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Superfluid condensate fraction and pairing wave function of the unitary Fermi gas
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The unitary Fermi gas is a many-body system of two-component fermions with zero-range interactions tuned
to infinite scattering length. Despite much activity and interest in unitary Fermi gas and its universal properties,
there have been great difficulties in performing accurate calculations of the superfluid condensate fraction and
pairing wave function. In this paper, we present auxiliary-field lattice Monte Carlo simulations using a lattice
interaction which accelerates the approach to the continuum limit, thereby allowing for robust calculations of
these difficult observables. As a benchmark test, we compute the ground-state energy of 33 spin-up and 33
spin-down particles. As a fraction of the free Fermi gas energy EFG, we find E0/EFG = 0.369(2), 0.372(2),
using two different definitions of the finite-system energy ratio, in agreement with the latest theoretical and
experimental results. We then determine the condensate fraction by measuring off-diagonal long-range order
in the two-body density matrix. We find that the fraction of condensed pairs is α = 0.43(2). We also extract
the pairing wave function and find the pair correlation length to be ζpkF = 1.8(3)h̄, where kF is the Fermi
momentum. Provided that the simulations can be performed without severe sign oscillations, the methods
we present here can be applied to superfluid neutron matter as well as more exotic P-wave and D-wave
superfluids.
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I. INTRODUCTION

The unitary Fermi gas describes an idealized limit of two-
component fermions where the interactions have zero range
and the scattering length is infinite. The intense interest in
the unitary limit reflects the fact that it describes universal
physics that can be realized in ultracold atoms and also
approximately describes neutron gases in the inner crust of
a neutron star. It lies in a crossover region connecting a
Bardeen-Cooper-Schrieffer (BCS) superfluid at weak cou-
pling and Bose-Einstein condensate at strong coupling [1–3].
The unitary limit is special in that the system has no intrinsic
length scales. Hence we can use simple dimensional analysis
to determine the scaling of any observable as a function of the
Fermi momentum. Hence the ground-state energy E0 must be
proportional to the free Fermi gas energy EFG,

E0 = ξEFG, (1)

where ξ is a universal parameter, sometimes called the Bertsch
parameter. ξ has been measured by numerous experiments
using ultracold trapped atoms [4–15] and also calculated by
analytical methods [16–29]. In addition, a substantial number
of numerical calculations have been made using quantum
Monte Carlo methods and other techniques [30–49].
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While there have been numerous calculations of the
ground-state energy, there have been no first-principles calcu-
lations of the superfluid condensate fraction and pairing wave
function using two-sided expectation values of the two-body
density matrix (TBDM). The TBDM, which is defined later
in Eq. (3), is extremely difficult to calculate in diffusion
Monte Carlo calculations as it involves particle trajectories
that have disconnected jumps. Therefore, previous investi-
gations of the condensate fraction have computed one-sided
expectation values, with the ground state on one side and an
approximation to the ground state on the other. In this paper,
we use auxiliary-field lattice Monte Carlo simulations and are
able to eliminate this source of error in our calculations of the
superfluid condensate fraction and pairing wave function. The
TBDM calculated in this manner is very challenging due to
large stochastic fluctuations [49]. In the results presented here,
we are able to overcome these problems with high statistics
and by using a lattice action with faster convergence to the
continuum limit.

We express all quantities in units of the spatial lattice spac-
ing alatt , particle mass m, and h̄. In these units, the lattice time
step used is 0.1065 ma2

latt h̄
−1. Between particles with opposite

spins, we employ an attractive nonlocal S-wave interaction.
By nonlocal we mean that the interaction is dependent on
the velocity of the particles. Nonlocal interactions have not
previously been applied to first-principles calculations of the
unitary limit. We find that it provides excellent control of the
S-wave scattering parameters while zeroing out interactions
in higher angular momentum channels. We have adjusted the
range of the interaction so bulk properties like the ground-
state energy and condensate fraction converge as rapidly as
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possible in the dilute limit. Our interaction parameters cor-
respond to an infinite scattering length as, and an effective
range of re ∼ 0.05 lattice units. As done in previous lattice
calculations [30,31,36–39,41–44,47–49], we have decoupled
the interactions between particles using an auxiliary field. De-
tails of the lattice Hamiltonian and the auxiliary-field Monte
Carlo formalism are provided in the Methods section.

We define the one-body density matrix (OBDM) as

ρ1,σ (r′, r) = 〈a†
σ (r′)aσ (r)〉 (2)

and the TBDM as

ρ2(r′
1, r′

2,r1, r2) = 〈�0|a†
↑(r′

1)a†
↓(r′

2)a↓(r2)a↑(r1)|�0〉, (3)

where a†
σ (r), aσ (r) denote the creation and annihilation op-

erators of a fermion at site r with spin σ . Due to superfluid
pairing, there are no long-range correlations in the OBDM,
and so ρ1,σ (r′, r) vanishes as |r − r′| → ∞ [50,51]. In direct
contrast, there will be long-range order in the TBDM, a sig-
nature of pairing in the superfluid phase of fermionic systems
[52]. This is called off-diagonal long-range order and in quan-
titative terms means that ρ2(r′

1, r′
2, r1, r2) has an eigenvalue of

the order of the total number of particles N in the limit of large
separation between the primed and unprimed coordinates. In
the large separation limit, the TBDM factorizes as

ρ2(r′
1, r′

2, r1, r2) = αN/2 · φ∗(|r′
1 − r′

2|)φ(|r1 − r2|), (4)

where φ(|r|) is the normalized S-wave pair wave function
and α is the condensate fraction or the percentage of pairs
with zero total momentum forming the superfluid condensate.
Several experiments and theoretical calculations have been
performed to determine α at unitarity, but this value has not
yet been fully settled. Experiments in ultracold 6Li have found
the condensate fraction to be 0.46(7) [53,54] and 0.47(7) [55].
On the other hand, another measurement [56] observed that, at
most, 15% of atom pairs were condensed in 40K. Based on the
BCS equation of state, zero-temperature calculations [57,58]
have shown the condensate fraction to be around 0.7, while
the result α = 0.43 has been predicted in Ref. [59]. From
quantum Monte Carlo methods, α was estimated to be 0.57(2)
[60] and 0.56(1) [48] but a more recent quantum Monte Carlo
calculation yielded α = 0.51 [61].

II. METHODS

A. Lattice interactions

We express all quantities in units of the spatial lattice
spacing alatt , particle mass m, and h̄. In these units, the
lattice time step is 0.1605ma2

latt h̄
−1. For reasons of notational

convenience, in the intermediate steps where we describe the
details of the lattice calculations, we use lattice units. This
corresponds to omitting writing factors of alatt and h̄. Our
lattice system consists of an L3 cube with periodic boundary
conditions. The notation

∑
〈n n′〉 indicates summation over

nearest-neighbor lattice sites adjacent to n while
∑

〈n n′〉i

represents summation over nearest-neighbor sites of n along
the ith spatial axis. Similarly,

∑
〈〈n n′〉〉i

is the sum over the
second-nearest-neighbor of n along the ith axis and

∑
〈〈〈n n′〉〉〉i

is the sum over the third-nearest-neighbor of n along ith axis.

We use a free lattice Hamiltonian of the form

Hfree = 49

12m

∑
n

a†(n)a(n) − 3

4m

∑
n,i

∑
〈n n′〉i

a†(n′)a(n)

+ 3

40m

∑
n,i

∑
〈〈n n′〉〉i

a†(n′)a(n)

− 1

180m

∑
n,i

∑
〈〈〈n n′〉〉〉i

a†(n′)a(n), (5)

which reproduces the free particle continuum dispersion re-
lation up to lattice artifacts of size O(a6

latt ). Following the
notation in Ref. [62], we define the nonlocal annihilation and
creation operators for real parameter sNL as

aσ,NL(n) = aσ (n) + sNL

∑
〈n n′〉

aσ (n′), (6)

a†
σ,NL(n) = a†

σ (n) + sNL

∑
〈n n′〉

a†
σ (n′). (7)

We define the pointlike density operator,

ρ(n) =
∑

σ

a†
σ (n)aσ (n), (8)

and the smeared nonlocal density,

ρNL(n) =
∑

σ

a†
σ,NL(n)aσ,NL(n). (9)

The lattice interaction we use for the unitary Fermi gas
simulations has the form

V = C0

2

∑
n

: ρNL(n)ρNL(n) : . (10)

Here the :: symbol indicates normal ordering, where all cre-
ation operators are on the left and annihilation operators are
on the right. The full Hamiltonian is then

H = Hfree + V. (11)

We set the smearing parameter sNL to equal −0.0100 and
the coefficient C0 equals −0.5573 in lattice units. This cor-
responds to infinite scattering length as and effective range
of interaction re ∼ 0.05 in lattice units. As noted in the main
text, these values produce a vanishing ρ1/3 coefficient for the
ground-state energy ratio ξ . In Fig. 1, we show the S-wave
scattering phase shifts versus relative momentum. The phase
shifts at low momenta are in excellent agreement with the
unitary limit, which corresponds to δ0 = 90◦.

B. Euclidean time projection and auxiliary-field Monte Carlo

Some reviews of the lattice methods presented here can
be found in Refs. [63,64]. We define the transfer matrix M
as a normal-ordered time evolution operator over a temporal
step at :

M =: exp[−Hat ] : . (12)

From the expectation value of the transfer matrix, we
extract the energy E using the relation 〈M〉 = e−Eat .
Let |�I〉 be a trial wave function with nonzero
overlap with the ground state. By applying powers
of M on |�I〉, we can project onto the ground
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FIG. 1. Plot of the S-wave scattering phase shifts versus relative
momentum. Lattice results are shown with orange triangles and the
unitary limit relation δ0 = 90◦ is indicated by the blue line.

state. The projection amplitude for Euclidean time t = Lt at is
defined as

Z (t ) = 〈�I |MLt |�I〉. (13)

In general, the ground-state expectation value of any observ-
able O can be calculated as limt→∞ O(t ), where

O(t ) = 〈�I |MLt /2OMLt /2|�I〉
〈�I |MLt |�I〉 . (14)

We now decouple the particles from each other using
auxiliary fields. We can rewrite the transfer matrix at time step
nt as

M (nt ) =
∏

n

[√
1

2π

∫ ∞

−∞
ds(n, nt )

]
: exp

[−Hfreeat − V (nt )
s

√
at − V (nt )

ss

]
:, (15)

where

V (nt )
s =

∑
n

√−C0

∑
n

s(n, nt )ρNL(n) (16)

and

V (nt )
ss = 1

2

∑
n

s2(n, nt ), (17)

where s(n, nt ) is a real-valued auxiliary variable at every
lattice site. If we take the trial state |�I〉 to be a Slater de-
terminant of single nucleon wave functions, then the auxiliary
field formalism allows us to write the many-body amplitude
Z (t ) as a product of single-particle amplitudes Zi j (t ) between
initial particle j and final particle i. After antisymmetrization
of particles, we are left with the determinant of the single-
particle amplitude matrix Zi j (t ).

C. Euclidean time extrapolation

Let us label the eigenstates of H as |�k〉 with eigenvalues
Ek in nondecreasing order:

E0 � E1 · · · � Ek · · · . (18)

Let ck be the overlap between our initial trial state |�I〉 and
the energy eigenstate k,

ck = 〈�k|�I〉, (19)

where, by assumption, c0 is nonzero. We can then write the
amplitude Z (t ) in terms of its spectral decomposition,

Z (t ) =
∑

k

|ck|2e−Ekt , (20)

and the expectation value of the Hamiltonian has the form

E (t ) =
∑

k Ek|ck|2e−Ekt∑
k |ck|2e−Ekt

. (21)

In the limit of large positive t , we find that

E (t ) ≈ E0 + |c1|2/|c0|2�Ee−�Et , (22)

where �E = E1 − E0 is the energy gap in the spectrum.
For an operator that does not commute with the Hamilto-

nian, the time dependence of the expectation value is

O(t ) =
∑

k,k′ c∗
k Ok,k′ck′e−Ekt/2e−E ′

kt/2∑
k |ck|2e−Ekt

, (23)

where Ok,k′ = 〈�k|O|�k′ 〉. In this case, behavior at large t will
have the form

E (t ) ≈ O0,0 + 2 Re(O0,1c1/c0)e−�Et/2, (24)

where �E = E1 − E0 is again the energy gap.

III. RESULTS FOR GROUND-STATE ENERGY

We perform lattice simulations on a periodic cubic with
length L in lattice units ranging from L = 5 to L = 11. We use
the Euclidean-time evolution operator exp(−Ht ) to project
the ground state from the initial state |�I〉. |�I〉 is composed
of the ground state of a free Fermi gas with N↑ = N↓ =
33, for a total of N = 66 particles. As noted in Ref. [65],
there are two reasonable definitions of the energy ratio ξ

for finite N↑, N↓. One is to simply take the ratio of the
interacting and noninteracting systems for the same number of

FIG. 2. Plot of ξ thermo
33,33 (t ) versus EF t for volumes L = 5 to L =

11. We also show the fitted exponential curves used to extrapolate to
infinite t .

063615-3



HE, LI, LU, AND LEE PHYSICAL REVIEW A 101, 063615 (2020)

FIG. 3. Plot of ξfinite
33,33(t ) versus EF t for volumes L = 5 to L = 11.

We also show the fitted exponential curves used to extrapolate to
infinite t .

particles, N↑ and N↓, and the same volume, L3. We denote
this ratio of finite system energies as ξfinite

N↑,N↓ . But one can also
take the thermodynamic limit for the free Fermi gas energy,
EFG = 3Nk2

F /(10m), where the Fermi momentum is kF =
(3π2N )1/3h̄/L for the spin-balanced system N↑ = N↓ = N/2.
We denote this ratio as ξ thermo

N↑,N↓ . Both ξN↑,N↓ and ξ thermo
N↑,N↓ become

ξ in the thermodynamic limit and the difference between the
two gives a rough estimate of finite-size errors.

In Fig. 2, we show a plot of ξ thermo
33,33 (t ) versus EFt for

volumes L = 5 to L = 11. We also show the fitted exponential
curves used to extrapolate to infinite t . Similarly, in Fig. 3
we show a plot of ξfinite

33,33(t ) versus EFt for volumes L = 5 to
L = 11 and the fitted exponential curves used to extrapolate
to infinite t .

In Fig. 4, we show results for ξfinite
33,33 and ξ thermo

33,33 as a
function of the particle density ρ = N (alattL)−3. For each
case, we expand in powers of L−1 or ρ1/3 to extrapolate to
the dilute limit. The range of the nonlocal S-wave interaction
was adjusted so the leading order ρ1/3 dependence vanishes.
As expected from theoretical considerations, this occurs at
or very close to the point where the S-wave effective range
parameter vanishes. It turns out that for our chosen lattice
action, the coefficient of ρ2/3 is also very small. This allows
for an accurate extrapolation to the zero density limit. We
perform two fits for the residual L dependence, one using
the form A2/3ρ

2/3 + A1ρ
1 + ξ and the other using A1ρ

1 +
A4/3ρ

4/3 + ξ . Model averaging over the two fits, we obtain the
values ξ thermo

33,33 = 0.369(2) and ξfinite
33,33 = 0.372(2). This is con-

FIG. 4. ξ thermo
33,33 and ξfinite

33,33 for lattice sizes L = 5 to 11 and N↑ =
N↓ = 33 particles versus particle density ρ.

FIG. 5. Pair-pair correlation functions for unitary Fermi gas
(solid curves) and free Fermi gas (dashed curves) for N = 66 par-
ticles with volumes L = 5 to L = 11.

sistent with the results ξ thermo
33,33 = 0.374(5), 0.372(3), 0.375(5)

obtained in Ref. [47], using three different lattice actions. This
provides a good benchmark test for our lattice calculations.
While we have not performed an extrapolation to the thermo-
dynamical limit, N → ∞, the results of Ref. [47] and other
studies have found that the ground-state energy for the N = 66
system is less than 1% away from the thermodynamic limit.

Our results agree with the results in Refs. [45–47] as
well as the values ξ = 0.366+0.016

−0.011 by the lattice Monte Carlo
calculations [30] and the value ξ = 0.367(7) obtained by a
zero-temperature extrapolation from the finite temperature
simulations [31] and the upper bound 0.383(1) calculated
by fixed-node diffusion Monte Carlo combined with density
functional theory [45,46]. Our results also agree with the
experimental value 0.376(4) [15].

IV. RESULTS FOR THE CONDENSATE FRACTION

Having verified the ground-state energy benchmark, we
now perform calculations of the superfluid condensate and
pairing wave function. For these calculations, we compute
OBDMs and TBDMs in the ground state. We first establish
that the ground state is an S-wave superfluid. For this, we
compute the pair-pair correlation function, which is simply the
TBDM for the case where r′

1 = r′
2 and r1 = r2. To work with

universal quantities that are independent of short-distance
physics, we divide the pair-pair correlation function by its

FIG. 6. Lattice results for the project TBDM h(r) (circles and
dashed lines), h1(r) (triangles) and hres(r) (squares and solid lines),
for N = 66 particles with lattice sizes L = 9 in blue, L = 10 in red,
and L = 11 in ochre.

063615-4



SUPERFLUID CONDENSATE FRACTION AND PAIRING … PHYSICAL REVIEW A 101, 063615 (2020)

FIG. 7. Condensate fraction α versus EF t for N = 66 particles
with volumes L = 5 to L = 11. We also show the fitted curves used
to extrapolate to infinite Euclidean time t .

value at zero distance [49],

ρ2(r) = 〈a†
↑(r)a†

↓(r)a↓(�0)a↑(�0)〉/�, (25)

where � = 〈a†
↑(�0)a†

↓(�0)a↓(�0)a↑(�0)〉. In Fig. 5, we show re-
sults for ρ2(r) versus kF r for the unitary Fermi gas as well
as the free Fermi gas for N = 66 particles with volumes
L = 5 to L = 11. In each case, we see universal behavior
that is independent of L. There is no long-range order for
free gas, but the unitary gas has off-diagonal long-range order
consistent with an S-wave superfluid.

We now calculate the condensate fraction α. Let us con-
sider the projected TBDM [57,66]:

h(r) = 2

N

∫
ρ2(r1 + r, r2 + r, r1, r2)dr1dr2. (26)

Combining Eqs. (4) and (26), we find that α equals h(r) in
the limit of large |r|. For small |r| = 0, however, h(r) also
contains contributions from the product of OBDMs for each of
the two particles. To speed the convergence to the asymptotic
limit, we define the residual of the projected TBDM as

hres(r) = h(r) − h1(r), (27)

h1(r) = 2

N
[ρ1(r)L3]2, (28)

where ρ1(r) = ρ1,σ (r, 0). In Fig. 6, we show the results for
h(r), h1(r), and hres(r) versus kF r for volumes L = 9 to L =
11. The asymptotic behavior for h(r) at large r reveals the

FIG. 8. Condensate fraction α versus density ρ for N = 66 par-
ticles with volumes from L = 5 to L = 11.

FIG. 9. Pair wave function, |φ(r)|, for N = 66 particles with
volumes L = 6 to L = 11.

value of the condensate fraction α. Although (2/N )[ρ1(r)L3]2

vanishes at a large r, its contribution at a small r cannot be
neglected. By subtracting its contribution from h(r), we see
that hres(r) yields a good estimate for α over a wide range of
values kF r.

We compute the condensate fraction α by calculating the
average value of hres(r) over the entire spatial lattice. When
we compute this lattice average for different projection times,
we obtain the results shown in Fig. 7 for N = 66 particles with
volumes L = 5 to L = 11. For the extrapolation to infinite
Euclidean time, we use the functional form described in
Eq. (24), and these are also shown in Fig. 7.

In Fig. 8, we summarize our results for the condensate
fraction α versus the particle density ρ, along with fit func-
tions of the form B1ρ

1 + B4/3ρ
4/3 + α and B1ρ

1 + α for
the residual density dependence. Model averaging over the
two fits, we find that condensate fraction α at unitarity is
0.43(2) for the N = 66 system. Our estimates agree with the
experimental values 0.46(7) [54] and 0.47(7) [55] and the
value 0.43 predicted in Ref. [59]. Our value is also consis-
tent with zero-temperature extrapolations of previous lattice
calculations which have large uncertainties but favor a range
between 0.4 to 0.5 [42,67].

V. RESULTS FOR THE PAIRING WAVE FUNCTION

We have also calculated the pair wave function φ(|r|)
defined in Eq. (4). For the pair wave functions, we find that
extrapolation of the pair wave function to infinite t introduces
more errors than simply taking the pair wave function in the
asymptotic region where the exponential dependence on t is

0 0.25 0.5 0.75 1 1.25 1.5
r (units of a

latt
)

-10

-8

-6

-4

-2

0

ln
[

(r
)r

]

L=6
L=7
L=8
L=9
L=10
L=11

-10

-8

-6

-4

-2

0
L=6
L=7
L=8
L=9
L=10
L=11

FIG. 10. Plot of ln[φ(r)r] for N = 66 particles with volumes
from L = 6 to L = 11. The slope at large r corresponds to ζ−1

p .
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FIG. 11. Plot of ζpkF as a function of kF for N = 66 particles
with volumes from L = 6 to L = 11. We also show the fit function
C1/3ρ

1/3 + ζpkF .

negligible. In Fig. 9, we show the pair wave functions |φ(r)|
for N = 66 particles with volumes L = 6 to L = 11. Since
the pairing interaction is in the S-wave channel, we fit the tail
of the pair wave function to the asymptotic form expected
for a bound state with a finite-range S-wave interaction,
A exp(−r/ζp)/r, where ζp is the pair correlation length, and
A is a normalization factor.

In Fig. 10, we plot ln[φ(r)r] versus r for N = 66 parti-
cles with volumes from L = 6 to L = 11. The slope of the
ln[φ(r)r] plot corresponds to −ζ−1

p . In Fig. 11, we show the
results obtained for ζpkF versus kF for L = 6 to L = 11. To ex-
trapolate to the dilute limit, we use the fit function C1/3ρ

1/3 +
ζpkF . The data points and fit function are shown in Fig. 11.
We find that the pair correlation length is ζpkF = 1.8(3)h̄.
Ideally, one would like to have more data at smaller lattice
spacings to pin down the continuum limit extrapolation with
more accuracy. We hope to explore this in future calculations.

We can compare the calculation of the pair correlation
length in the unitary limit result with the corresponding result
from BCS theory, ζpkF = 2h̄/(πδ) where δ is the ratio of the
pairing gap to EF [68]. If one carries over the same formula
to the unitary limit, the estimate is ζpkF ∼ 1.3h̄, which is not
too far from our calculated result.

VI. SUMMARY AND CONCLUSIONS

We have performed auxiliary-field lattice Monte Carlo
simulations of the unitary Fermi gas using a lattice interaction
that accelerates the approach to the continuum limit and
allows for an accurate estimate of the TBDM for 66 particles.
We computed the ground-state energy of 33 spin-up and
33 spin-down particles and found good agreement with the
latest theoretical and experimental determinations. We found
E0/EFG = 0.369(2), 0.372(2) using two different definitions
of the finite-system energy ratio. We then determined the con-
densate fraction by measuring off-diagonal long-range order
in the TBDM and found that the fraction of condensed pairs
is α = 0.43(2). We then extracted the pairing wave function
and found the pair correlation length to be ζpkF = 1.8(3)h̄.
Our results for the condensate fraction and pair correlation
length are free from the systematic errors associated with
one-sided estimates of the TBDM. By using an interaction
with a simpler extrapolation to the continuum limit, we were
able to obtain more accurate results in the zero-temperature
limit than previous lattice calculations.

The methods presented here have general applicability
and can be applied to other S-wave superfluid systems. In
particular, our lattice approach can be used to investigate the
superfluid properties of neutron gases, which is essential for
understanding the structure and evolution of neutron stars. So
long as the problem of Monte Carlo sign oscillations is under
control, one can also employ auxiliary-field lattice simulations
to study more exotic systems such as P-wave and D-wave
superfluids.
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