted to result in a phenomenon similar
to quark confinement [34,35]. It is also possible to go beyond
quantum electrodynamics by introducing a true spin degree
of freedom to the superfluid, which enables the creation of
especial kinds of vortex particles, some of which may also
behave as non-Abelian anyons [36]. The resulting superfluid
quantum chromodynamics has interesting connections to the
field of topological quantum computation [37].

We close the discussion on the electrodynamics of the
superfluid universe by mentioning that the above considera-
tions make it clear that the atomtronics applications [38–43],
where the flow of superfluid atoms is traditionally considered
to be analogous to the flow of electrons, could naturally be
described from the perspective of vortextronics, where the
vortices, instead of atoms, take the place of the charged
current carrying electrons and the flow of the superfluid atoms
simply corresponds to radiation and electromagnetic fields in
a cavity that is used for trapping the superfluid.

We will next move on to consider the �2
G term and the

emergence of gravity.

IV. EMERGENT GRAVITY

The Einstein field equations of general relativity can be
derived using a Lagrangian variational principle with the
matter-free part of the four-dimensional spacetime generated
by the Einstein-Hilbert action [11],

SEH =
∫

L dr4 = c4

16πG

∫
R
√−gdr4, (45)

where R is the Ricci scalar, c is the speed of light, G is
Newton’s gravitational constant, and the integration is over
four-dimensional spacetime coordinates. Sakharov took the
viewpoint that the Lagrangian L would be generated by an
underlying quantum field theory and expressed the vacuum
quantum fluctuations as a series expansion

L = λ + αR + βR2 + · · · (46)

where the first term in the right corresponds to the cosmo-
logical constant, the second term gives rise to the Einstein-
Hilbert action that yields the Einstein’s field equations and the
remaining terms result in higher order corrections to general
relativity [10,11]. In this picture, gravity and general relativity
are emergent phenomena generated by vacuum fluctuations of
the underlying quantum field theory. Gravity in the superfluid
universe and the gravitational mass of quantized vortices have
similar origin.
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The linear Bogoliubov phonon dispersion relation may
be described in terms of an acoustic metric [23,44] of the
superfluid universe,

gμν = �2

(−(c2
s − v2

s ) −v j

−vi δi j

)
, (47)

where the conformal factor � is constant for flat spacetime.
For the curved spacetime with two space dimensions, relevant
to our discussion, � = mn/cs and

√−g = �2cs = m2n2

cs
, (48)

where g = det(gμν ) denotes the determinant of the metric
tensor. The spacetime interval [23,44]

ds2 = �2[−c2
s dt2 + (dx − vsdt )2] (49)

accounts for the linear part of the Bogoliubov phonon disper-
sion relation.

Gravity in the emergent matter-free superfluid universe
arises due to the quantum fluctuations that result in the
condensate density fluctuations even at zero temperature due
to the fluctuating quantum depletion, caused by the trans-
Planckian (atom-atom) particle interactions [24,25,45]. We
begin by expressing the gravitational energy

GEMG =
∫

h̄2

2m
(∇|�(r)|)2dr2, (50)

in terms of the quantum pressure

Pq = − h̄2

2m
√

n
∇2√n = − h̄2

4m
∇2 ln

(
n

n0

)
− h̄2

2m

( |∇√
n|√

n

)2

.

(51)
This yields

GEMG = −
∫

n

[
h̄2

4m
∇2 ln

(
n

n0

)
+ Pq

]
dr2. (52)

In two-dimensional space the Riemann tensor reduces to the
Ricci scalar, which is related by K = R/2 to the geometric
Gaussian curvature K . Combining Liouville’s equation of
differential geometry,

∇2 ln(�̃) = −K�̃2, (53)

where �̃ = �/�0, with Eq. (52) we obtain

GEMG =
∫

n

[
h̄2

8m
R�̃2 − Pq

]
dr2, (54)

which may also be expressed as

GEMG = h̄2cs

8m3n2
0

∫ √−g

[
nR + 4

√
n

�̃2
∇2√n

]
dr2. (55)

Associating the Lagrangian of the two-dimensional super-
fluid universe with the quantum kinetic energy GEMG =∫
L(2+1)

G dr2 brings about the connection to the superfluid
Einstein-Hilbert action

SSEH =
∫

L(2+1)
G dr2dt

= c4
s

16π

∫ √−g

[
φR + ω

∇2√φ√
φ

]
dr2dt, (56)

where

φ = 2π h̄2n

m3c3
s n2

0

and ω = 16π h̄2

nm3c3
s

. (57)

The structure of this action where curvature is coupled to
a (dark matter) scalar field bears similarity to the Liouville
quantum gravity [6,9] and Jordan-Brans-Dicke dilaton theo-
ries [46,47], which are a broader class of scalar-tensor theories
of gravity considered already by Nordström [48,49]. Here the
scalar field φ couples to all matter and energy fields and in
fact is the “source of everything” in the superfluid universe.
Indeed, it is straightforward to add all of the matter and energy
fields LEM,DM,NM,DE in Eq. (3) to the “vacuum” action (56),
including the effects of the dark energy and/or cosmological
constant via μDE. The superfluid gravitational field is nonzero
in any region of space where the condensate particle density
is spatially varying. As such, the density fluctuations inherent
in two-dimensional quantum turbulence may be interpreted as
a form of quantum gravity in the superfluid universe.

In a matter-free universe quantum fluctuations yield space-
time curvature (via modulation of n) locally. Gravitation in
the large-scale structure of the universe can be “added” by
introducing an “external” potential. For example, a harmonic
trapping potential would yield a non-uniform Thomas-Fermi
condensate density n = μDE[1 − (r/RTF)]2/c0, where as a
self-gravitating universe could be induced by long-ranged
dipole-dipole interactions that have been observed to gener-
ate self-bound droplets [50]. Antitrapping external potentials
(cosmologies) are also frequently used in cold-atom experi-
ments. Generically, it is possible to imprint any density land-
scapes in the laboratory condensates, such as a “Bose-Einstein
cosmology” [51].

A. Gravitational waves

In the context of general gravity in 2 + 1 dimensions, the
“folklore” states that, due to the lack of degrees of freedom,
the theory should be trivial and that there should be no
gravitational waves, and that gravity would then be manifest
only via topological effects [7,52]. However, in Eq. (56) com-
pressibility of the dark matter field provides the local degrees
of freedom absent in the Einsteinian (2 + 1)-dimensional
gravity. It is therefore reasonable to anticipate the possibility
of wave motion akin to gravitational waves to exits in this
superfluid universe similar to the higher dimensional Jordan-
Brans-Dicke theories. The question is then what should such
waves physically correspond to in laboratory experiments?

The “desirable” properties of such waves might be that
their speed of propagation be close to the speed of sound
cs and that the generalized angular momentum they carry
would be 2. For a ground state scalar BEC there exists only
one gapless excitation branch linear in momentum: the usual
Bogoliubov phonon. However, those quasiparticles, although
producing spatial modulations of the condensate density, are
plane waves carrying an angular momentum of zero and there-
fore the otherwise plausible idea of associating the longest
wavelength phonons as gravitational waves in this system
seems tenuous. This is also the case for other sounds in
superfluids such as the second sound.
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Another idea would be to associate other quasiparticle
excitations, such as the scissors modes, pertinent to the
quadrupole operator with the gravitons because these have
angular momentum quantum number 2 but this would trade
off the gapless linear spectrum. The next possible direction
could be to consider gravitational waves as a genuinely
nonlinear effect and to associate them with two-dimensional
Jones-Roberts solitons, or other vortexonium-like rarefaction
pulses, that have a dispersion relation at low momenta whose
slope does coincide with that of the phonons [32,53].

In the presence of matter (e.g., vortex lattices) yet an-
other possibility arises. The Kelvin-Tkachenko (KTK) vortex
shear waves are excitation modes below the phonon line,
also linear in momentum in the “stiff” limit [54–56]. These
are transverse shear waves that correspond to the collective
motion of the vortex particles and may be viewed as the
mean-field precursors for the collective degrees of freedom
that yield a geometric description of the fractional quantum-
Hall effect [57,58]. However, we shall deem more rigorous
contemplations of the nature of gravitons in the superfluid
universe model to be outside the scope of this study.

B. Gravity, topology, and enstrophy

In the superfluid universe, topology of the spacetime is
inherently linked to the spacetime curvature. At zero tem-
perature the condensate ground state is smooth, to the extent
that vacuum fluctuations may be neglected, and the universe
is composed of dark matter only. If an instability, such as
a parameter quench or tunneling to a lower energy state
occurs, particles (vortices) and an electromagnetic field (con-
densate phase gradients) emerge. The vortices then puncture
the condensate, changing its topology. The topology of such
a multiply connected condensate and the resulting gravity are
linked by the Gauss-Bonnet theorem∫

M
K dS +

∫
∂M

kgdl = 2πζ (M), (58)

which is a statement that the sum of the total curvature of a
compact 2D Riemannian manifold M and the rotation of its
smooth surface ∂M is proportional to the Euler characteristic
ζ of M. The surface of a planar BEC with vortices is home-
omorphic to an n-torus without a boundary for which ζ =
2 − 2gt and

∫
∂M kgdl = 0, and therefore Eq. (58) reduces to∫

M
K dS = 4π (1 − gt ), (59)

where gt is the genus of the surface. For a ground state
condensate gt = 0, and generically gt = Nv for a BEC with Nv

vortices. Within the point-vortex approximation the relevant
surface would be homeomorphic to a closed unit disk with
gt holes cut out, for which

∫
M K dS = 0 and ζ = 1 − 1gt .

Hence, gravity is absent in the point-vortex dual picture of the
BEC due to the absence of condensate density modulations.

In general, due to the quantization of circulation, the num-
ber of vortices is also related to the enstrophy

E =
∫

|∇ × vs|2dS (60)

of the system of quantized vortices. Direct substitution of the
vortex density, Eq. (20), yields

Ev =
∫

|ρv|2dS = κ2gt f , (61)

where the generalized function (distribution) f = ∫
δ(r −

r′)δ(r − r′)dS. At first sight f seems ill defined and it remains
unclear if a well defined interpretation of f could be obtained,
similar to the generalized functions used in the derivation
of Tan’s contact [59,60]. Nevertheless, to be consistent with
the Feynman rule, Eq. (21), that provides a link between the
singular microscopic vorticity and the macroscopic smoothed
vorticity fields, requires that the coarse grained average 〈 f 〉 =
4nv . The function κ2 f may also be associated with the onstro-
phy of a single quantum vortex [61].

Combining the Gauss-Bonnet theorem with the enstrophy
equation (61) shows that the enstrophy

Ev ≈ 4κ2

(
1 − 1

8π

∫
R dS

)2

, (62)

a purely topological entity here, is also a measure of the total
curvature, linking an important hydrodynamical quantity to
gravity. In the theory of two-dimensional turbulence, the con-
servation law of enstrophy, ∂E/∂t = 0, underpins the inverse
energy cascade, which ultimately leads to the phase separation
of vortices and antivortices into Onsager vortex clusters, and
a seeming matter-antimatter asymmetry in the theory [33].

Equation (62) shows that regions of high enstrophy, such as
occurs within Onsager vortices [27,28], may also correspond
to regions of high curvature. This naturally leads to the
interpretation that the Einstein-Bose condensation transition
[33,62] at negative absolute temperature would be expected
to lead to the formation of a black hole analog with the asso-
ciated phenomenology such as event horizons, ergo regions,
Hawking radiation, and black hole thermodynamics.

V. GRAVITATIONAL VORTEX MASS

Equipped with the preceding considerations we are in a
position to discuss the gravitational mass of a vortex. Adding
a quantized vortex in an otherwise flat superfluid universe,
n(r) = n0 = const, changes the topology of the spacetime
and influences its dynamics. The qualitative features brought
about by the nucleation of a vortex include

(i) the topology of the condensate changes from being
singly connected to being multiply connected,

(ii) a vortex core bound quasiparticle—a kelvon, that is a
component of the normal matter of the superfluid universe—
emerges in the elementary excitation spectrum,

(iii) the vortex acquires a mass due to its coupling to the
dark matter field,

(vi) the superfluid vacuum begins to flow due to the phase
gradient of the condensate and this superflow corresponds to
an emergent electric field,

(vii) motion of the vortex (kelvon) induces a magnetic
field due to the time variation of the condensate density,

(viii) an accelerating vortex may radiate phonons, and
(ix) a condensate density gradient due to the structure of

the vortex core results in quantum pressure that gives rise to a
gravitational field.

063616-7



TAPIO SIMULA PHYSICAL REVIEW A 101, 063616 (2020)

A vortex centered at the origin may be described by the
wave function

ψv (r) = n0χ (r)eiS(r,t ), (63)

where χ is the vortex core structure function [61,63],

χ (r) = tanh

(
r√
2rc

)
≈ r√

r2 + r2
c

, (64)

and the phase function S = arctan(x, y) has a singularity at the
origin. In the vicinity of the vortex core the condensate density
n(r) forms a harmonic oscillator potential:

n(r)r→0 = n0χ
2
r→0 = n0r2/r2

c . (65)

A test vortex with circulation q2 placed distance r from
the origin is influenced by two forces due to the presence
of the source vortex of circulation q1 at the origin: (i) the
electric force FE due to the phase gradient (superflow) and (ii)
the gravitational (Magnus) force FG due to the local density
gradient (quantum pressure); see Sec. III E.

The forces FE and FG may be obtained by considering the
difference in energy, �GEM = (E1 − E0), between universes
with and without a vortex [24]:

�GEM =
∫

h̄2n0

2m

[(χ

r

)2
+

(
∂χ

∂r

)2

+ 1

2r2
c

(1 − χ2)2

]
dr2.

(66)
We associate the first two terms in Eq. (66), respectively, with
the electric and gravitational fields produced by the vortex
particle, while the last term is due to the change in the dark
matter energy density. It would be tempting to elevate these
terms into potentials, the negative gradients of which would
then yield the conservative forces on the vortex. In the case
of the electric force, the integral of the first integrand in
Eq. (66) does indeed yield the usual electrostatic potential
proportional to ln(r/rc) in two dimensions. However, for the
second, gravitational term this approach only works for the
short-distance limit, as clarified further below.

In contrast to classical electrodynamics where the Lorentz
force is determined solely by the electromagnetic fields acting
on the charged particle and is independent of all other forces,
Eq. (38) completely determines the dynamics of a vortex. In
words, gravity, electricity and magnetism are the “three sides
of the same coin.”

A strictly uniform system, vn = 0, corresponds to a zero
gravity FG = 0 because the Magnus force vanishes and the
vortex is frozen in the superfluid, traveling at the speed of
local superfluid velocity such that vv = vS . Consequently,
FB = FE = mv

i a, where a is the inertial acceleration of the
vortex. For nonuniform systems, such as harmonically trapped
condensates, gravitational effects become important and the
Magnus force has a nonzero value. For an infinite system with
a vortex placed in a region of a parabolic underdensity, vS = 0
due to the image of the vortex being infinitely far from the
vortex such that vv = vn. In this case FE = 0 and FB = FG =
mv

gg, where g is the gravitational acceleration of the vortex.
The resulting periodic circular vortex motion is then entirely
due to the curvature of the condensate density. We may then
consider placing the vortex in “Einstein’s elevator” such that it
is not possible to distinguish between the two aforementioned

cases, which may be set up such that a = g. Hence we arrive
at a vortex equivalence principle: the equality of the inertial
and gravitational vortex masses,

mv
g = mv

i . (67)

This may not be surprising since both gravitation and elec-
tromagnetism in this theory are generated by the same emer-
gent quantity: the Laplacian of the matterwave of the Bose-
Einstein condensate. In a periodic circular motion the vortex
experiences the usual centripetal acceleration, irrespective of
whether it is caused by electrical or gravitational effects, such
that qvvBsf = mvv

2
v/r, and thus the vortex mass, Eq. (2), may

be expressed as

mv = 2π h̄2

c0ωk

∂S

∂t
. (68)

Furthermore, the mass mv and charge qv of the vortex are
not independent quantities but are related by

qv

mv
= εvωk = h

mamv

, (69)

where ma = m is the mass of the atom. The permittivity
and the kelvon frequency may thus be viewed as vacuum
“constants” that link the masses of the dark matter particles
that form the superfluid and the elementary quasiparticles of
the superfluid universe.

The explicit forms of the forces on a test vortex are
obtained directly from the respective terms in Eq. (38):

FE = −mnbgκ × vS

= 2π h̄2n0χ
2

m
|∇⊥S|e12 = q1q2

2πεv

r

r2 + r2
c

e12, (70)

where e12 is a unit vector from the source vortex to the test
vortex, qi = ±h/m, and the gravitational force

FG = −mnbgκ × vn

= −π h̄2n0χ
2

m

∂r (χ2)

χ2
e12 = −Gvm1m2

rr2
c(

r2 + r2
c

)2 e12.

(71)

As in Einsteinian gravity, here too we have judiciously defined
the gravitational constant, Gv = ω2

k/4πmn0, in such way that
the gravitational vortex mass is, by construction, equal to the
inertial vortex mass as stipulated by the superfluid equivalence
principle. Equation (71) also serves to define the gravitational
field generated by a vortex of mass mv as Gsf = FG/mv =
−4πGvmvez × vn/κ.

The electric force is repulsive if the test vortex has the same
sign of circulation as the source vortex, and attractive if the
test vortex has an opposite sign of circulation with respect
to the source vortex. All vortices for which ωk < 0 have a
negative mass [19,64] such that the product m1m2 is always
positive and the vortex-vortex gravity is always an attractive
interaction. This is because all vortices create a parabolic
underdensity in the condensate. For short distances, r < rc,
the forces reduce to

FE = q1q2

2πεv

r

r2
c

e12 (72)
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and

FG = −Gvm1m2
r

r2
c

e12. (73)

These approximate “Newtonian” forces, Eqs. (72) and (73),
can be obtained, in the r < rc limit, as the negative gradients
of the respective potentials, both being ∝ r2 [the first two
terms of Eq. (66)]. However, for large distances the 1/r3

behavior of gravity is very different from the 1/r force law
of the electromagnetic field for a single vortex. Moreover, in
contrast to the electric field, the total gravitational field is not
simply a sum of the fields generated by individual vortices.
Instead, the total gravitational field depends crucially on the
distribution of the global dark matter energy density, the last
term in Eq. (66).

VI. VORTEX-PARTICLE DUALITY

Dualities in physics are a powerful concept that grant mul-
tiple viewpoints for the same physical phenomenon. Promi-
nent examples of such dualities include the anti–de Sitter
and conformal field theory (AdS-CFT) correspondence and
its variants, the holographic principle, gauge-gravity duality,
bulk-edge correspondence, and fluid-gravity duality [65,66].

A particularly relevant example for this work is the
particle-vortex duality that was originally discussed in the
context of bosons [67–69], and has recently been extended
to fermions and a broader web of dualities [70–74]. In simple
terms, the particle-vortex duality provides a link between the
action of particles �,

Sa =
∫

|(∂μ − iAμ)�|2 − V (�) d3x, (74)

and the action of vortices (kelvon quasiparticles) ϒ ,

Sk =
∫

|(∂μ − iaμ)ϒ |2 − Ṽ (ϒ) d3x, (75)

where, respectively, Aμ and aμ are background and dynamical
gauge fields and V and Ṽ incorporate model specific potentials
and duality dependent Chern-Simons terms.

In the context of the low-energy effective theories con-
sidered here, the particles of the superfluid described by the
Gross-Pitaevskii theory, see Sec. II, realize an atom dual,
Eq. (74), with the the background gauge field Aμ generated for
instance by rotating the superfluid. The atoms carry a “charge”
equal to their mass and these atoms “see” the vortices as flux
quanta such that the flux density of the background gauge
field Aμ equals the kelvon (vortex) density ρv . The vortex
dual, Eq. (75), describes the kelvon quasiparticles (vortices)
of Sec. III coupled to the dynamical (electromagnetic) gauge
field aμ. The kelvons “see” the atoms as flux quanta such
that the flux density of the dynamical gauge field aμ equals
the atom density ρa. The atom dual describes the quantum
hydrodynamics of the Bose-Einstein condensate. The vortex
dual describes the electrodynamics of the kelvons in a curved
spacetime.

In addition to this (2 + 1)- to (2 + 1)-dimensional particle-
vortex duality, the superfluid universe also features a vortex-
particle duality which maps the (2 + 1)-dimensional vortices
to (1 + 1)-dimensional particles. As such, the system features
a particle-vortex-particle duality “thread” where, in the case

of a uniform BEC that neglects gravitational effects, the first
duality links the XY model to 2D Coulomb gas and the
second one further links the 2D Coulomb gas to the sine-
Gordon quantum field theory [75,76]. The (2 + 1)- and the
(1 + 1)-dimensional aspects of this duality thread are briefly
characterized below.

A. Two-dimensional weakly interacting classical field theory
with gravity

The dynamics of the superfluid (atoms) moving in two-
dimensional space is described by the Gross-Pitaevskii equa-
tion, Eq. (4). Each of the atoms has four (qx, qy, px, py) canon-
ical phase space coordinates such that Hamilton’s equations of
motion are

q̇x = −∂Hatom

∂ px
, q̇y = −∂Hatom

∂ py
,

ṗx = ∂Hatom

∂qx
, ṗy = ∂Hatom

∂qy
, (76)

where Hatom is a Hamiltonian for the atoms.
When quantized vortices are nucleated in the superfluid,

the condensate order parameter becomes topologically multi-
ply connected. The vortices that puncture the condensate are
thus not part of the superfluid although their motion is fully
correlated with it. The interaction between the superfluid and
the fluid of vortices is mediated by the dark matter (atoms).
The superfluid “experiences” the vortices as obstructions that
constrain its dynamics and the vortices “experience” the fluid
as an obstruction that they have to plough through. The vor-
tices acquire mass due to their interaction with the Higgs-like
dark matter field (the condensate of atoms).

The description of the two-dimensional fluid with its
four-dimensional phase space corresponds to a (2 + 1)-
dimensional weakly gravitating classical field theory for
which the vortex degrees of freedom also realize a (1 + 1)-
dimensional boundary quantum field theory. The gravity that
originates from the quantum pressure of the condensate is
emergent. We cannot overemphasize the importance of the
fact that the fluid atoms and the vortex particles (kelvons)
may formally exist in spacetimes of different dimensionality
such that in (1 + 1) case the kelvons are associated with the
sine-Gordon instantons [75,76].

B. One-dimensional strongly interacting quantum field theory
without gravity

The dynamics of the vortices is described by the vortex
equation of motion (35), to which the Onsager point vortex
model provides a rather good approximation in a uniform
system in the dilute vortex gas limit. Each of the vortices
has two (qx, px) canonical phase space coordinates such that
Hamilton’s equations of motion are

q̇x = −∂Hvortex

∂ px
, ṗx = ∂Hvortex

∂qx
. (77)
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The function Hvortex is the well known two-dimensional
Coulomb gas pseudo-Hamiltonian

Hvortex = −
Nv∑
i< j

sis j ln(|ri − r j |/rc), (78)

where ri =
√

q2
x,i + α2p2

x,i and α has the dimensions of time

divided by mass. The particle-vortex duality provides the
mapping from the neutral 2D Coulomb gas (point-vortex
picture) to the one-dimensional sine-Gordon quantum field
theory (particle picture) [75,76]. Quantum mechanically, the
vortices correspond to the quantized kelvon quasiparticles
entering Eq. (8), which in the (1 + 1) dual present themselves
as instantons. In the presence of a circular boundary and in
the vicinity of the Einstein-Bose condensation transition, the
point-vortex model can be mapped onto an inverted, strongly
interacting one-dimensional harmonic oscillator Hamiltonian
[62].

VII. QUANTUM HALL EFFECTS

A Hamiltonian for an electron in a uniform magnetic field
B = ∇ × Ae is

He = (p − qeAe)2

2me
, (79)

where me is the mass of the electron, qe its charge, p its
momentum, and Ae is the vector potential. When the magnetic
field strength B is sufficiently increased, a two-dimensional
electron gas with fixed number of electrons undergoes suc-
cessive topological quantum phase transitions to strongly cor-
related integer and fractional (when Coulomb interactions are
accounted for) quantum Hall liquids [77]. Such topological
states of matter are anticipated to emerge when the filling
fraction

νe = Ne

�/�0
= Ne

N�

� 1, (80)

where Ne and N� are the number of electrons and the number
of magnetic flux quanta, respectively, and � = BA is the
magnetic flux piercing area A and quantized in units of �0 =
h/2e.

A great effort has been expended in trying to observe
bosonic quantum Hall states using rapidly rotating neutral
superfluids [24,78–82]. This has been prompted by the obser-
vation that the Hamiltonian of such systems can be mapped
onto that of the two-dimensional electron problem, Eq. (79).
Specifically, a Bose-Einstein condensate in a harmonic oscil-
lator potential, expressed in the rotating frame of reference,
has the “single-particle” Hamiltonian

Ha = p2

2ma
+ 1

2
mω2

oscr2 + gn − �rotLz

= (p − qaAa)2

2ma
+ 1

2
m[ω2

osc − �2
rot]r

2 + gn, (81)

where ma is the mass of the atom, ωosc is the harmonic
oscillator frequency, �rot is the external rotation frequency,
and Lz is the axial component of the orbital angular momen-
tum operator. When �rot is increased and is approaching the

value of ωosc such that ω2
osc − �2

rot → 0, ever larger number
of vortices are nucleated in the system while the atom cloud
expands radially, becoming ever more dilute such that n → 0.
The result is that the last two terms in Eq. (81) become
negligible with respect to the first term such that Ha becomes
mathematically identical to He with

qA = −ma�rotr × ez. (82)

Here we consider an external rotation as a specific source of
an effective gauge field, although the conclusions drawn apply
equally well to generic synthetic gauge fields.

Based on this observation, it is often stated that the rotation
frequency �rot of a neutral superfluid would correspond to the
magnetic field B in the problem of a two-dimensional electron
gas. Consequently, to realize quantum Hall states, the goal
would be to try to make �rot large in order to reach the limit
of strong effective magnetic fields, analogously to the case of
degenerate two-dimensional electron gas in a strong external
magnetic field. This corresponds to the “view of the atoms”
[Eq. (74)], but the “view of the electrons” [Eq. (79)] corre-
sponds equally well to the vortex dual [Eq. (75)], in which
the kelvons are the charged particles that “see” the atoms as
magnetic flux. Hence, increasing �rot actually diminishes the
effective magnetic field and increases the filling factor, which
in correspondence with Eq. (80) should be

νv = Nv

Na
, (83)

in contrast to its inverse in the view of the atom dual [79,80],
where Na is the number of atoms and the flux quantum
corresponds to the mass of an atom ma. Zeroing the effective
trapping potential and particle interactions in Eq. (81) can
clearly be achieved by setting �rot = ωosc, but this is not the
same as increasing Ae alone in Eq. (79). The analog of electric
charge in the vortex dual should be the quantum of circulation
[83], such that for a rotating BEC the effective total charge

qv = κNv. (84)

Substituting this and the Feynman rule, Eq. (21), into Eq. (82),
we obtain the vector potential per condensate particle,

A = Av/Na = − ma

2Ar × ez, (85)

such that the magnetic field is

Bv = ∇ × Av = maNa

A ez (86)

and has no explicit dependence on �rot. Similarly, the charge
q is only implicitly dependent on �rot and it is only in the
product of qA that the rotation frequency makes an explicit
appearance. We also note that Bv = manez as expressed in
Eq. (86) follows directly from the definition of Bsf in Eq. (14);
see also below Eq. (39). Had we taken the atom dual point of
view, qv → qa, Bv → Ba, the roles of q and B would simply
have been reversed such that κNv would be replaced by maNa

and vice versa with the product qA unaffected. Consequently,
νvνa = 1, which explains the inversion of the filling factor
criterion under the duality transformation.

When �rot increases, qA increases because qv grows, even
though both Av and Bv decrease due to the increasing area A
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occupied by the superfluid. Nevertheless, Nv grows faster than
A because also the vortex density increases. Hence, the filling
factor criterion, Eq. (80), to achieve the quantum Hall limit
can be expressed as

νv = Nv

BvA/ma
= Nv

Na
� 1, (87)

which in practice means that this criterion is immediately
satisfied when the first vortex is nucleated in the system.
However, for low rotation frequencies the lowest Landau
level states are not degenerate and thus do not form a flat
band because of the non-negligible influence of the last two
terms in Eq. (81) that lift the degeneracy, and it is for this
reason that the system needs to be rotated rapidly to make
the kinetic energy overwhelm the scalar potentials, instead
of creating a large number of vortices per se. In fact, as
previously mentioned, when the system is rotated faster, the
vortex number goes up and this causes the value of νv to
increase.

This also means that (in the electron/vortex picture) the
rotation frequency �rot should not be associated with a mag-
netic field; rather, the rotating drive creates a strong electric
field, Eq. (14) (superflow), which destabilizes the vacuum and
nucleates an increasing number of charges (vortices) in the
system in accordance with Eq. (21). In contrast, the number
of electrons does not change when a two-dimensional electron
gas is placed in a magnetic field in typical quantum Hall effect
experiments.

Associating vortices with charges and magnetic flux with
atoms (rather than vice versa) is further supported by the
prediction that a vortex transported around a loop C in a
superfluid accumulates a Berry phase [84,85]

γC = 2π

ma

∫
AC

Bv · dA = 2πNa(C), (88)

where Na is the number of atoms enclosed by the vortex path.
As such, the atoms are the Aharonov-Bohm flux quanta for
the vortex. The force on a vortex executing circular motion
in a perpendicular magnetic field is F = κvvBsf = mvv

2
v/r

such that the vortex mass can be expressed in terms of the
geometric phase as

mv = γC
AC

h̄

ωv

. (89)

Although the possibility of fractional statistics for a single
vortex was excluded in Ref. [84], it may be possible that many
vortex KTK states would allow it as the vortices then form
collective composite quasiparticles in analogy with the flux
attachment to many-electron states in the fractional quantum
Hall effect (FQHE).

The above reasoning leads to a proposition for an inter-
pretation of the Bogoliubov quasiparticle excitation spectrum
of rotating condensates. Since in the quantum-Hall limit the
number of lowest Landau level (LLL) eigenstates should
correspond to the number of flux quanta, we are motivated
to redefine the vortex filling factor by associating the number
of populated LLL states with the effective magnetic flux,

νLLL = Nv

NLLL
, (90)

so that the FQHE states with νLLL should be associated with
condensates of elementary droplets consisting of Nv vortices
bound to NLLL one-particle Landau level states [57,86]. Thus
we arrive at the following interpretation of the physics of a
rotating BEC: in addition to the phonons, the low-lying quasi-
particle excitation spectrum comprises two types of modes: (i)
the surface modes which approximately correspond to single-
particle harmonic oscillator angular momentum eigenstates
that ultimately, as �rot → ωosc, will form the LLL; and (ii)
Nv transverse vortex shear modes (KTK modes) visualized,
e.g., in the supplementary videos of Ref. [56]. Each of these
vortex shear modes can be reconstructed as a product of NLLL

nondegenerate LLL states, and as such should be viewed as
the mean-field precursors to the many-body FQHE states that
could be realized experimentally as metastable excited states
of rotating BECs.

Treating the BEC (the Nambu-Goldstone mode) as a single
composite boson of effective mass m̃ = maNa that has been
selected out as the mean-field ground state of the rotating BEC
corresponds to a Wigner crystal of Nv vortex charges. In the
vortex dual this is a mean-field integer quantum Hall state with
a filling factor of ν̃v = Nv . In the atom dual it is a mean-field
fractional quantum Hall state with filling factor ν̃a = 1/Nv ,
where the boson m̃ has captured or attached Nv flux quanta
internally to itself in order to reduce the effective magnetic
field it experiences by the amount of �rotLz. The boson
with charge m̃ thus sees the KTK modes as its quasiparticle
excitations composed of elementary droplets with fractional
charge ν̃am̃ and quantised phase factors �ϕ = 2πν̃a [87].
When �rot → ωosc the atoms in the boson m̃ are depleted over
a growing number of pseudo-Nambu-Goldstone zero modes
and the Wigner crystal state will no longer be singled out
as the many-particle ground state. We aim to return to this
point in more detail elsewhere, merely emphasising again in
this context that rapidly rotating a neutral superfluid should
ultimately lead to

(i) the formation of Onsager vortex clusters and the asso-
ciated absolute negative temperature states,

(ii) the formation of fractional quantum-Hall-like states
due to the quasiparticle condensation in the hierarchy of
transverse vortex wave modes, and

(iii) the formation of a black hole analog due to the
increasing mass density of vortex particles.

This means that the dense vortex matter may be described
in terms of at least three complementary pictures: the hydro-
dynamical, the electromagnetic, and the gravitational. Indeed,
in light of identifying the quantised vortices as charged mas-
sive particles, the connections between the physics of black
holes and FQHE [57,88,89] are perhaps less surprising.

VIII. CONCLUSIONS

We have considered an emergent (2 + 1)-dimensional su-
perfluid universe where both gravity and electromagnetism
originate from the quantum kinetic energy of the superfluid.
The Bose-Einstein condensate represents the fabric of the
superfluid spacetime. This condensate also corresponds to a
dark matter field, which fills the vacuum and is the mediator
of all force fields including gravitation and electromagnetism.
In this superfluid universe, electric field corresponds to the
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superflow of the Bose-Einstein condensate, magnetic field
corresponds to the condensate phase evolution, vortices are
massive charged particles, and the sound waves correspond to
the massless photons. Gravity is associated with condensate
density gradients and the condensate is identified as the elu-
sive dark matter.

The vortices have two possible signs of circulation and
therefore the electromagnetic interaction between two vor-
tices may be attractive or repulsive. Both vortices and an-
tivortices have the same condensate density depletion in their
cores and, correspondingly, the density gradients produced
by them are identical. Therefore, the gravitational interaction
between any two vortices is always attractive. The vortex
acquires a mass by interacting with a Higgs-like dark matter
field whose density together with the fundamental kelvon
excitation frequency determine the inertial vortex mass [19].
Here we have further argued in favor of equality between the
inertial and gravitational masses of the quantized vortices.
The unified descripion of electromagnetism and gravity and
the association of quantized vortices with massive charged
particles leads to the picture where the quantum Hall physics
of a rapidly rotating neutral superfluid, condensation of ele-
mentary vortices into high density negative absolute tempera-
ture Onsager vortex clusters, and black hole thermodynamics
with emergent quantum gravity are complementary ways to
describe the states of dense vortex matter.

Recently, experiments on weakly interacting Bose-Einstein
condensates have been used for simulating spacetime analogs
including inflationary cosmology [90] and Hawking radiation
[91,92], and it seems that quantum turbulent Bose-Einstein

condensates [27,28] may provide a fruitful platform for fur-
ther studies of emergent analog phenomena of gravity, dark
matter physics, and AdS-CFT correspondence [93]. Stretch-
ing the analogy in the opposite direction, it is amusing to
contemplate the implications if the Universe were a superfluid
hologram, gravity merely a manifestation of its quantum fluc-
tuations, and the sought after dark matter just a terminal point
of the photon dispersion relation—a Bose-Einstein conden-
sate of ultraweakly interacting photons—and that the seeming
matter-antimatter asymmetry would be caused by evaporative
heating induced negative temperature Onsager vortex clus-
tering. Finally, it is interesting to witness how modeling the
dark matter in our Universe deploying quantum mechani-
cal scalar fields is steadily making its way into mainstream
cosmology [94].
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