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Magnetism of spinor alkali-metal and alkaline-earth-metal atoms in optical lattices
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We theoretically investigate zero-temperature magnetic ordering of mixtures of spin-1 (alkali-metal atoms)
and spin-0 (alkaline-earth-metal atoms) bosons in a three-dimensional optical lattice. With the single-mode
approximation for the spin-1 bosons, we obtain an effective Bose-Hubbard model for describing the het-
eronuclear mixtures in optical lattices. By controlling the interspecies interactions between alkali-metal and
alkaline-earth-metal atoms, we map out complete phase diagrams of the system with both positive and negative
spin-dependent interactions for spin-1 atoms, based on bosonic dynamical mean-field theory. We find that the
spin-1 components feature ferromagnetic and nematic insulating phases, in addition to the superfluid, depending
on spin-dependent interactions. Take the spin-1 alkali-metal bosons as spin ↑, and spin-0 alkaline-earth-metal
bosons as spin ↓, we observe that the system favors ferromagnetic insulator at filling n = 1 and unorder insulator
at n = 2. Interestingly, we observe a two-step Mott-insulating-superfluid phase transition, as a result of mass
imbalance between alkali-metal and alkaline-earth-metal atoms.

DOI: 10.1103/PhysRevA.101.063611

I. INTRODUCTION

Quantum magnetism plays an important role in solid-state
systems, and many theoretical and experimental efforts have
been devoted to revealing the mechanisms behind magnetic
ordering of quantum many-body systems [1]. Most of stud-
ies in complex solid-state systems focus on magnetism of
fermions [2], since the basic element is the electron. An
exception in condensed-matter physics is 4He, which is a
bosonic system but its spin S = 0. Magnetism of spinful
bosonic systems is exclusive, even though bosonic mag-
netism can enrich our understanding of many-body physics,
especially about their quantum fluctuations. Therefore, it is
desirable to study multispecies bosonic systems which are
able to extend our understanding of quantum magnetism in
many-body systems.

In past decades, ultracold atoms trapped in periodic opti-
cal lattices have been utilized to study quantum many-body
physics in a highly controllable manner [3,4], where multi-
component ultracold gases composed of fermions or bosons
have been achieved [5,6], opening new avenues for investi-
gating quantum magnetism. Recently, an antiferromagnet has
been realized in a repulsively interacting Fermi gas on a two-
dimensional square lattice [7]. Two-component bosonic ultra-
cold gases have also provided possibility for understanding
quantum magnetism [8,9], where a temperature in the order
of picokelvin is achieved in a Bose-Bose mixture (pseudo-
spin-1/2 Bose gases) in a three-dimensional optical lattice
[8], even though the experimental temperature is still higher
than the critical one of magnetic phase transition. For spin-1
bosons, the major experimental challenge is that the timescale
of a spinor gas reaching ground states may exceed its lifetime,
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since the spin-dependent interaction (ferromagnetic or antifer-
romagnetic) is normally very small [10–18].

Actually, the spinor bosonic gases lead to many interesting
phenomena, including spin mixing [19], spin waves [20],
spin dynamics [21], spin textures [22], and phase transitions
[23–28]. Spinor bosonic gases in optical lattices provide
possibilities of entering into strongly correlated regime, and
normally demonstrate two quantum phases: Mott-insulating
and superfluid phases with different types of long-range
magnetic order, including nematic, cyclic, ferromagnetic, and
antiferromagnetic long-range order [4,29,29–33]. Recently, a
phase transition from a longitudinal polar phase to a brokenax-
isymmetry phase in condensates of spin-1 ultracold sodium
atoms is demonstrated in a two-dimensional optical lattice
[12], and thermal-fluctuation-induced stepwise Bose-Einstein
condensation in a spinor gas is experimentally observed [34].

Moreover, heteronuclear mixtures of ultracold spinor
bosons have been achieved experimentally, i.e., heteronu-
clear mixtures of spinor alkali atoms [35], or mixtures of
spinor alkali-metal and alkaline-earth-metal atoms [36,37],
even without a lattice. Unlike identical spinor bosons with
only even parity states being allowed for bosonic statistics,
the heteronuclear mixtures of ultracold spin-1 alkali bosons
in optical lattices demonstrate even richer competing many-
body phases, which contains superfluid, spin-singlet, nematic,
cyclic, charge-density-wave, and different types of ferromag-
netic phases [38–40]. However, magnetic phases of heteronu-
clear mixtures of spinor alkali-metal and spin-0 alkaline-
earth-metal atoms in optical lattices are still unknown.

Motivated by the experimental work [36], we investi-
gate many-body ground states of heteronuclear mixtures of
ultracold spin-1 (87Rb or 23Na) and spin-0 alkaline-earth-
metal atoms (84Sr) in a three-dimensional cubic optical lat-
tice. To provide quantitative guidelines for upcoming experi-
ments, we choose the experimental relevant parameters in our
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simulations, such as the ratio of hopping amplitudes between
the two species, and of intra- and interspecies interactions.
Here, we focus on quantum magnetism of the four-component
system, and pay special attention to the influence of the
spin-dependent interactions of spinor alkali-metal atoms on
quantum magnetism. To obtain the many-body ground states,
we modify the recently developed four-component bosonic
dynamical mean-field theory (BDMFT) [41], and extend the
BDMFT equations for studying mixtures of spin-1 and spin-0
bosonic gases in optical lattices. Similar to fermionic cases
[42–44], we map the many-body lattice problem to a single-
site problem which is coupled to two baths, i.e., the condensed
bath and the normal bath [44–51] to take quantum fluctua-
tions into account. In our work, complete phase diagrams of
binary mixtures of ultracold spin-1 alkali and spin-0 alkaline-
earth-metal bosons are mapped out for different interspecies
interactions.

The paper is organized as follows: In Sec. II, we
give a detailed derivation of the model and our approach.
Section III covers our results for heteronuclear mixtures of
87Rb and 84Sr, and of 23Na and 84Sr. We summarize with a
discussion in Sec. IV.

II. MODEL AND METHOD

A. Model

We consider heteronuclear mixtures of spin-1 alkali-metal
atoms (such as 87Rb or 23Na with hyperfine spin f = 1) and
spin-0 alkaline-earth-metal atoms (84Sr with hyperfine spin
f = 0) in a three-dimensional (3D) cubic optical lattice. For
a system of identical bosonic gases with hyperfine spin f , the
general form of the interaction can be written in the second-
quantized form [52,53]:

V̂ (x1 − x2) = 4π h̄2

ma

2 f∑
F=0

aF P̂F δ(x1 − x2), (1)

where P̂F = ∑
mF

|F, mF 〉〈F, mF | is the projection operator
with |F, mF 〉 being the total hyperfine spin state formed by
two atoms each with spin f , ma being the atom mass, and
aF being the s-wave scattering length in the channel of total
spin F .

The interaction for homonuclear mixtures of spin f = 1 is
given by

V̂ (x1 − x2) = (g0P̂0 + g2P̂2)δ(x1 − x2)

= (c0 + c2Ŝ1 · Ŝ2)δ(x1 − x2), (2)

where c0 = 4π h̄2

ma

a0+2a2
3 , c2 = 4π h̄2

ma

a2−a0
3 , and Ŝi is the spin op-

erator of the ith atom with spin 1. For heteronuclear mixtures
of spin-0 and spin-1 atoms, the interaction between the two
species takes the form

V̂ (x1 − x2) = g12P̂1δ(x1 − x2), (3)

where g12 = 2π h̄2a12
m12

with the reduced mass m12 = m1m2
m1+m2

.
Here, m1 and m2 denote the atomic mass for species 1 and 2,
respectively, and a12 is the scattering length between spin-0
and spin-1 atoms. Note here that we assume the scattering
lengths between spin-1 and spin-0 atoms are identical for the
three-components of spin-1 atoms.

The many-body Hamiltonian for the system of heteronu-
clear mixtures of spin-0 and spin-1 bosonic gases takes the
following form:

Ĥ =
∑
ν,σ

∫
dx�̂†

νσ
(x)

(
− h̄2∇2

2mν

+ Vlat

)
�̂νσ

(x)

+
∑
σ,σ ′

∫
dx

[
c0

2
�̂

†
1σ

(x)�̂†
1σ ′ (x)�̂1σ ′ (x)�̂1σ

(x)

+ c2

2
�̂

†
1σ

(x)�̂†
1σ ′ (x)Ŝσσ ′′′ · Ŝσ ′σ ′′�̂1σ ′′ (x)�̂1σ ′′′ (x)

]

+
∫

dx
c(2)

2
�̂

†
20

(x)�̂†
20

(x)�̂20 (x)�̂20 (x)

+
∑

σ

∫
dxg12�̂

†
20

(x)�̂†
1σ

(x)�̂1σ
(x)�̂20 (x), (4)

where �̂νσ
(x) is the field annihilation operator for the νth

species (ν = 1 denoting spin-1 atoms, and 2 spin-0 atoms) in
the hyperfine state σ = 0, ±1 at point x, Vlat the optical lattice
potential, and c(2) = 4π h̄2a(2)

0 /m2 with a(2)
0 denoting the s-

wave scattering length for species ν = 2 (only one component
is considered for species 2, which is denoted as σ ≡ 0) in the
total spin s = 0 channel.

By assuming a deep optical lattice potential and the single-
mode approximation for spin-1 atoms [54], we can expand
the field operator by considering only the lowest energy band
�̂νσ

(x) = ∑
i b̂i,νσ

ων (x − xi ), where the Wannier function of
the lowest energy band ων (x − xi ) is well localized in the
ith lattice site. Following the standard derivation for ultracold
bosonic gases, Eq. (4) reduces to an extended Bose-Hubbard
model for heteronuclear mixtures of spin-0 and spin-1 bosons
in an optical lattice, which can be written as

Ĥ = −
∑

〈i j〉,ν,σ
tνσ

(
b̂†

i,νσ
b̂ j,νσ

+ H.c.
) +

∑
i,σ

U12b̂†
i,20

b̂†
i,1σ

b̂i,1σ
b̂i,20

+
∑

i

[
1

2
U1n̂i,1(n̂i,1 − 1) + 1

2
U ′

1

(
Ŝ

2
i,1 − 2n̂i,1

)

+1

2
U2n̂i,2(n̂i,2 − 1) − μ1n̂i,1 − μ2n̂i,2

]
, (5)

where b̂†
i,νσ

(b̂i,νσ
) is the bosonic creation (annihilation) op-

erator for species ν and hyperfine state σ at site i, n̂i,ν =∑
σ n̂i,νσ

with n̂i,νσ
= b̂†

i,νσ
b̂i,νσ

being the number of parti-

cles, Ŝi,1 = ∑
σσ ′ b̂†

i,νσ
�σσ ′ b̂i,νσ ′ is the local spin operator with

�σσ ′ being the usual spin matrices for a spin-1 particle,
μν denotes the chemical potential for species ν, and tνσ

the hopping amplitude on the lattice where only hopping
between nearest neighbors 〈i j〉 is considered. The Hubbard
repulsion U1 = c0

∫
dr|ω1(r − ri )|4 and spin-dependent in-

teraction U ′
1 = c2

∫
dr|ω1(r − ri )|4 for spin-1 bosons, U2 =

c(2)
∫

dr|ω2(r − ri )|4 for spin-0 bosons, and interspecies inter-
action U12 = g12

∫
dr|ω1(r − ri )ω2(r − ri )|2 between spin-1

and spin-0 bosons. Note here that only one component is
considered for species 2 with σ = 0.
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B. Theoretical method

To investigate quantum phenomena and obtain many-body
ground states of binary mixtures of spinor alkali-metal and
alkaline-earth-metal bosons loaded into a three-dimensional
cubic optical lattice, we utilize an extended bosonic version of
dynamical mean-field theory (BDMFT) to solve the problem
described by Eq. (5). The main idea of the BDMFT approach
is to map the quantum lattice problem with many degrees of
freedom onto a single-site problem, which is coupled self-
consistently to two noninteracting baths [41,44]. Here, one
bath is a condensed one and another a normal one. BDMFT
treats the condensed and normal bosons on equal footing, and

expands the equations up to second order as a function of 1/z,
where BDMFT takes the lattice coordination number z as the
control parameter (z = 6 for three-dimensional cubic lattice).

Even though the general processes of the BDMFT deriva-
tions here are similar to spin-1/2 bosons in p-band optical
lattices [41], the hopping amplitudes and interactions for
mixtures of spin-1 and spin-0 bosons are different, lead-
ing to totally different Green’s functions and self-energies.
Following the standard derivation for BDMFT [44,45], we
can write down the BDMFT equations in an explicit form,
where the corresponding effective action of the impurity site is
described by

S(0)
imp = −

∫ β

0
dτdτ ′ ∑

νσ ,νσ ′

[
b(0)∗

νσ
(τ ) b(0)

νσ
(τ )

]
G (0)

σσ ′
−1

(τ − τ ′)

(
b(0)

νσ ′ (τ
′)

b(0)∗
νσ ′ (τ ′)

)
+

∫ β

0
dτU12n(0)

1 (τ )n(0)
2 (τ )

+
∫ β

0
dτ

⎧⎨
⎩1

2

∑
ν

Uνn(0)
ν (τ )(n(0)

ν (τ ) − 1) + 1

2
U ′

1

(
S(0)

1 (τ )2 − 2n(0)
1 (τ )

) −
∑

〈0i〉,νσ

tνσ

[
b(0)∗

νσ
(τ )φ(0)

i,νσ
(τ ) + H.c.

]⎫⎬⎭ (6)

Here, G (0)
σσ ′ (τ − τ ′) is the noninteracting Weiss Green’s function:

G (0)
σσ ′

−1
(τ − τ ′) = −

(
(∂τ ′ − μσ )δσσ ′ + t2 ∑

〈0i〉,〈0 j〉 G1
σσ ′,i j (τ, τ

′) t2 ∑
〈0i〉,〈0 j〉 G2

σσ ′,i j (τ, τ
′)

t2 ∑
〈0i〉,〈0 j〉 G2

σσ ′,i j
∗(τ ′, τ ) (−∂τ ′ − μσ )δσσ ′ + t2 ∑

〈0i〉,〈0 j〉 G1
σσ ′,i j (τ

′, τ )

)
, (7)

which is a 8 × 8 matrix with σ running over all the possible
values σ = 0, ±1 for species 1, and σ = 0 for species 2,
to shorten the notation of Green’s functions. Explicitly, the
diagonal and off-diagonal parts of Green’s functions read

G1
σσ ′,i j (τ, τ

′) ≡ −〈bi,σ (τ )b∗
j,σ ′ (τ ′)〉0 + φi,σ ′ (τ )φ∗

j,σ (τ ′),

G2
σσ ′,i j (τ, τ

′) ≡ −〈bi,σ (τ )b j,σ ′ (τ ′)〉0 + φi,σ ′ (τ )φ j,σ (τ ′),

where φi,σ (τ ) ≡ 〈bi,σ (τ )〉0 is introduced as the superfluid
order parameters (σ = 0, ±1 for species 1, and σ = 0 for
species 2), and in the cavity system 〈. . . 〉0 denotes the ex-
pected value without the impurity site.

Normally, it is difficult to find an analytical solver for
the effective action. To obtain many-body ground states, we
turn back to the Hamiltonian representation and represent the
effective action described in Eq. (6) by the Anderson impurity
Hamiltonian:

Ĥ (0)
A =

∑
ν,σ

[
− tνσ

(
φ∗(0)

νσ
b̂(0)

νσ
+ H.c.

) − μν n̂(0)
νσ

]

+ 1

2
U1n̂(0)

1

(
n̂(0)

1 − 1
)

+ 1

2
U ′

1

(
Ŝ

(0)2
1 − 2n̂(0)

1

)

+ 1

2
U2n̂(0)

2

(
n̂(0)

2 − 1
)

+ U12n̂(0)
1 n̂(0)

2 +
∑

l

εl â
†
l âl

+
∑
l,ν,σ

(
Vνσ ,l â

†
l b̂(0)

νσ
+ Wνσ ,l âl b̂

(0)
νσ

+ H.c.
)
, (8)

where only one component is considered for species ν = 2,
i.e. σ ≡ 0 for ν = 2. Obviously, the interaction terms are
identical with that in the Hubbard Hamiltonian, as in Eq. (5),
since all the interactions considered here are local ones. As we

mentioned above, BDMFT has reduced the many-body lattice
problem to a single-site problem coupled to the condensed
and normal baths, and presented equations up to subleading
order. Here, the leading term is the Gutzwiler term with order
parameters φνσ

standing for the condensed bath, and the sub-
leading term is the normal bath described by operators â†

l with
energies εl , where the coupling between the normal bath and
impurity site is realized by Vνσ ,l (normal-hopping amplitudes)
and Wνσ ,l (anomalous-hopping amplitudes). Then, the Ander-
son impurity model can be solved through numerical methods,
and detailed steps have been introduced in Ref. [24,55]. Here,
we use exact diagonalization as the solver to obtain the
many-body ground states. We remark here that BDMFT is
nonperturbative and hence can be applied within the full range
from small to large couplings.

III. RESULTS

In this paper, we investigate phase diagrams of
heteronuclear mixtures of spin-1 and spin-0 atoms in a 3D
optical lattice, which is characterized by the order parameter
φνσ

= 〈b̂νσ
〉, magnetism Ŝ1 = b̂†

1σ
�σσ ′ b̂1σ ′ for spin-1

bosons, i.e., Ŝ1x = 1/
√

2(b̂†
1+1

b̂10 + b̂†
10

b̂1+1 + b̂†
10

b̂1−1 + b̂†
1−1

b̂10 ), Ŝ1y = i/
√

2(−b̂†
1+1

b̂10 + b̂†
10

b̂1+1 − b̂†
10

b̂1−1 + b̂†
1−1

b̂10 ),

and Ŝ1z = (b̂†
1+1

b̂1+1 − b̂†
1−1

b̂1−1 ), and local total magnetism of

spin-1 and spin-0 atoms Ŝ = ∑
σσ ′ b̂†

νσ
Fνσ ν ′

σ ′ b̂ν ′
σ ′ , with Fνσ ν ′

σ ′
denoting the spin matrix for a spin-1/2 particle formed by the
σ component of species 1 and 0 component of species 2, i.e.,
Ŝx = 1/2

∑
σ (b̂†

1σ
b̂20 + b̂†

20
b̂1σ

), Ŝy = i/2
∑

σ (−b̂†
1σ

b̂20 +
b̂†

20
b̂1σ

), and Ŝz = 1/2
∑

σ (b̂†
1σ

b̂1σ
− b̂†

20
b̂20 ). Here, we

treat the spin-1 alkali-metal atoms as spin ↑, and spin-0
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FIG. 1. Phase diagrams of heteronuclear mixtures of ultra-
cold spin-1 87Rb (spin-dependent interaction U ′

1/U1 = −0.0046)
and spin-0 84Sr bosons in a 3D cubic lattice for different inter-
species interactions U12/U1 = 0.2, 0.5, 0.935 (scattering length from
Ref. [36]) and 2, obtained by BDMFT. The system favors ferro-
magnetic insulating phase (FM) at filling n = 1, unorder insulating
phase (UI) at n = 2, and two types of superfluid (MISr + SFRb,
and 2SF), where the three components of spin-1 87Rb demonstrate
ferromagnetic order as a result of ferromagnetic interactions. Note
here that the system favors phase separation for U12/U1 = 2, and here
we only show the phase diagram of spin-1 bosons. For comparisons,
the red cross is obtained by Gutzwiller mean-field theory. The other
parameters t ≡ t1σ

≈ 0.97t20 and U2/U1 = 1.26.

alkaline-earth-metal atoms as spin ↓, and essentially achieve
a pseudo-spin-1/2 bosonic model composed of spin-0 atoms
and each component of spin-1 atoms in optical lattice, since
only density-density interactions appear between spin-0 and
each component of spin-1 atoms. Therefore, we focus on
correlations between Sr and each component of spin-1 Rb
or Na. In our calculations, we consider the spin-miscible
regime with interspecies interactions U12 <

√
U1U2, and pay

special attention to the lower filling cases. We focus on both
the ferromagnetic U ′

1/U1 < 0 (87Rb) and antiferromagnetic
interactions U ′

1/U1 > 0 (23Na). In all our simulations, we set
U1 ≡ 1 as the unit of energy.

A. Mixtures of spinor 87Rb and 84Sr

We first study mixtures of spin-1 87Rb and spin-0 84Sr
atoms in a three-dimensional optical lattice, where the Rb
atoms possess a ferromagnetic interaction U ′

1/U1 = −0.0046
[56], interaction between the Sr atoms U2/U1 = 1.26 [57],
and interspecies interaction between the Rb and Sr atoms
U12/U1 ≈ 0.935, as achieved in experiments [36,37]. In our
simulations, we choose the hopping amplitudes t ≡ t1σ

≈
0.97t20 , due to the mass relation t1σ

/t20 = m2/m1, and the
chemical potential μ ≡ μ1 = μ2.

Our results are summarized in Fig. 1, where we map out
the low-filling lobes under different interspecies interactions
U12/U1 = 0.2, 0.5, 0.935, and 2, obtained by bosonic dynam-
ical mean-field theory. We observe there are four phases in
the low-filling regime, including ferromagnetic phase (FM)
characterized by Mtot ≡ |〈Ŝ〉| �= 0 and φ1σ

= φ20 = 0, unorder

insulator (UI) characterized by Mtot = 0 and φ1σ
= φ20 =

0, two types of superfluid phases (SF). In the lower hop-
ping regime t  U1, the system demonstrates Mott-insulating
phases with the spin-1 Rb atoms favoring ferromagnetic spin
order, which is characterized by φ1σ

= 0 and M1 = |〈Ŝ1〉| �=
0, and the physical reason is that, as expected, the ferro-
magnetic interaction U ′

1 < 0 supports ferromagnetic order to
lower the energy of the spin-1 atoms [25,26]. The results also
indicate that interspecies density-density interactions between
Rb and Sr do not influence magnetic order of spin-1 bosons.
We remark here that the local spin M1 of the 87Rb always
meet the relationship M1/nRb = 1, with nRb being the local
total filling of 87Rb. To characterize the properties of the
whole system mixed by Rb and Sr, we define the local total
magnetism by taking Rb as spin ↑ and Sr as spin ↓. We
find that the system possesses nonzero magnetism Mtot �=
0 for filling n ≡ nRb + nSr = 1 (nRb = nSr = 0.5) with nSr

(nRb) denoting the local filling of 84Sr (87Rb), and zero mag-
netism Mtot = 0 for filling n = 2, which indicates our system
favor ferromagnetic insulating phase (FM) at filling n = 1
and unorder insulating phase (UI) at n = 2. To understand
the long-range spin order defined here, we can utilize the
effective spin model in the strongly interacting regime for
Bose-Bose mixtures in optical lattices [58], and, here, the
mixtures between each component of the spin-1 atoms and
spin-0 atoms essentially yield a spin-1/2 model for each
component of spin-1 atoms. The underlying physics is that, for
filling n = 1, ferromagnetic spin coupling dominates for the
parameters with almost identical hopping amplitudes t1σ

≈ t2
and ferromagnetic long-range order develops, whereas, for
filling n = 2, spin fluctuations are suppressed for U12  U1,2

and an unorder insulating phase appears. With the increase
of the hopping amplitudes, density fluctuations dominate and
superfluid phases appear with φνσ

�= 0. Because of the mass
imbalance, the Rb atoms with larger mass delocalize first
(MISr + SFRb), and then both species delocalize (2SF) with
increasing hopping amplitudes.

As we have mentioned above, BDMFT reduce the many-
body lattice problem to a single-site problem coupled to the
condensed and normal baths. Thus, the convergence of the
BDMFT method under different number of baths should be
verified. As shown in Fig. 2, we plot the order parameter φ10

and local magnetism Mtot as a function of hopping amplitudes
under different parameters (N, Norb, L). Here, N denotes the
maximum occupation number which is used to truncate for
the Fock space, Norb is the maximum occupation number of
the orbital for each normal bath, and L is the number of
normal bath orbitals. We clearly observe that our results are
converged for higher truncation values, and typically choose
N = 4, Norb = 2, L = 3 in the our simulations in the low
filling regime.

Next, we study the influence of interspecies interactions
U12 on the phase diagrams. For smaller interspecies interac-
tions with U12 <

√
U1U2, the two species are miscible, and the

system favors phase separation for U12 >
√

U1U2. As shown
in Figs. 1(a)–1(d), we observe that the first lobe with filling
n = 1 shrinks, and the second lobe with n = 2 expands with
decreasing U12. The physical reason is that the spins ↑ and ↓
compose a spin singlet with Mtot = 0 for n = 2 (as shown in
Fig. 3), which is more favorable for smaller U12. In the limit
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FIG. 2. Order parameters and magnetism as a function of hop-
ping amplitudes under different parameters (N, Norb, L), where the
results are converged for higher truncation values. Here, N is the
maximum occupation number truncated for the Fock space, Norb is
the maximum occupation number of the orbital for each normal
bath, and L is the number of normal bath orbitals. The chemical
potential μ/U1 = 1.7, interactions U12/U1 = 0.935, U2/U1 = 1.26,
U ′

1/U1 = −0.0046, and hopping amplitudes t ≡ t1σ
≈ 0.97t20 .

of U12  U1,2, we remark here that the phase diagrams of Rb
and Sr almost coincide, if we scale the hopping amplitudes
by their own onsite interactions, i.e., t1σ

/U1 and t20/U2, since
the spin-dependent interaction of spin-1 Rb atoms is tiny. For
a larger interspecies interaction U12/U1 = 2, we observe a
phase separation in the system. Here, we only plot the phase
diagram of spin-1 87Rb atoms and recover the phase diagram
of spin-1 bosonic systems in an optical lattice, as shown in
Fig. 1(d).

For comparisons, we also investigate the mixtures of spin-1
and spin-0 bosons in optical lattices, based on Gutzwiller
mean-field theory, as shown by the red lines in Fig. 1 (only the
first Mott-insulating-superfluid transition is shown). As stated
in the method part, Gutzwiller mean-field method is actually
first-order approximation of BDMFT, and, by expanding to
second order as a function of coordination number z, quantum
fluctuations are taken into account and BDMFT is achieved.
The phase diagrams clearly show that the tips of Mott lobe
from Gutzwiller method are smaller, compared to the black
lines obtained by BDMFT, as a result of quantum fluctua-
tions which are included in BDMFT. We remark here that
Gutzwiller method cannot resolve magnetic long-rang order
of Mott phases of the bosonic systems in optical lattices, since

quantum magnetism is attributed to second-order tunneling
processes, which are neglected in Gutzwiller static mean-field
theory.

To obtain phase boundaries of the heteronuclear mixtures
of spin-1 and spin-0 bosons in Fig. 1, we plot the order
parameters φνσ

and magnetism Mtot as a function of hopping
amplitudes for different chemical potentials, as shown in
Fig. 3. As is well known, the phase transition is filling depen-
dent for multicomponent bosonic mixtures in optical lattices.
For example, the phase transition is second order for filling
n = 1, and can be first order for filling n = 2 for Bose-Bose
mixtures [48,59–61] and spin-1 bosons [28]. The physical
reason for the first-order phase transition is that the system
favors a spin-singlet Mott-insulating state with even filing,
which is discontinuous with the superfluid phase with nonzero
magnetism, indicating a jump of spin long-range order. As
shown in Fig. 3, we clearly observe a second order phase
transition from Mott insulator to superfluid for filling n = 1
[μ/U1 = 1.4, Fig. 3(a)], and a first-order phase transition for
filling n = 2 [μ/U1 = 1.4, Fig. 3(b)]. More interestingly, we
also observe a two-step phase transition at larger chemical
potential [μ/U1 = 1.7, Fig. 3(c)], i.e., the Rb atoms delocalize
first and then the Sr atoms, since the heavier Rb atoms induce
U1 < U2.

B. Mixtures of spinor 23Na and 84Sr

In contrast to the results that we mentioned above, in this
section we focus on the mixtures of spin-1 23Na and spin-
0 84Sr in a 3D optical lattice. Different from spin-1 87Rb,
the spin-dependent interaction here is an antiferromagnetic
one for 23Na with U ′

1/U1 = 0.037 [12], and U2/U1 = 0.66
[57]. As far as we know, there are no experimental data for
heteronuclear mixtures of spinor 23Na and spin-0 84Sr, and,
without loss of generality, we choose t ≡ t1σ

= t20 , μ ≡ μ1 =
μ2, and U12/U1 = 0.4 for a spin-miscible case.

For the spin-1 23Na bosons with antiferromagnetic inter-
actions, the spin-1 bosons favor different types of spin long-
range order in the Mott-insulating region depending on the
local filling. For example, the spin-1 bosons in optical lattices
demonstrate spin nematic order for odd filling, characterized

FIG. 3. Zero-temperature phase transitions for mixtures of ultracold spin-1 87Rb and spin-0 84Sr bosons in a 3D cubic lattice, where order
parameters φνσ

and local magnetism Mtot are shown. We observe a second-order phase transition for chemical potential μ/U1 = 0.4 (n = 1 at
Mott phase), a first-order phase transition at μ = 1.4 (n = 2 at Mott regime), and a two-step phase transition at μ/U1 = 1.7 (n = 2 at Mott
regime). Here, we choose the experimental relevant parameters with interactions U12/U1 = 0.935, U2/U1 = 1.26, and hopping amplitudes
t ≡ t1σ

≈ 0.97t20 .
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FIG. 4. Phase diagram of heteronuclear mixtures of ultracold
spin-1 23Na (antiferromagnitic interaction U ′

1/U1 = 0.037) and spin-
0 84Sr bosons in a 3D cubic lattice. The system supports four phases
in the low-filling regime, including ferromagnetic phase (FM), un-
order insulator (UI), two kinds of superfluid phases (MINa + SFSr,
and 2SF). The other parameters are t ≡ t1σ

= t20 , U2/U1 = 0.66, and
U12/U1 = 0.4.

by φ1σ
= 0, ϕ1αβ

= 〈Ŝ1α
Ŝ1β

〉 − δαβ · 〈Ŝ2
1〉/3 > 0 and M1 = 0,

and spin-singlet order for even filling, characterized by φ1σ
=

0, ϕ1αβ
= 0, and M1 = 0, with α being one of the three

components of spin-1 bosons. Here, by mixing the spin-1
antiferromagnetic bosons with spin-0 closed-shell bosons in
optical lattices, we observe there are four phases in the low-
filling regime, including ferromagnetic phase (FM), unorder
insulator (UI), and two kinds of superfluid phases (SF), as
shown in Fig. 4. Similar to the ferromagnetic case, such as
87Rb, the interspecies interactions between Na and Sr do
not influence spin long-range order of spin-1 bosons in the
parameters studied here, i.e., the spin-1 bosons favor spin
nematic order both for filling n = 1 (nNa = 0.5) and for n = 2
(nNa = 1). The physical reason is that the spin-1 bosons favor
nematic spin order for filling nNa being odd [25,26]. We also
examine the local total magnetism of the whole system mixed
by 23Na and 84Sr in optical lattices, and find that the system
favors nonzero magnetism for filling n = 1 (FM) and zero
magnetism for n = 2 (UI) in the Mott-insulating regime.

With increasing hopping amplitudes, density fluctuations
dominate and the system demonstrates a phase transition from
the Mott insulator to the superfluid phase, as shown in Fig. 5.
As expected, we observe a second-order Mott-insulating-
superfluid transition for filling n = 1. Similar to the mixtures
of Rb and Sr, we also observe a two-step Mott-insulating-
superfluid phase transition at higher filling; i.e., the Sr atoms
delocalize first, and then the Na atoms, which is a result of
the mass imbalance between the Na and Sr atoms. Note here

FIG. 5. Phase transitions of heteronuclear mixtures of ultracold
spin-1 23Na and spin-0 84Sr bosons in a 3D cubic lattice. We observe
a second-order Mott-insulating-superfluid transition for chemical
potential μ/U1 = 0.17 (n = 1 in the Mott regime), and a two-step
phase transition for μ/U1 = 0.65 (n = 2 in the Mott regime), i.e., the
Sr atoms delocalized first and then the Na atoms. Here, we choose
interactions U12/U1 = 0.4, U2/U1 = 0.66, and hopping amplitudes
t ≡ t1σ

= t20 .

that the spin-1 23Na atoms support a nematic-insulating-polar-
superfluid phase transition both for local total filling n = 1
and 2, which is different from the situation with only the
spin-1 bosons loaded into optical lattices for even fillings.

IV. CONCLUSIONS

In conclusion, we have investigated quantum phases of bi-
nary mixtures of spin-1 alkali-metal and spin-0 alkaline-earth-
metal bosons loaded into a cubic optical lattice, based on four-
component bosonic dynamical mean-field theory. Complete
phase diagrams both with ferromagnetic and antiferromag-
netic interactions are obtained. Interestingly, we find that the
system demonstrates nonzero magnetic long-range order and
a second-order Mott-insulating-superfluid phase transition for
filling n = 1, and a first-order phase transition for n = 2. In
addition, we observe a two-step Mott-insulating-superfluid
phase transition, as a result of mass imbalance between
alkali-metal and alkaline-earth-metal atoms. We expect the
spontaneous spin long-range order of heteronuclear mixtures
in optical lattices can be realized and detected using current
experimental techniques [7].
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