
PHYSICAL REVIEW A 101, 063608 (2020)

Stationary states, dynamical stability, and vorticity of Bose-Einstein condensates in
tilted rotating harmonic traps
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We theoretically investigate a Bose-Einstein condensate confined by a rotating harmonic trap whose rotation
axis is not aligned with any of its principal axes. The principal axes of the Thomas-Fermi density profiles of
the resulting stationary solutions are found to be tilted with respect to those of the rotating trap, representing
an extra degree of freedom that is associated with the existence of additional branches of stationary solutions
for any given rotation axis alignment. By linearizing the time-dependent theory about the stationary states, we
obtain a semianalytical prediction of their dynamical instability at high rotation frequencies against collective
modes arising from environmental perturbations. Comparing the stationary states to direct simulations of the
Gross-Pitaevskii equation, we predict the nucleation of quantum vortices in the dynamically unstable rotational
regime. These vortex lines are aligned along the rotation axis despite the tilting of the rotating trap although the
background density profile is tilted with respect to the trapping and rotation axes.
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I. INTRODUCTION

For more than 70 years, the behavior of rotating super-
fluids has been of considerable experimental and theoretical
interest to several generations of physicists. Initially, it was
recognized by Onsager [1] and Feynman [2] that superfluid
flow is characterized by a quantized circulation, which was
subsequently experimentally verified by Hall and Vinen [3,4].
Since then, it has been recognized that the presence of a
nonzero angular momentum in a superfluid leads to complex,
nontrivial behavior, spurring discoveries such as the recent
realization of negative-temperature Onsager vortex clusters
in two-dimensional Bose gases [5,6]. In particular, Bose-
Einstein condensates (BECs) offer a uniquely flexible plat-
form for the study of superfluid rotation and have been the
focus of intense study for several years [7–9].

Consider a superfluid in a rotating bucket. This superfluid
cannot support rigid-body rotation if the bucket is symmetric
about the rotation axis, due to the absence of shear forces,
and so its angular momentum manifests in the form of quan-
tum vortices above a certain critical rotation frequency [10].
However, when the symmetry of the bucket about the rotation
axis is broken, it is able to transfer angular momentum to the
superfluid even in the absence of shear forces, and the conden-
sate exhibits solid-body rotation at slow rotation frequencies
and quantized vortices above a critical rotation frequency. For
Bose-Einstein condensates, in which the “bucket” is replaced
by an atomic trap generated by electromagnetic fields, angular
momentum may be transferred from the trap to the condensate
by modulating the applied fields such that the condensate is
confined by a rotating potential that is asymmetrical about
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the rotation axis [7]. At sufficiently high rotation frequencies,
this method induces vorticity in the condensate [11]. Alternate
methods for producing vortices in BECs also exist, such as
stirring with a Gaussian laser beam [12], dragging a laser
configuration through a trapped condensate (or, equivalently,
a condensate through a laser configuration) [13,14], applying
oscillatory perturbations to the trapping [15,16], condens-
ing a rotating thermal (noncondensed) atomic vapor [17],
and utilizing the Kibble-Zurek mechanism by quenching a
thermal vapor across the BEC critical temperature [18]. The
theoretical and analytical study of the resulting vortices have
uncovered phenomena rich in variety; some examples that are
relevant to scalar, nondipolar, single-component condensates
at zero temperature include Kelvin waves [19–21], Abrikosov
vortex lattices and their Tkachenko modes [22–24], quan-
tum Hall-like physics [25–28], vortex reconnections [29,30],
quantum analogs of classical fluid instabilities [14,31,32], and
hysteresis [33,34].

In contrast, previous studies relating to tilting effects in
rotating BECs have mainly focused on the collective modes
of vortices in response to tilting perturbations of the trap
[35–38], while the literature concerning the steady rotation of
the external confinement about a nonprincipal axis is chiefly
limited to the stability of the center-of-mass oscillations in the
rotating frame [39,40]. Given that such tilted rotating traps
may be experimentally generated in a similar manner to the
excitation of the tilting modes, and that roughly analogous
systems such as dipolar BECs with tilted rotating dipole mo-
ments have been realized experimentally [41,42], a systematic
study of BECs confined by a tilted rotating trap is warranted.
In this paper, we analytically obtain stationary solutions of
the Gross-Pitaevskii equation in the Thomas-Fermi limit for
a condensate subject to a range of different tilting angles
and harmonic trapping regimes. For all but the most trivial
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cases, the stationary solution densities are found to be tilted
about the rotation axis by a different angle than the trap
itself. One of the consequences of this additional degree of
freedom is the existence of two previously unknown branches
of stationary solutions. These exist even when the trap is not
tilted away from the rotation axis, a result that is analogous to
the tilted triaxial ellipsoids that are rotating-frame stationary
solutions for self-gravitating irrotational classical fluids [43].
Focusing on the stationary solution branch existing in the
nonrotating limit, we semianalytically linearize the conden-
sate’s fluctuations in response to small perturbations and thus
predict a dynamical instability at higher rotation frequencies,
where the amplitude of one or more collective modes is
expected to amplify exponentially in time. In the regions of
dynamical instability, we show via numerical Gross-Pitaevskii
simulations that untilted vortices are nucleated from a tilted
condensate, despite the background condensate density still
being tilted. The theoretical formalism utilized represents a
generalization of existing theoretical methods for studying
BECs in asymmetric, untilted rotating traps [44–49] and are
readily conducive to experimental investigation along the
lines of previous studies that have probed the untilted regime
[11,50,51].

This paper is structured as follows. Section II defines
the concept of a tilted rotating trap and introduces the rel-
evant coordinate reference frames, while Sec. III discusses
the methodology for solving for the vortex-free stationary
solutions in the Thomas-Fermi limit. In Sec. IV, we examine
the features of these stationary solutions for two distinct
trapping regimes, and in Sec. V, the time-dependent theory
is linearized in order to characterize the dynamical stability
of the vortex-free stationary solutions during a quasiadiabatic
rampup of the trapping rotation frequency. Finally, Sec. VI
contains a discussion of the outcomes of a series of numerical
simulations of such rampups, where the dynamical route to
vortex nucleation in a vorticity-free condensate in a tilted
rotating trap is demonstrated.

II. THE TILTED, ROTATING HARMONIC TRAP

In order to describe a dilute, scalar BEC, at zero temper-
ature in a rotating, tilted harmonic trap, we utilize the Gross-
Pitaevskii equation for the condensate order parameter, ψ . We
assume that N condensed bosons, each with a mass m, are
confined in the trap and that the root-mean-squared harmonic
trapping frequency in the x-y plane is given by ω⊥. This may
be used to rescale t as t → ω⊥t and r as r → r/l⊥, where
l⊥ = √

h̄/(mω⊥) is the in-plane harmonic oscillator length.
We also rescale ψ as ψ →

√
l3
⊥/Nψ , such that it is normalized

as ∫
d3r |�(r, t )|2 = 1. (1)

Subsequently, in a reference frame rotating with respect to the
inertial laboratory frame with the angular velocity �, ψ obeys
the dimensionless Gross-Pitaevskii equation (GPE) [7–9,52]:

i
∂ψ

∂t
= −1

2
∇2ψ + VT(r, t )ψ + g̃|ψ |2ψ + i� · (r × ∇)ψ.

(2)

Here we define g̃ = 4πNas/l⊥ as the effective strength of
a mean-field, two-body interaction, with a corresponding s-
wave scattering length given by as, and denote the time-
dependent harmonic trapping potential by VT.

Previously, theoretical and experimental studies of the
angular momentum of trapped BECs have tended to assume
that the rotation axis of the confinement coincides with one of
its symmetry axes. The rotation of a harmonic trap about an
arbitrary axis can effectively be modeled by fixing � = �ẑ,
without loss of generality, and assuming that the trapping
potential is not symmetric under the transformation z →
−z. In the corotating reference frame, this potential can be
specified by

VT(r) = 1
2 [(1 − ε)(x cos θ + z sin θ )2 + (1 + ε)y2]

+ 1
2γ 2(x sin θ − z cos θ )2, (3)

where ε ∈ (−1, 1) and γ ∈ R. This external potential is
equivalent to

VT(R) = 1
2 [(1 − ε)X 2 + (1 + ε)Y 2 + γ 2Z2], (4)

via a rotation of the corotating coordinates as given by⎛
⎝X

Y
Z

⎞
⎠ =

⎛
⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎠

⎛
⎝x

y
z

⎞
⎠. (5)

By inspection, Eq. (3) is equivalent to Eq. (4) when, for integer
s, the tilting angle obeys θ = sπ . A similar equivalence, albeit
with modified values of γ and ε, holds when s takes on half-
integer values.

To simulate the stationary state and dynamics of a BEC
in this trap via numerical methods, it is sufficient to use
Eqs. (2) and (3). However, the vorticity-free stationary solu-
tions of Eq. (3), and their linear response to environmental
perturbations, are well described in the θ = 0 limit by purely
semianalytical methods [44,45]. To utilize these methods for
an arbitrary value of θ , it is necessary to set up a hydrody-
namic formalism. This involves the definition of the conden-
sate’s density, n, phase, S, and superfluid velocity, v, via the
relations [7]:

ψ = √
neiS, (6)

v = ∇S. (7)

Substituting Eqs. (6) and (7) into Eq. (2) yields a pair of
hydrodynamic equations given by [8,9]

∂n

∂t
= −∇ · [n(v − � × r)], (8)

∂v
∂t

= −∇
{

v2

2
+ VT + g̃n − v · (� × r) − ∇2(

√
n)

2
√

n

}
. (9)

When Nas � l⊥, the quantum pressure term in Eq. (9),
∇[∇2(

√
n)/

√
n], is negligible due to the minimal effects

of zero-point kinetic energy fluctuations in the condensate
[7,53,54]. In the Thomas-Fermi (TF) limit, where this term
may be neglected, Eq. (9) is approximated by the simplified
form

∂v
∂t

= −∇
{

v2

2
+ VT + g̃n − v · (� × r)

}
. (10)
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FIG. 1. Shaded cross section, at y = Y = ỹ = 0, of the ellip-
soidal surface of constant density for a Thomas-Fermi stationary
state with its semiaxes along the x̃ and z̃ axes, Rx and Rz, respectively,
illustrated for reference. The Cartesian axes corresponding to the
coordinate frames r, R, and r̃ are overlaid on the cross section, and
� ‖ ẑ.

We also note that the vector � × r lies in the x-y plane,
whereas the principal axes of the trap are given by X̂ , Ŷ ,
and Ẑ , with x̂ and X̂ not coinciding with each other unless
the trap is not tilted. The resulting competition between the
trapping and rotating-frame transformation terms necessitates
the introduction of a second angle, ξ , and a third corotating
coordinate frame, r̃, in order to find the axes of symmetry of
the solutions of Eqs. (8) and (10). Let us define ξ and r̃ via the
transformation⎛

⎝x̃
ỹ
z̃

⎞
⎠ =

⎛
⎝cos ξ 0 − sin ξ

0 1 0
sin ξ 0 cos ξ

⎞
⎠

⎛
⎝X

Y
Z

⎞
⎠

=
⎛
⎝ cos(θ − ξ ) 0 sin(θ − ξ )

0 1 0
− sin(θ − ξ ) 0 cos(θ − ξ )

⎞
⎠

⎛
⎝x

y
z

⎞
⎠. (11)

In this new reference frame, the trapping is given by

VT(r̃) = 1
2 [(1 − ε)(x̃ cos ξ + z̃ sin ξ )2 + (1 + ε)ỹ2]

+ 1
2γ 2(x̃ sin ξ − z̃ cos ξ )2, (12)

while the rotating-frame term, � × r transforms to

� × r̃ = �[cos(θ − ξ )(−ỹ ˆ̃x + x̃ ˆ̃y) + sin(θ − ξ )(ỹ ˆ̃z − z̃ ˆ̃y)].

(13)

To clarify the relationship between the corotating reference
frames, we overlay the coordinate axes of r, R, and r̃ at
constant y = Y = ỹ = 0 on a typical cross section of an TF
surface of constant density in Fig. 1.

III. THOMAS-FERMI STATIONARY SOLUTIONS

The stationary solutions of the GPE are specified through
the condensate’s chemical potential, μ, via [7]

ψ (r̃, t ) = ψ (r̃, t = 0) exp(−iμt ). (14)

Therefore, the stationary state density, nTF, and velocity, vTF,
obey

0 = ∇ · [n(v − � × r̃)], (15)

∇μ = ∇
{

v2
TF

2
+ VT + g̃nTF − vTF · (� × r̃)

}
. (16)

Let us impose the following ansatz for nTF and vTF:

nTF(r̃) = n0

⎛
⎝1 −

∑
i∈x,y,z

r̃2
i

R2
i

⎞
⎠�

⎛
⎝1 −

∑
i∈x,y,z

r̃2
i

R2
i

⎞
⎠, (17)

vTF(r̃) = ∇[αxyx̃ỹ + αyzỹz̃ + αzx z̃x̃]. (18)

Here, n0 = 15/(8πRxRyRz ) is a normalization parameter that
ensures that nTF obeys Eq. (1) [53,54]. The form of Eq. (17)
shows that the angle ξ in the coordinate transformation given
by Eq. (11) is fixed by the requirement that the principal axes
of the TF stationary state density coincide with the Cartesian
axes of the r coordinate frame. The parameters {Ri} thus
denote the semiaxes of the paraboloid TF profile along the
r̃i axis. We illustrate these features in the TF density cross
section in Fig. 1 by labeling the ellipsoid’s semiaxes along ˆ̃x
and ˆ̃z as Rx and Rz, respectively.

Equation (18) is consistent with the quadrupolar flow of a
TF stationary state in an untilted harmonic trap (θ = ξ = 0)
rotating about the z axis, vTF = α∇(xy) [44]. An inspection
of Eq. (15) shows that the kth component of v,

∑
j 	=k α jk r̃ j , is

nonzero only if εi jk�i r̃ j 	= 0, which in turn shows that αi j 	= 0
only if εi jk�k 	= 0. This suggests that for the problem at hand,
we have αzx = 0 since �y = 0. By substituting Eq. (17) and
(18) into Eq. (15) and equating the coefficients of the spatial
coordinates, we can verify the property that αzx is null and also
derive the relations

α ≡ αxy =
(

κ2
x − κ2

y

κ2
x + κ2

y

)
� cos(θ − ξ ), (19)

δ ≡ αzx =
(

κ2
y − 1

κ2
y + 1

)
� sin(θ − ξ ), (20)

where κx = Rx/Rz and κy = Ry/Rz. Thus, the trial solution
employed for the velocity field is

vTF(r̃) = α∇(x̃ỹ) + δ∇(ỹz̃). (21)

This quadrupolar profile for the velocity field, and thereby
the spatial dependence of the condensate’s phase, may be
considered as the quantum analog of the classical velocity
potential for an inviscid fluid inside an ellipsoid container
rotating about a nonprincipal axis of the ellipsoid [55,56]. In
both systems, solid-body rotation is possible only when the
density is asymmetric about the rotation axis. We also note
that Eqs. (19) and (20) are formally similar to the equations
of motion appearing in the context of the rotational energy
bands in the tilted-axis cranked shell model of rotating triaxial
nuclei [57].

The problem of determining the stationary solutions of
Eqs. (15) and (16) may now be reduced to solving a set of
five self-consistency relations for {κx, κy, α, δ, ξ}. These are
obtained by substituting Eqs. (17) and (21) into Eq. (16) and
subsequently reading off the coefficients of like terms. First,
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from the coefficients of x̃2, ỹ2, and z̃2, we find that the TF
semiaxes are given by

R2
i = 2g̃n0

ω̃2
i

. (22)

In Eq. (22), we make use of generalized harmonic trapping
frequencies, ω̃2

i , that are defined as

ω̃2
x = (1 − ε) cos2 ξ + γ 2 sin2 ξ + α2 − 2�α cos(θ − ξ ),

(23)

ω̃2
y = 1 + ε + α2 + δ2 + 2�[α cos(θ − ξ ) − δ sin(θ − ξ )],

(24)

ω̃2
z = γ 2 cos2 ξ + (1 − ε) sin2 ξ + δ2 + 2�δ sin(θ − ξ ).

(25)

This implies that the quantities κx and κy obey

κ2
i = ω̃2

z

ω̃2
i

: i = x, y. (26)

By recognizing that there is no x̃z̃ term in Eq. (17), we also
obtain the condition that

(1 − ε − γ 2) sin ξ cos ξ + αδ + �[α sin(θ − ξ )

− δ cos(θ − ξ )] = 0. (27)

The two final self-consistency relations are obtained via sub-
stituting Eq. (22) into Eqs. (19) and (20), which yields

[α + � cos(θ − ξ )]ω̃2
x + [α − � cos(θ − ξ )]ω̃2

y = 0, (28)

[δ + � sin(θ − ξ )]ω̃2
y + [δ − � sin(θ − ξ )]ω̃2

z = 0. (29)

Equations (26)–(29) describe branches of stationary so-
lutions as functions of � that terminate when one or more
of ω̃x, ω̃y, ω̃z equal zero. The locations of these endpoints
determine the number of real stationary solutions for a given
value of �. We identify four such limits which are of use to
us, noting that a rotation of the rotating frame by π/2 about
the ỹ axis transforms x̃ to z̃:

(a) ω̃x → 0 and ω̃y, ω̃z 	= 0,

(b) ω̃y → 0 and ω̃x, ω̃z 	= 0,

(c) ω̃x, ω̃y → 0 and ω̃z 	= 0,

(d) ω̃y, ω̃z → 0 and ω̃x 	= 0.

For the remainder of this paper, the subscripts xc, yc, xyc, and
yzc are used to denote the values of quantities such as ξ in the
limits (a), (b), (c), and (d), respectively. A detailed description
of the self-consistency relations satisfied by �, α, δ, and ξ

at each of these limits is provided in Appendix B. We also
provide a description of how the shape of the TF distribution
can be understood via inspection of the signs of α, δ, and θ −
ξ can be found in Appendix A.

IV. STATIONARY SOLUTION BRANCHES

Keeping in mind the possible limits of the stationary so-
lution branches, � → {�xc,�yc,�xyc,�yzc}, we proceed to
solve Eqs. (26)–(29) and plot the resulting values of α, δ, and

TABLE I. Endpoints of the branches: γ = 3/4, ε = 0.

�xc/ω⊥ �yc/ω⊥ �xyc/ω⊥ �yzc/ω⊥

θ = 0 1 1 1.75 1.75
θ = π/8 0.9475 1 1.8958 1.6495
θ = π/4 0.8485 1 1.9899 1.6578
θ = 3π/8 0.7752 1 1.9833 1.7563

ξ as functions of � for fixed values of θ , γ , and ε. To provide
a representative sample of the variety of trapping regimes, we
analyze the following cases:

(1) γ = 3/4, ε = 0, θ ∈ {0, π/8, π/4, 3π/8},
(2) γ = 4/3, ε = 0.05, θ ∈ {0, π/8, π/4, 3π/8}.
When � = 0, stationary states in the harmonic trap de-

scribed by case 1 are prolate and are axially symmetric about
ẑ, while those for case 2 are oblate and do not exhibit this axial
symmetry. We do not analyze the trap tilting angle θ = π/2
as this limit is easily transformed to an untilted trap with a
different set of trapping frequencies by rotating the coordinate
frame about ŷ by π/2.

A. Prolate, symmetric trapping

We initially focus on the prolate, symmetric trap, where
γ = 3/4 and ε = 0. For this trap, we specify the rotational
frequencies as defined by cases (a)–(d) in Sec. III in Table I:

In Fig. 2(a), we plot α as a function of � for the values
of θ listed in Table I. Here we see that there exist five
distinct stationary solution branches, four of which exhibit the
endpoints defined by cases (a)–(d). Initially, we describe the
limit θ = 0, as explored in previous theoretical studies. For a
trap with axial symmetry about the rotation axis, i.e., ε = 0, an
α = 0 stationary solution exists for all � � 0, while two fur-
ther solutions emerge at the rotational bifurcation frequency
� = �b1 ≡ ω⊥/

√
2 [44,48,49]. We note that the position of

this bifurcation is attributable to an energetic instability of
the l = 2, m = 2 quadrupolar surface mode, which has a fre-
quency ω(l = 2, m = 2) = √

2ω⊥ − 2� and is thus energeti-
cally favourable for � � �b1 [44]. These additional stationary
solutions are symmetric about the � axis and terminate in
the limit � → �xc = �yc = ω⊥, where α → ω⊥ as well.
Furthermore, we find evidence for the existence of a second
bifurcation where two more stationary solutions emerge from
the stationary solution defined by α = 0 and terminate when
� → �xyc = �yzc = 1.75ω⊥. We attribute the existence of
this bifurcation to the energetic instability of the l = 2, m = 1
quadrupole mode, which boasts the frequency ω(l = 2, m =
1) = ω⊥

√
1 + γ 2 − � [7] and is therefore associated with

the bifurcation frequency �b2 = 5ω⊥/4 when γ = 3/4. These
new branches are not symmetric about the � axis, unlike those
emerging from the m = 1 bifurcation, and their existence had
not previously been predicted in the context of rotating BECs
due to the omission of the additional degrees of freedom given
by δ and ξ . However, we note that the energetic instability
of an l = 2, m = 1 surface mode causes similar bifurcations
in other systems. For instance, in a rotating reference frame,
the equilibrium density of a irrotational gravitationally bound
fluid can undergo just such a bifurcation from a Maclaurin
spheroid to a tilted Riemann ellipsoid [43].

063608-4



STATIONARY STATES, DYNAMICAL STABILITY, AND … PHYSICAL REVIEW A 101, 063608 (2020)

FIG. 2. Stationary solutions as a function of � for α (a), θ − ξ

(b), and δ (c), when γ = 3/4, ε = 0, θ ∈ {0, π/8, π/4, 3π/8}.

The class of stationary solutions described by θ 	= 0 be-
haves markedly differently to those for the untilted trap. When
� = 0, we have a solution defined by α = 0 and this solution,
which we denote as branch I, persists for � < min{�xc,�yc}.
From Table I, this rotation frequency is given by � = �xc for
all of the values of θ that we consider in this case. Branch I
is, in general, the solution that the condensate will follow in
response to a quasiadiabatic acceleration of the trap’s rotation

TABLE II. Endpoints of the branches: Case 2.

�xc/ω⊥ �yc/ω⊥ �xyc/ω⊥ �yzc/ω⊥

θ = 0 0.9747 1.0247 2.3334 2.3334
θ = π/8 1.0097 1.0247 2.1311 2.4914
θ = π/4 1.1128 1.0247 1.9924 2.5176
θ = 3π/8 1.2556 1.0247 2.0012 2.3892

frequency from zero. Two additional, connected, branches
emerge at a bifurcation frequency, denoted as �b1, and ini-
tially have values of α with opposite sign to the first solution.
One of these solutions, denoted here as branch II, terminates at
� = max{�xc,�yc} ≡ ω⊥. The other solution, denoted here
as branch III, persists until the endpoint defined by � =
min{�xyc,�yzc}, which is equivalent to � = �yzc for this trap.
The behavior of branch III contrasts with that of the solutions
for θ = 0, where it is possible for a condensate to follow
the same solution branch from � = �b1 until � → ∞. A
second bifurcation frequency, �b2, heralds the emergence of
an additional pair of connected branches that exhibit the same
sign of α. One of these, denoted here as branch IV, terminates
when � → max{�xyc,�yzc} ≡ �xyc, while the other solution,
denoted here as branch V, exists for � ∈ [�b2,+∞) and is the
only solution that exists for � > max{�xyc,�yzc}.

We also present the corresponding solutions of θ − ξ , as
a function of �, in Fig. 2(b) where we observe that both of
the bifurcations are clearly evident in the behavior of θ − ξ

as well as that of α. Furthermore, for θ = 0, the solutions
that emerge at � = �b2 and terminate at � = �xyc = �yzc =
1.75ω⊥ are closely related to each other; they correspond
to density profiles with the identical TF semiaxes but with
opposite tilting angles about the rotation axis. As such, their
respective values of ξ are symmetric about the value ξ =
−π/4. In Fig. 2(c), where δ is plotted as a function of �, we
find that for the θ = 0 branches emerging when � = �b2, the
values of α for one branch are equivalent to those of −δ for
the other branch. We also note that unlike the corresponding
behavior of α and ξ , a qualitative discrepancy in δ along
branch I for θ = π/8 is evident when compared to the angles
θ = π/4 and θ = 3π/8. Specifically, δ is a monotonically
increasing function of � when θ = π/4 and θ = 3π/8 but
exhibits a maximum at � ≈ 0.78ω⊥ when θ = π/8. How-
ever, such qualitative differences with respect to the trap tilting
angle are not exhibited by branches II–V.

B. Oblate, asymmetric trapping

We proceed to discuss the condensate’s behavior in the
oblate, asymmetric trap where γ = 4/3 and ε = 0.05. Here,
the lack of axial symmetry of the trapping along any axis
results in the features of the stationary solutions being qualita-
tively different than those described in Sec. IV A. In Table II,
we specify the rotation frequencies that correspond to the
termination cases (a)–(d):

When the rotating trap is untilted, i.e., θ = 0, the stationary
solutions corresponding to branches I, II, and III are also
untilted, i.e., θ = ξ = 0. We find that branch I, for which α �
0, terminates when � = �xc = ω⊥

√
1 − ε. Branches II and

III, which both exhibit α < 0, are connected at the bifurcation
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frequency � = �b1 but are disconnected from branch I. While
branch II terminates when � = �yc = ω⊥

√
1 + ε, branch III

is characterized by α monotonically tending to zero as � →
∞ [44,48,49]. The extra degrees of freedom that are repre-
sented by δ and ξ manifest themselves when θ = 0 through
the presence of the additional, previously unknown, branches
IV and V, which are connected at � = �b2 and terminate
at the same rotation frequency, � = �xyc = �yzc. However,
when the rotating trap is tilted, the stationary solutions more
closely resemble those in Sec. IV A except that �xc < �yc =
ω⊥

√
1 + ε when θ = 0, π/8 and �xc > ω⊥

√
1 + ε when θ ∈

π/4, 3π/8; the crossover, where �xc = �yc, occurs when θ ≈
0.4693 ≡ 26.89◦. This results in branches I–III possessing the
opposite signs for �xc > �yc when θ ∈ π/4, 3π/8 to the so-
lutions when �xc < �yc, a feature not seen in Sec. IV A. This
behavior is demonstrated in Fig. 3(a), where we have plotted
α as a function of � for the angles θ ∈ {0, π/8, π/4, 3π/8}.

We have also plotted θ − ξ as a function of � in Fig. 3(b)
for this oblate, axially asymmetric trap, and thereby find
that θ − ξ similarly behaves differently for branch I when
θ = π/8 as compared to the angles θ = π/4 and θ = 3π/8.
For instance, the behavior of branch I for θ = π/8 is not
monotonic but has a maximum at � ≈ 0.65ω⊥. This contrasts
sharply with the monotonic behavior of θ − ξ as a function
of � for θ = π/4 and θ = 3π/8. However, branches II–V
exhibit merely quantitative differences with respect to the
tilting angle. As in Sec. IV A, the values of ξ for the branches
that emerge when � = �b2 are symmetric about the value
ξ = −π/4, suggesting that the density profiles for these two
branches are physically equivalent with the same TF semi-
axes but exhibit opposite tilting angles about the rotation axis.
Thus, the values of α for one branch is equivalent to those
of −δ for the other branch, which may be inferred from the
corresponding plots of δ, as a function of �, that are provided
in Fig. 3(c). Interestingly, the maximum of θ − ξ for θ = π/8
along branch I when � ≈ 0.65ω⊥ is reflected in a similar
maximum in δ, which eventually attains negative values as
� → �xc.

V. LINEARIZED TIME-DEPENDENT HYDRODYNAMICS

Via the hydrodynamic formalism elucidated in Secs. III
and IV, we have shown in Sec. IV that the tilting of a rotating
harmonic trap induces a nontrivial tilting angle of the con-
densate’s TF stationary state density. The hydrodynamic for-
malism may also be used to determine the parametric domain
of dynamical stability against environmental perturbations,
a procedure that has been achieved in the θ = 0 limit [45].
Let us specifically address the scenario where the rotation
frequency, �, is quasiadiabatically accelerated from zero for
a fixed choice of ε, γ , and θ . In the TF limit, the condensate
will follow the stationary solution branch I and therefore we
solely investigate the dynamical stability of branch I.

In general, the perturbating of a trapped BEC in a sta-
tionary state can excite one or more of its collective modes.
For perturbations of sufficiently small magnitude, the conden-
sate’s response may be assumed to be linear and the collective
excitations may be obtained by linearizing Eqs. (8) and (10)
about the TF stationary state. In this formalism, the collective
modes are expressed as time-dependent fluctuations of the

FIG. 3. Stationary solutions as a function of � for α (a), θ − ξ

(b), and δ (c), when γ = 4/3, ε = 0.05, θ ∈ {0, π/8, π/4, 3π/8}.

density and phase that are equivalent to linear combinations
of the solutions of the Bogoliubov–de Gennes equations
[7,58,59]. To determine the spectrum of collective modes, we
write

n(r̃, t ) = nTF(r̃) + δn(r̃, t ), (30)

S(r̃, t ) = STF(r̃, t ) + δS(r̃, t ). (31)
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Here, STF(r̃, t ) = −μt + αx̃ỹ + δỹz̃. The subsequent lin-
earization of Eqs. (8) and (10) is equivalent to neglecting
contributions from terms that are quadratic in the density and
phase fluctuations, δn and δS, respectively. This results in a
coupled set of first-order equations for the time evolution of
the fluctuations that is given by [45,48]

∂

∂t

(
δS
δn

)
= M

(
δS
δn

)
, (32)

M = −
(

vc · ∇ g̃
∇ · (nTF∇) vc · ∇

)
, (33)

vc = ∇STF − � × r̃. (34)

Hence we can express each collective mode, indexed by ν, as
a combination of a density fluctuation, δnν (r̃)eλν t , and a phase
fluctuation, δSν (r̃)eλν t , that satisfies Eq. (32) if the constant λν

is an eigenvalue of the operator M.
Since the time dependence of the collective modes is

exponential, it is evident that, to linear order, the dynamical
stability of a stationary state is determined by the set of all
eigenvalues of M, {λν}. If a given eigenvalue has a positive
real component, the amplitude of the corresponding collective
mode will grow exponentially in time and will overwhelm
the stationary state, rendering the stationary state dynamically
unstable. Conversely, we have dynamical stability only if
all of the eigenvalues of M have a negative real compo-
nent, while purely imaginary eigenvalues are characteristic
of excitations with an infinite lifetime. To diagonalize M,
we expand δn and δS) as polynomials in R3 [45,48]. Since
it is not possible to consider all possible collective modes,
we truncate the polynomial expansion of the fluctuations
such that the maximum allowed order of the polynomials
is Nmax = 10. This proves to be a sufficiently high order to
explore the dynamical stability of the stationary states in the
linearized regime. However, we note that even if no unstable
modes are found from this procedure for a given stationary
state, it is not a guarantee of dynamical stability as a higher
value of Nmax may admit a collective mode whose eigenvalue
has a positive real component. Furthermore, by limiting our
analysis to the linearized regime, we neglect nonlinear effects
that could destabilize modes that are stable at linear order in
the fluctuations.

We now proceed to describe the eigenvalues of the collec-
tive modes for branch I of the stationary solutions presented
in Sec. IV. From an inspection of M, every possible collec-
tive mode features the same maximum polynomial order for
both δn(r̃) and δS(r̃), except for a spatially uniform phase
fluctuation without a corresponding density fluctuation that
is associated with a null eigenvalue. This is a manifestation
of the Goldstone mode and is a consequence of the broken
U (1) symmetry that characterizes Bose-Einstein condensa-
tion [7,58]. Fixing Nmax = 10, we diagonalize Eq. (33) over
the discretely binned parameter space specified by the domain
of branch I of the stationary solutions described in Sec. IV A
(ε = 0, γ = 3/4 and θ ∈ [0◦, 90◦]). In Fig. 4, we have shaded
the bins where the respective branch I solutions are associated
with at least one eigenvalue of M with a real positive com-
ponent. To linear order, these points in parameter space com-
prise a domain of guaranteed dynamical instability. A similar
diagonalization of M with respect to the stationary solutions

FIG. 4. Phase diagram of the dynamical stability of branch I for
ε = 0, γ = 3/4, with Nmax = 10; branch I is dynamically unstable
at the shaded points of parameter space. The red dashed lines and
markers denote the trajectories of the GPE simulations and the
corresponding instability frequency, respectively. The red unbroken
curve denotes the endpoints of branch I, � = min{�xc, �yc}.

in Sec. IV B, i.e., ε = 0.05, γ = 4/3 and θ ∈ [0◦, 90◦], yields
the stability diagram depicted in Fig. 5.

From Figs. 4 and 5, we can see that branch I is stable for
small rotation frequencies and becomes dynamically unstable
as � → ω⊥. In both cases, we find that the first rotation
frequency of instability is lower for larger trap tilt angles,
which we attribute to the effective ellipticity of the trapping
in the upright corotating frame becoming larger as θ → π/2.
Because of the high order of polynomial perturbations that is

FIG. 5. Phase diagram of the dynamical stability of branch I for
ε = 0.05, γ = 4/3, with Nmax = 10; branch I is dynamically unsta-
ble at the shaded points of parameter space. The red dashed lines
and markers denote the trajectories of the GPE simulations and the
corresponding instability frequency, respectively. The red unbroken
curve denotes the endpoints of branch I, � = min{�xc, �yc}.
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required to realize unstable collective modes in the limit � →
min{�xc,�yc}, Figs. 4 and 5 erroneously predict a region of
dynamical stability. This limit is represented in Figs. 4 and 5
by the red lines that plot min{�xc,�yc} as a function of θ ; for
a sufficiently large value of Nmax, these red lines would be the
boundary of the domain of dynamical instability.

VI. GROSS-PITAEVSKII EQUATION SIMULATIONS

In the preceding two sections, we have found that the rota-
tion of a tilted harmonic trap induces a nontrivial tilted angle
of the condensate’s density profile and that the stationary so-
lutions become dynamically unstable as � → min{�xc,�yc}.
However, the Thomas-Fermi approximation does not provide
information about the behavior of the condensate after the
dynamical instability has manifested itself, nor does it pre-
dict whether the narrow regions of instability that extend to
lower rotation frequencies in Figs. 4 and 5 are negligible
during a quasiadiabatic rampup of �. In order to attempt to
answer these questions, we have also directly explored this
system via numerically solving the GPE and thereby simu-
lating a quasiadiabatic rampup of a harmonic trap’s rotation
frequency from zero. In this section, we employ the same set
of trapping parameters that were specified in the discussion
of the TF stationary states and their dynamical stability, i.e.,
θ ∈ {π/8, π/4, 3π/8} with either {γ = 3/4, ε = 0} or {γ =
4/3, ε = 0.05}, and discuss the results of the GPE simula-
tions.

Our procedure for solving Eq. (2) in the upright, corotating
coordinate frame (denoted by r) is as follows. We set
the rescaled two-body interaction strength as g̃ = 104 and
specify a 200 × 200 × 200 spatial grid with the intervals
�x = �y = �z = 0.25l⊥; these parameters are sufficient
for the ground state at � = 0 to be well described by
the TF stationary solution. Initially, the backward Euler
method is utilized to simulate Eq. (2) in imaginary time,
with a suitable trial state as the initial condition, and the
converged solution is taken as the ground-state solution at
zero rotation [60]. Before propagating this resulting solution
in real time, the local value of the condensate density is
randomly perturbed by up to 5% of the original value in
order to represent the environmental noise or experimental
imperfections that would seed any potentially unstable
collective modes. This perturbed state is used as the initial
condition for the real-time evolution of the GPE, which is
achieved using the alternate direction implicit-time splitting
pseudospectral (ADI-TSSP) Strang scheme [61]. We employ
a time step of �t = 0.004ω−1

⊥ and an angular acceleration
��
�t = 0.0005ω2

⊥, where the resulting increase in � at each
time step, �� = 2 × 10−6ω⊥, is sufficiently small that the
condition of adiabaticity holds. Therefore, the condensate is
expected to smoothly follow branch I of the TF stationary
solutions during the rampup procedure. During the real-time
evolution of the GPE, we extract the observables Rx, Ry,
Rz, and ξ by fitting the density at x = z = 0 to the 1D TF
density profile, n(y) = n0(1 − y2/R2

y ), and similarly the
density at y = 0 to the 2D TF density profile, n(x, z) =
n0{1 − x2[cos2(θ − ξ )/R2

x + sin2(θ − ξ )/R2
z ] − z2[sin2(θ −

ξ )/R2
x + cos2(θ − ξ )/R2

z ] − (1/R2
x − 1/R2

z ) sin[2(θ − ξ )]xz}.

FIG. 6. Comparison of the TF stationary solutions along branch I
to GPE simulations, for ε = 0 and γ = 3/4, during a quasiadiabatic
rampup of �. The first column [(a), (c), (e)] plots α as a function of
� and the column [(b), (d), (f)] plots θ − ξ as a function of �, where
θ is equal to π/8 [(a), (b)], π/4 [(c), (d)], or 3π/8 [(e), (f)].

Note that the form of these density cross sections can be
found by applying the transformation in Eq. (11) to Eq. (17).
Subsequently, we may determine α and δ via Eqs. (19)
and (20).

A. Prolate, symmetric trapping

In Fig. 6, we compare α and ξ as obtained from the GPE
simulations of a quasiadiabatic rampup of �, when ε = 0 and
γ = 3/4, to the TF results in Figs. 2(a) and 2(b). Here, the
first [Figs. 2(a), 2(c), and 2(e)] and second [Figs. 2(b), 2(d),
and 2(f)] columns correspond to α and θ − ξ , respectively,
as functions of � while the rows correspond to distinct tilting
angles: θ = π/8 in the first row [Figs. 2(a) and 2(b)], θ = π/4
in the second row [Figs. 2(c) and 2(d)], and θ = 3π/8 in
the third row [Figs. 2(e) and 2(f)]. Figure 6 demonstrates
that the condensate initially follows the TF stationary state
closely during the quasiadiabatic acceleration of the rotation
frequency, which confirms the prediction in Fig. 4 that the
TF stationary states are dynamically stable for low rotation
frequencies. However, as � → ω⊥, each of the trajectories
from the numerical simulations diverge dramatically from the
TF-based predictions. This indicates the onset of a dynamical
instability, as predicted in Fig. 4, where the condensate has
been forced away from the TF stationary state due to the
uncontrolled growth of collective modes. Similar behavior is
seen in the analogous comparison of the TF- and GPE-derived
values of δ, which we have included in Appendix C for the
reader’s reference.

The rotation frequencies at which the condensate densities
in each of the three simulations diverge from the correspond-
ing TF stationary state densities are depicted as red circular
markers in Fig. 4. When θ = π/8 or 3π/8, the onset of
dynamical instability agrees well with the predictions of the
linearized hydrodynamical formalism. However, when θ =
π/4, the critical rotation frequency is approximately 0.55ω⊥,
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FIG. 7. Cross sections of the condensate density in the corotating
x-y (first column) and x-z (second column) planes for ε = 0, γ =
3/4, and θ = π/4, during a quasiadiabatic rampup of � at � =
0.25ω⊥ (first row) and � = 0.575ω⊥ (second row), and after 500ω−1

⊥
at constant � = 0.575ω⊥ (third row). The white lines represent the
corotating X -Z axes.

whereas Fig. 4 predicts that the stationary solution is always
unstable when � � 0.7ω⊥. We attribute this discrepancy to
the existence of the small fringes of dynamical instability
that intersect the trajectory of the θ = π/4 simulation at
� ≈ 0.50ω⊥ and 0.51ω⊥, which are sufficient to destabilize
the stationary solution. The fringes at � ≈ 0.57ω⊥ and � ≈
0.44ω⊥ that are crossed by the trajectories of the simulations
for θ = π/8 and θ = 3π/8, respectively, seem to be too
narrow to sufficiently destabilize the stationary states. While
another such fringe is crossed by the simulation for θ =
π/8 when � ≈ 0.51ω⊥, and a set of fringes is crossed by
the θ = 3π/8 simulation when � ≈ 0.72ω⊥, they are very
close to the continuous domain of dynamical instability and
thus their effect is relatively minimal. Furthermore, the GPE
simulations also capture nonlinear effects that are ignored in
the the linearized hydrodynamic formalism.

The deviation of the simulations from the respective TF
stationary states at higher rotation frequencies can be better
understood by examining the cross sections of the condensate
densities at y = 0 and z = 0, which provide us information
about the density profiles; tilting angles, ξ , and the semiaxes,
{Rx, Ry, Rz}, during the acceleration of the rotation frequency.
These cross sections are presented in Fig. 7 for the trap tilt
θ = π/4 when � equals 0.25ω⊥ (first row) and 0.575ω⊥

(second row). When � = 0.575ω⊥, we halt the rampup of �

and then evolve the GPE at constant rotation frequency for
a duration of 500ω−1

⊥ ; the cross sections at the end of this
procedure are given in the third row of Fig. 7. We include the
results for the analogous procedures performed with the same
trapping geometry but with θ = {π/8, 3π/8} in Appendix C.
In order to aid the reader’s visualization of how the density’s
principal axes do not generally coincide with those of either
the trapping frame or the rotation axis, the X -Z Cartesian axes,
i.e., the principal axes of the trapping, are overlaid in white
upon the cross sections at y = 0.

In Fig. 7, we can see that the density profile is smooth
when the condensate is dynamically stable against the initially
seeded perturbation and, as predicted by the TF theory, its
symmetry axes in the x-z plane are slightly tilted away from
those of the trap. However, when the condensate initially
enters the regime of dynamic instability, the density develops
surface ripples and a surrounding cloud as some of the atoms
are ejected from the center of the condensate, as seen in the
second column of Fig. 7. Moreover, we see that after evolution
over a period of 500ω−1

⊥ at constant rotation frequency, � =
0.575ω⊥, the condensate does not resemble a smooth TF
distribution but has been subject to quantum vortex nucleation
after further atoms have been ejected from the center of the
condensate. This behavior is a well-known phenomenon that
occurs in the rotation of an upright, anisotropic harmonic
trap containing a BEC [45–50,62,63] and thus it is not sur-
prising that it occurs in this system. Crucially, an inspection
of Fig. 7(f) shows that the vortex lines coincident upon the
x-z plane are almost completely aligned along the rotation
axis. This is in contrast to the background condensate density
whose symmetry axes are tilted with respect to both {x̂, ẑ}
and {X̂ , Ẑ}. While the vortices that are seen in Fig. 7 are not
ordered in a lattice, we expect that after a considerably longer
period of evolution of the GPE at a constant rotation fre-
quency, the final state of the system is a triangular Abrikosov
vortex lattice, as is seen in BECs subject to rotation about a
principal axis of the trapping [22,46–48].

B. Oblate, asymmetric trapping

We now describe the results of the analogous GPE sim-
ulations for a trap with the parameters γ = 4/3 and ε =
0.05. In Fig. 8, we compare α and θ − ξ from these GPE
simulations to the TF results in Figs. 3(a) and 3(b). Here, the
first [Figs. 3(a), 3(c), and 3(e)] and second [Figs. 3(b), 3(d),
and 3(f)] columns correspond to α and θ − ξ , respectively,
as functions of � while the rows correspond to distinct tilting
angles: θ = π/8 in the first row [Figs. 3(a) and 3(b)], θ = π/4
in the second row [Figs. 3(c) and 3(d)], and θ = 3π/8 in
the third row [Figs. 3(e) and 3(f)]. Just as in the simulations
described in Sec. VI A, the condensate is seen to be unstable
at higher rotation frequencies against collective modes seeded
by the random perturbation at t = 0. This agrees with the
behavior seen in a comparison of the semianalytically and
numerically obtained values of δ, which we have included
in Appendix C. A comparison may also be made with the
prediction of dynamical instability in Fig. 5, where we have
indicated the rotation frequencies at which the GPE states di-
verge considerably from the TF states via red circular markers.
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FIG. 8. Comparison of the TF stationary solutions along Branch
I to GPE simulations, for ε = 0.05 and γ = 4/3, during a quasi-
adiabatic rampup of �. The first column [(a), (c), (e)] plots α as a
function of � and the column [(b), (d), (f)] plots θ − ξ as a function
of �, where θ is equal to π/8 [(a), (b)], π/4 [(c), (d)], or 3π/8
[(e), (f)].

When θ ∈ {π/8, π/4}, these rotation frequencies are greater
than the respective threshold frequencies above which the
stationary states are always dynamically unstable. However,
for θ = 3π/8, the rotation frequency where the GPE solution
diverges wildly from the TF prediction occurs at � ≈ 0.69ω⊥,
which is considerably lower than the prediction of Fig. 5
that the stationary state is dynamically unstable when � �
0.80ω⊥. This may be attributed to the fact that the trajectory
of the quasiadiabatic rampup crosses a fringe of dynamical
instability when � ≈ 0.63ω⊥. We note that a similar fringe
is crossed when θ = π/4 and � ≈ 0.65ω⊥, but this fringe
is narrower than the one that destabilizes the θ = 3π/8 sta-
tionary state. While the quasiadiabatic trajectory for θ = π/8
crosses several narrow fringes when � ∈ (0.75ω⊥, 0.78ω⊥),
their effect is relatively minimal as they are closely followed
by the threshold for dynamical instability at � ≈ 0.8ω⊥.

We can also visualize the GPE solutions for θ = π/4 by
plotting the cross sections of the density in the x-y and x-z
planes for θ = π/4 in Fig. 9, with the corresponding plots
for θ = {π/8, 3π/8} included for reference in Appendix C.
Just as in Sec. VI A, the density cross sections are smooth and
ellipsoidal at low rotation frequencies during a quasiadiabatic
rampup of �. This is evident in the first row of Fig. 9,
where � = 0.4ω⊥, which also shows that the condensate
density’s principal axes are slightly tilted away from those
of the trapping. Similarly, we again observe that the onset
of the dynamical instability is marked by the presence of
a high-density core with surface rippling, surrounded by a
low-density halolike cloud, in the second row of Fig. 9 where
� = 0.85ω⊥. Upon halting the acceleration of the rotation
frequency when � = 0.85ω⊥ and then evolving the GPE
at constant rotation frequency for the duration 500ω−1

⊥ , the
condensate is subject to the nucleation of a large number of
vortices as seen in the third row of Fig. 9. More vortices are
found in Fig. 9 than in Fig. 7, which is likely due to the higher

FIG. 9. Cross sections of the condensate density in the corotating
x-y (first column) and x-z (second column) planes for ε = 0.05,
γ = 4/3, and θ = π/4, during a quasiadiabatic rampup of � at � =
0.4ω⊥ (first row) and � = 0.85ω⊥ (second row), and after 500ω−1

⊥
at constant � = 0.85ω⊥ (third row). The white lines represent the
corotating X -Z axes.

rotation frequency at which the quasiadiabatic rampup was
halted. In both cases, however, we find that the vortex lines
coincident upon the x-z plane are almost completely aligned
along the z axis and that the background condensate density
profile is tilted with respect to both the rotating trap and the
rotation axis.

VII. CONCLUSION

In this work, we have extended the Thomas-Fermi theory
for slowly rotating Bose-Einstein condensates in anisotropic
harmonic traps to account for rotations of the trap about an
axis that is not one of its three principal axes. In traps subject
to tilted rotation, the stationary state density profile’s principal
axes are generally tilted with respect to those of both the
confinement and the rotation. The quadrupolar irrotational
velocity profile describing the vorticity-free flow of the con-
densate is also modified as a consequence of the tilting of the
rotating harmonic trap. Our analysis of the resulting stationary
solutions demonstrate the existence of previously unknown,
tilted, solution branches (branches III and IV) that exist when
� > ω⊥. Although we have only conducted a systematic
study of the dynamical stability of one of the five stationary
solution branches, branch I, it is nonetheless interesting to
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FIG. 10. Shaded examples of cross sections at constant z = 0 (first and third columns) and y = 0 (second and fourth columns), where the
TF semiaxes are related to each other in the ratio 5 : 7 : 10. Here, θ − ξ is positive (first and second columns) or negative (third and fourth
columns), α is positive (first and second rows) or negative (third and fourth rows), and δ is positive (first and third rows) or negative (second
and fourth rows).

consider whether branch III, in particular, becomes dynam-
ically unstable immediately upon reaching � = ω⊥ or if its
stability persists for a larger window. When θ = 0 and ε 	= 0,
a method that has been proposed for accessing the branch
defined for � ∈ [ωb1,∞) is to start from the α = 0 stationary
solution when ε = 0 and then quasiadiabatically tune ε to the
desired final value while keeping � fixed [44]. In principle,
a similar method could be utilized to explore the stationary
solution along branch III for � ∈ [max{�xc,�yc},�b2] and
θ 	= 0, in an anisotropic harmonic trap, by starting from an
isotropic trap rotating at a fixed frequency and adiabatically
tuning its anisotropy as desired.

Our work also suggests that vortices are nucleated in
response to a tilted rotating trap and are aligned along the
rotation axis, and not along one of the tilted principal axes
of the trap. Although we expect that the condensate’s final
state in the dynamically unstable domain to be a triangular
vortex lattice, further work in this direction is needed to
resolve this, as well as the tilting angle of the background
condensate density and the response of the vortices to per-
turbations [19–21,23,24,35–38]. The formalism outlined here
for finding rotating frame stationary solutions with a tilting
of the trap’s symmetry axes can be extended to more exotic
condensates than the scalar one we have considered. Notably,
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FIG. 11. Comparison of δ, as a function of �, between the TF
stationary solution values along branch I and those derived from GPE
simulations of a quasiadiabatic rampup of �, for ε = 0 and γ = 3/4
[(a), (c), (e)] and ε = 0.05 and γ = 4/3 [(b), (d), (f)]. θ equals π/8
in the first row [(a), (b)], π/4 in the second row [(c), (d)], or 3π/8 in
the third row [(e), (f)].

FIG. 12. Cross sections of the condensate density in the coro-
tating x-y (first column) and x-z (second column) planes for ε = 0,
γ = 3/4, and θ = π/8, during a quasiadiabatic rampup of � at � =
0.5ω⊥ (first row) and � = 0.8ω⊥ (second row), and after 500ω−1

⊥
at constant � = 0.8ω⊥ (third row). The white lines represent the
corotating X -Z axes.

FIG. 13. Cross sections of the condensate density in the corotat-
ing x-y (first column) and x-z (second column) planes for ε = 0.05,
γ = 4/3, and θ = π/8, during a quasiadiabatic rampup of � at � =
0.5ω⊥ (first row) and � = 0.85ω⊥ (second row), and after 500ω−1

⊥
at constant � = 0.85ω⊥ (third row). The white lines represent the
corotating X -Z axes.

in the field of dipolar quantum gases, we expect that dipolar
Bose-Einstein condensates in the TF limit can be described in
a similar manner, based on previous work on rotating either
the trapping or the dipole polarization about a principal axis
of the trapping [64–68]. Similarly we would expect that spin-
orbit-coupled BECs subject to an artificial gauge field that
induces a synthetic rotation about a nonprincipal axis would
be described analogously, in the TF limit, to the formalism we
have introduced here [69,70].
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FIG. 14. Cross sections of the condensate density in the coro-
tating x-y (first column) and x-z (second column) planes for ε =
0, γ = 3/4, and θ = 3π/8, during a quasiadiabatic rampup of �

at � = 0.4ω⊥ (first row) and � = 0.6ω⊥ (second row), and after
500ω−1

⊥ at constant � = 0.6ω⊥ (third row). The white lines represent
the corotating X -Z axes.

APPENDIX A: ENDPOINTS OF THE STATIONARY
SOLUTION BRANCHES

The endpoints of the branches, save for Branch V, are
defined by the limits given by

(a) ω̃x → 0 and ω̃y, ω̃z 	= 0,

(b) ω̃y → 0 and ω̃x, ω̃z 	= 0,

(c) ω̃x, ω̃y → 0 and ω̃z 	= 0,

(d) ω̃y, ω̃z → 0 and ω̃x 	= 0.

Let us denote the critical values of quantities such as �, α,
δ, and ξ at the limiting cases (a), (b), (c), and (d) by the
subscripts xc, yc, xyc, and yzc respectively.

For case (a), Eq. (28) implies that we have αxc =
�xc cos(θ − ξxc). Substituting this into Eqs. (23) and (27)
yields

�2
xc cos2(θ − ξxc) = (1 − ε) cos2 ξxc + γ 2 sin2 ξxc, (A1)

�2
xc sin[2(θ − ξxc)] = (γ 2 − 1 + ε) sin(2ξxc). (A2)

FIG. 15. Cross sections of the condensate density in the coro-
tating x-y (first column) and x-z (second column) planes for ε =
0.05, γ = 4/3, and θ = 3π/8, during a quasiadiabatic rampup of
� at � = 0.4ω⊥ (first row) and � = 0.7ω⊥ (second row), and after
500ω−1

⊥ at constant � = 0.7ω⊥ (third row). The white lines represent
the corotating X -Z axes.

Equations (A1) and (A2) admit the solution pair

�2
xc = γ 2(1 − ε)ω2

⊥
γ 2 cos2 θ + (1 − ε) sin2 θ

, (A3)

cos2 ξxc = γ 4 cos2 θ

γ 4 cos2 θ + (1 − ε)2 sin2 θ
, (A4)

which together yield the solution for αxc via αxc = � cos(θ −
ξxc). We may also solve for δxc by substituting these roots into
Eq. (29). Crucially, when θ = 0, Eqs. (A1) and (A2) imply
that ξxc = δxc = 0 and �xc = αxc = ω⊥

√
1 − ε, as expected

[44]. The same limiting forms are also valid when the trapping
is axially symmetric about the y axis, i.e., γ = √

1 − ε. For
case (b), we find that we have

αyc = −�yc cos(θ − ξyc), (A5)

δyc = �yc sin(θ − ξyc). (A6)

Substitution of these into Eq. (24) yields

�yc = ω⊥
√

1 + ε, (A7)
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and thus

3(1 + ε) sin[2(θ − ξyc)] = (1 − ε − γ 2) sin(2ξyc), (A8)

which admits the solution

tan(2ξyc) = 3(1 + ε) sin(2θ )

3(1 + ε) cos(2θ ) − γ 2 + 1 − ε
. (A9)

Via Eqs. (A5)–(A7) and (A9), we may obtain the solutions of
αyc and δyc in this limit. For the special cases that the trap is
not tilted, i.e., θ = 0, and/or is axially symmetric about the y
axis, i.e., γ = √

1 − ε, we have αyc = −�yc = −ω⊥
√

1 + ε

and δyc = ξyc = 0 [44].

The limits (c) and (d) are somewhat more involved. In case
(c), we have δxyc = �xyc sin(θ − ξxyc), but the limit of αxyc is
not as obvious and must be found by solving Eq. (27). This
gives us

αxyc = �2
xyc sin[2(θ − ξxyc)] + (γ 2 − 1 + ε) sin(2ξxyc)

4�xyc sin(θ − ξxyc)
.

(A10)

Substituting these relations into Eqs. (23) and (24) results in
the system of equations given by

12�4 cos2(θ − ξ ) − 8(γ 2 + 1 − ε)�2 + (γ 2 − 1 + ε)

{
8�2 cos(2ξ ) + sin(2ξ )

[
4�2

tan(θ − ξ )
− (γ 2 − 1 + ε) sin(2ξ )

sin2(θ − ξ )

]}
= 0,

(A11)

2�2{8(1 + ε) + �2[1 + 9 cos(2(θ − ξ ))]} sin(θ − ξ ) + (γ 2 − 1 + ε) sin(2ξ )

[
12�2 cos(θ − ξ ) + (γ 2 − 1 + ε) sin(2ξ )

sin(θ − ξ )

]
= 0.

(A12)

Solving these simultaneously for � and ξ yields the limiting values, �xyc and ξxyc, which subsequently allows for the solution of
αxyc and δxyc from Eq. (A10) and the relation δxyc = �xyc sin(θ − ξxyc) respectively.

In case (d), we have α = −� cos(θ − ξ ) and from solving Eq. (27) we also find that

δyzc = (1 − ε − γ 2) sin(2ξyzc) − �2
yzc sin[2(θ − ξyzc)]

4�yzc cos(θ − ξyzc)
. (A13)

The substitution of these relations into Eqs. (24) and (25) results in the following system of equations:

2�2{8(1 + ε) + �2[1 − 9 cos (2(θ − ξ ))]} cos(θ − ξ ) + (γ 2 − 1 + ε) sin(2ξ )

[
12�2 sin(θ − ξ ) + (γ 2 − 1 + ε) sin(2ξ )

cos(θ − ξ )

]
= 0,

(A14)

γ 2 cos2 ξ + (1−ε) sin2 ξ − �2 sin2(θ − ξ ) − (γ 2−1 + ε) sin(2ξ ) tan(θ−ξ )

2
+

[
� sin(θ − ξ )

2
+ (γ 2 − 1 + ε) sin(2ξ )

4� cos(θ − ξ )

]2

= 0.

(A15)

As in case (c), solving these equations for � and ξ yields �yzc

and ξyzc, and thus also αyzc and δyzc via the relation αyzc =
−�yzc cos(θ − ξyzc) and Eq. (A13) respectively.

For both limits (c) and (d), the limits for the special case
where θ = 0 evaluate to simple closed forms given by

�xyc = �yzc = ω⊥
√

1 + γ 2 +
√

4γ 2 + ε2, (A16)

cos2 ξxyc = (2 + ε)(
√

4γ 2 + ε2 − ε)

2(γ 2 − 1 + ε)[γ 2 − 2(2 + ε)]

− γ 2(
√

4γ 2 + ε2 + 1 + ε − γ 2)

(γ 2 − 1 + ε)[γ 2 − 2(2 + ε)]
, (A17)

cos2 ξyzc = γ 2(
√

4γ 2 + ε2 − 4)

(γ 2 − 1 + ε)[γ 2 − 2(2 + ε)]

− (2 + ε)(
√

4γ 2 + ε2 − 4 + 3ε)

2(γ 2 − 1 + ε)[γ 2 − 2(2 + ε)]
, (A18)

From these, α and δ may be evaluated in closed form in
the respective limits. It is noted that Eqs. (A17) and (A18)
formally exhibit a removable singularity when the trap is

axially symmetric about ŷ, i.e., γ 2 = 1 − ε, and in this limit
we have cos2 ξxyc = 2(1 − ε)/[3(2 − ε)] and cos2 ξyzc = (4 −
ε)/[3(2 − ε)].

APPENDIX B: VISUALIZING THE TF DENSITY PROFILES

In this section, we provide the reader with a description
of how the signs of the velocity amplitudes, α and δ, and
the angle θ − ξ provide us with a considerable amount of
qualitative information of the shape of the Thomas-Fermi
density profile corresponding to a given solution of Eqs. (26)–
(29). Let us restate the definitions of α and δ in terms of the
TF semiaxes:

α =
(

R2
x − R2

y

R2
x + R2

y

)
� cos(θ − ξ ), (B1)

δ =
(

R2
y − R2

z

R2
y + R2

z

)
� sin(θ − ξ ). (B2)

Since Eq. (17) exhibits a twofold rotation symmetry about the
y axis, ξ has a period of π and so we assume that θ − ξ ∈
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(−π/2, π/2] without loss of generality. This choice of the
principal branch fixes cos(θ − ξ ) � 0, whereas sin(θ − ξ ) >

0 when ξ < θ and sin(θ − ξ ) < 0 when ξ > θ . Therefore, by
inspection of Eqs. (B1) and (B2), we have

(i) Rx > Ry > Rz when α > 0, δ > 0, θ − ξ > 0 or when α > 0, δ < 0, θ − ξ < 0,

(ii) Rx > Ry and Rz > Ry when α > 0, δ > 0, θ − ξ < 0 or when α > 0, δ < 0, θ − ξ > 0,

(iii) Ry > Rx and Ry > Rz when α < 0, δ > 0, θ − ξ > 0 or when α < 0, δ < 0, θ − ξ < 0,

(iv) Rz > Ry > Rx when α < 0, δ > 0, θ − ξ < 0 or when α < 0, δ < 0, θ − ξ > 0.

Note that the signs of α, δ, and θ − ξ cannot conclusively
determine an inequality or equality relating Rx and Rz in the
scenarios (ii) and (iii).

In Fig. 10, we illustrate these relations by providing ex-
amples of the typical cross sections of the TF density in
the upright corotating x-y (first and third columns) and x-z
(second and fourth columns) planes. Each row of Fig. 10
corresponds to a different combination of positive or negative
values of α and δ, with α > 0, δ > 0 presented in the first row,
α > 0, δ < 0 in the second row, α < 0, δ > 0 in the third
row, and α < 0, δ < 0 in the fourth row. In addition, the first
and second columns correspond to θ − ξ > 0 and the third
and fourth columns correspond to θ − ξ < 0.

APPENDIX C: ADDITIONAL GPE DATA

For the sake of completeness, we present a comparison of
the values of δ between those pertaining to the TF stationary
solutions and those obtained from the GPE simulations in
Fig. 11. In this figure, the first column [Figs. 11(a), 11(c), and
11(e)] pertains to the trapping parameters ε = 0 and γ = 3/4,
and in the second column [Figs. 11(b), 11(d), and 11(f)],

ε = 0.05 and γ = 4/3. The trap tilt angles represented in the
Fig. 11 are θ = π/8 (first row), θ = π/4 (second row), and
θ = 3π/8 (third row); the analogous comparisons of α and
ε are found in Figs. 6 and 8 for the parameters represented
in the first and second columns, respectively. The deviation of
the GPE-derived values of δ from the corresponding stationary
state values illustrates the transition from the TF state to that
with vortices, due to the dynamical instability of the TF states
as � → min{�xc,�yc}, that is discussed in the main text.

We also present the cross sections of the density, in the x-y
and x-z planes, for the angles θ = {π/8, 3π/8} that were not
discussed in the main text. Specifically, for θ = π/8, these
GPE-derived density cross sections are plotted in Fig. 12
for the trap with ε = 0 and γ = 3/4 and in Fig. 13 for the
parameters ε = 0.05 and γ = 4/3. Similarly, for θ = 3π/8,
the density cross sections are presented in Fig. 14 for the
trapping parameters ε = 0 and γ = 3/4 and in Fig. 15 for the
parameters ε = 0.05 and γ = 4/3. Note that the values of �

where the GPE cross-section snapshots are taken have chosen
in order to illustrate the three main stages of the evolution
of the BEC from TF-like, via the intermediate stage with
a halolike cloud surrounding the deformed core, to a state
containing many vortices.

[1] L. Onsager, Statistical hydrodynamics, Nuovo Cimento 6, 279
(1949).

[2] R. P. Feynman, Chapter II Application of quantum mechanics to
liquid helium, in Progress in Low Temperature Physics, edited
by C. J. Gorter (Elsevier, Amsterdam, 1955), Vol. 1, pp. 17–53.

[3] H. E. Hall and W. F. Vinen, The rotation of liquid helium II I.
Experiments on the propagation of second sound in uniformly
rotating helium II, Proc. R. Soc. London, Ser. A 238, 204
(1956).

[4] H. E. Hall and W. F. Vinen, The rotation of liquid helium II II.
The theory of mutual friction in uniformly rotating helium II,
Proc. R. Soc. London, Ser. A 238, 215 (1956).

[5] G. Gauthier, M. T. Reeves, X. Yu, A. S. Bradley, M. Baker,
T. A. Bell, H. Rubinsztein-Dunlop, M. J. Davis, and T. W.
Neely, Giant vortex clusters in a two-dimensional quantum
fluid, Science 364, 1264 (2019).

[6] S. P. Johnstone, A. J. Groszek, P. T. Starkey, C. J. Billington,
T. P. Simula, and K. Helmerson, Evolution of large-scale flow
from turbulence in a two-dimensional superfluid, Science 364,
1267 (2019).

[7] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and
Superfluidity, 1st ed., International Series of Monographs on
Physics No. 164 (Clarendon Press, Clarendon, UK, 2016).

[8] N. R. Cooper, Rapidly rotating atomic gases, Adv. Phys. 57,
539 (2008).

[9] A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev.
Mod. Phys. 81, 647 (2009).

[10] A. J. Leggett, Quantum Liquids: Bose-Condensation and
Cooper Pairing in Condensed Matter Systems (Oxford Univer-
sity Press, Oxford, UK, 2006).

[11] E. Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Maragò,
and C. J. Foot, Vortex Nucleation in Bose-Einstein Condensates
in an Oblate, Purely Magnetic Potential, Phys. Rev. Lett. 88,
010405 (2001).

[12] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard,
Vortex Formation in a Stirred Bose-Einstein Condensate, Phys.
Rev. Lett. 84, 806 (2000).

[13] T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, and B. P.
Anderson, Observation of Vortex Dipoles in an Oblate Bose-
Einstein Condensate, Phys. Rev. Lett. 104, 160401 (2010).

[14] W. J. Kwon, J. H. Kim, S. W. Seo, and Y. Shin, Observation of
von Kármán Vortex Street in an Atomic Superfluid Gas, Phys.
Rev. Lett. 117, 245301 (2016).

[15] E. A. L. Henn, J. A. Seman, E. R. F. Ramos, M. Caracanhas,
P. Castilho, E. P. Olímpio, G. Roati, D. V. Magalhães, K. M. F.
Magalhães, and V. S. Bagnato, Observation of vortex formation

063608-15

https://doi.org/10.1007/BF02780991
https://doi.org/10.1007/BF02780991
https://doi.org/10.1007/BF02780991
https://doi.org/10.1007/BF02780991
https://doi.org/10.1098/rspa.1956.0214
https://doi.org/10.1098/rspa.1956.0214
https://doi.org/10.1098/rspa.1956.0214
https://doi.org/10.1098/rspa.1956.0214
https://doi.org/10.1098/rspa.1956.0215
https://doi.org/10.1098/rspa.1956.0215
https://doi.org/10.1098/rspa.1956.0215
https://doi.org/10.1098/rspa.1956.0215
https://doi.org/10.1126/science.aat5718
https://doi.org/10.1126/science.aat5718
https://doi.org/10.1126/science.aat5718
https://doi.org/10.1126/science.aat5718
https://doi.org/10.1126/science.aat5793
https://doi.org/10.1126/science.aat5793
https://doi.org/10.1126/science.aat5793
https://doi.org/10.1126/science.aat5793
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/PhysRevLett.88.010405
https://doi.org/10.1103/PhysRevLett.88.010405
https://doi.org/10.1103/PhysRevLett.88.010405
https://doi.org/10.1103/PhysRevLett.88.010405
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.104.160401
https://doi.org/10.1103/PhysRevLett.104.160401
https://doi.org/10.1103/PhysRevLett.104.160401
https://doi.org/10.1103/PhysRevLett.104.160401
https://doi.org/10.1103/PhysRevLett.117.245301
https://doi.org/10.1103/PhysRevLett.117.245301
https://doi.org/10.1103/PhysRevLett.117.245301
https://doi.org/10.1103/PhysRevLett.117.245301


PRASAD, MULKERIN, AND MARTIN PHYSICAL REVIEW A 101, 063608 (2020)

in an oscillating trapped Bose-Einstein condensate, Phys. Rev.
A 79, 043618 (2009).

[16] E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalhães, and
V. S. Bagnato, Emergence of Turbulence in an Oscillating Bose-
Einstein Condensate, Phys. Rev. Lett. 103, 045301 (2009).

[17] P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell,
Driving Bose-Einstein-Condensate Vorticity with a Rotating
Normal Cloud, Phys. Rev. Lett. 87, 210403 (2001).

[18] C. N. Weller, T. W. Neely, D. R. Scherer, A. S. Bradley,
M. J. Davis, and B. P. Anderson, Spontaneous vortices in the
formation of Bose-Einstein condensates, Nature (London) 455,
948 (2008).

[19] A. A. Svidzinsky and A. L. Fetter, Dynamics of a vortex in
a trapped Bose-Einstein condensate, Phys. Rev. A 62, 063617
(2000).

[20] V. Bretin, P. Rosenbusch, F. Chevy, G. V. Shlyapnikov, and
J. Dalibard, Quadrupole Oscillation of a Single-Vortex Bose-
Einstein Condensate: Evidence for Kelvin Modes, Phys. Rev.
Lett. 90, 100403 (2003).

[21] T. P. Simula, T. Mizushima, and K. Machida, Kelvin Waves of
Quantized Vortex Lines in Trapped Bose-Einstein Condensates,
Phys. Rev. Lett. 101, 020402 (2008).

[22] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle,
Observation of vortex lattices in Bose-Einstein condensates,
Science 292, 476 (2001).

[23] G. Baym, Tkachenko Modes of Vortex Lattices in Rapidly Ro-
tating Bose-Einstein Condensates, Phys. Rev. Lett. 91, 110402
(2003).

[24] I. Coddington, P. Engels, V. Schweikhard, and E. A. Cornell,
Observation of Tkachenko Oscillations in Rapidly Rotating
Bose-Einstein Condensates, Phys. Rev. Lett. 91, 100402 (2003).

[25] T.-L. Ho, Bose-Einstein Condensates with Large Number of
Vortices, Phys. Rev. Lett. 87, 060403 (2001).

[26] N. R. Cooper, N. K. Wilkin, and J. M. F. Gunn, Bose-Einstein
Condensates with Large Number of Vortices, Phys. Rev. Lett.
87, 120405 (2001).

[27] N. Regnault and T. Jolicoeur, Quantum Hall Fractions in Ro-
tating Bose-Einstein Condensates, Phys. Rev. Lett. 91, 030402
(2003).

[28] V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff,
and E. A. Cornell, Rapidly Rotating Bose-Einstein Condensates
in and Near the Lowest Landau Level, Phys. Rev. Lett. 92,
040404 (2004).

[29] S. Zuccher, M. Caliari, A. W. Baggaley, and C. F. Barenghi,
Quantum vortex reconnections, Phys. Fluids 24, 125108 (2012).

[30] S. Serafini, L. Galantucci, E. Iseni, T. Bienaimé, R. N. Bisset,
C. F. Barenghi, F. Dalfovo, G. Lamporesi, and G. Ferrari, Vortex
Reconnections and Rebounds in Trapped Atomic Bose-Einstein
Condensates, Phys. Rev. X 7, 021031 (2017)..

[31] K. Sasaki, N. Suzuki, and H. Saito, Bénard–von Kármán Vortex
Street in a Bose-Einstein Condensate, Phys. Rev. Lett. 104,
150404 (2010).

[32] A. W. Baggaley and N. G. Parker, Kelvin-Helmholtz instability
in a single-component atomic superfluid, Phys. Rev. A 97,
053608 (2018).

[33] J. J. García-Ripoll and V. M. Pérez-García, Vortex nucleation
and hysteresis phenomena in rotating Bose-Einstein conden-
sates, Phys. Rev. A 63, 041603(R) (2001).

[34] B. Jackson and C. F. Barenghi, Hysteresis effects in rotating
Bose-Einstein condensates, Phys. Rev. A 74, 043618 (2006).

[35] S. Stringari, Superfluid Gyroscope with Cold Atomic Gases,
Phys. Rev. Lett. 86, 4725 (2001).

[36] E. Hodby, S. A. Hopkins, G. Hechenblaikner, N. L. Smith, and
C. J. Foot, Experimental Observation of a Superfluid Gyroscope
in a Dilute Bose-Einstein Condensate, Phys. Rev. Lett. 91,
090403 (2003).

[37] N. L. Smith, W. H. Heathcote, J. M. Krueger, and C. J. Foot,
Experimental Observation of the Tilting Mode of an Array of
Vortices in a Dilute Bose-Einstein Condensate, Phys. Rev. Lett.
93, 080406 (2004).

[38] A. T. Powis, S. J. Sammut, and T. P. Simula, Vortex Gyroscopic
Imaging of Planar Superfluids, Phys. Rev. Lett. 113, 165303
(2014).

[39] I. Bialynicki-Birula and Z. Bialynicka-Birula, Center-of-mass
motion in the many-body theory of Bose-Einstein condensates,
Phys. Rev. A 65, 063606 (2002).

[40] I. Bialynicki-Birula and T. Sowinski, Gravity-induced reso-
nances in a rotating trap, Phys. Rev. A 71, 043610 (2005).

[41] S. Giovanazzi, A. Görlitz, and T. Pfau, Tuning the Dipolar
Interaction in Quantum Gases, Phys. Rev. Lett. 89, 130401
(2002).

[42] Y. Tang, W. Kao, K.-Y. Li, and B. L. Lev, Tuning the Dipole-
Dipole Interaction in a Quantum Gas with a Rotating Magnetic
Field, Phys. Rev. Lett. 120, 230401 (2018).

[43] E. R. Marshalek, An overlooked figure of equilibrium of a rotat-
ing ellipsoidal self-gravitating fluid and the Riemann theorem,
Phys. Fluids 8, 3414 (1996).

[44] A. Recati, F. Zambelli, and S. Stringari, Overcritical Rotation of
a Trapped Bose-Einstein Condensate, Phys. Rev. Lett. 86, 377
(2001).

[45] S. Sinha and Y. Castin, Dynamical Instability of a Rotat-
ing Bose-Einstein Condensate, Phys. Rev. Lett. 87, 190402
(2001).

[46] C. Lobo, A. Sinatra, and Y. Castin, Vortex Lattice Formation in
Bose-Einstein Condensates, Phys. Rev. Lett. 92, 020403 (2004).

[47] N. G. Parker and C. S. Adams, Emergence and Decay of
Turbulence in Stirred Atomic Bose-Einstein Condensates, Phys.
Rev. Lett. 95, 145301 (2005).

[48] N. G. Parker, R. M. W. van Bijnen, and A. M. Martin, Insta-
bilities leading to vortex formation in rotating Bose-Einstein
condensates, Phys. Rev. A 73, 061603(R) (2006).

[49] I. Corro, N. G. Parker, and A. M. Martin, Rotation of an atomic
Bose-Einstein condensate with and without a quantized vortex,
J. Phys. B 40, 3615 (2007).

[50] K. W. Madison, F. Chevy, V. Bretin, and J. Dalibard, Station-
ary States of a Rotating Bose-Einstein Condensate: Routes to
Vortex Nucleation, Phys. Rev. Lett. 86, 4443 (2001).

[51] G. Hechenblaikner, E. Hodby, S. A. Hopkins, O. M. Maragò,
and C. J. Foot, Direct Observation of Irrotational Flow and Evi-
dence of Superfluidity in a Rotating Bose-Einstein Condensate,
Phys. Rev. Lett. 88, 070406 (2002).

[52] C. J. Pethick and H. Smith, Bose-Einstein Condensation in
Dilute Gases, 2nd ed. (Cambridge University Press, Cambridge,
UK, 2008).

[53] M. Edwards and K. Burnett, Numerical solution of the nonlin-
ear Schrödinger equation for small samples of trapped atoms,
Phys. Rev. A 51, 1382 (1995).

[54] G. Baym and C. J. Pethick, Ground-State Properties of Mag-
netically Trapped Bose-Condensed Rubidium Gas, Phys. Rev.
Lett. 76, 6 (1996).

063608-16

https://doi.org/10.1103/PhysRevA.79.043618
https://doi.org/10.1103/PhysRevA.79.043618
https://doi.org/10.1103/PhysRevA.79.043618
https://doi.org/10.1103/PhysRevA.79.043618
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1103/PhysRevLett.87.210403
https://doi.org/10.1103/PhysRevLett.87.210403
https://doi.org/10.1103/PhysRevLett.87.210403
https://doi.org/10.1103/PhysRevLett.87.210403
https://doi.org/10.1038/nature07334
https://doi.org/10.1038/nature07334
https://doi.org/10.1038/nature07334
https://doi.org/10.1038/nature07334
https://doi.org/10.1103/PhysRevA.62.063617
https://doi.org/10.1103/PhysRevA.62.063617
https://doi.org/10.1103/PhysRevA.62.063617
https://doi.org/10.1103/PhysRevA.62.063617
https://doi.org/10.1103/PhysRevLett.90.100403
https://doi.org/10.1103/PhysRevLett.90.100403
https://doi.org/10.1103/PhysRevLett.90.100403
https://doi.org/10.1103/PhysRevLett.90.100403
https://doi.org/10.1103/PhysRevLett.101.020402
https://doi.org/10.1103/PhysRevLett.101.020402
https://doi.org/10.1103/PhysRevLett.101.020402
https://doi.org/10.1103/PhysRevLett.101.020402
https://doi.org/10.1126/science.1060182
https://doi.org/10.1126/science.1060182
https://doi.org/10.1126/science.1060182
https://doi.org/10.1126/science.1060182
https://doi.org/10.1103/PhysRevLett.91.110402
https://doi.org/10.1103/PhysRevLett.91.110402
https://doi.org/10.1103/PhysRevLett.91.110402
https://doi.org/10.1103/PhysRevLett.91.110402
https://doi.org/10.1103/PhysRevLett.91.100402
https://doi.org/10.1103/PhysRevLett.91.100402
https://doi.org/10.1103/PhysRevLett.91.100402
https://doi.org/10.1103/PhysRevLett.91.100402
https://doi.org/10.1103/PhysRevLett.87.060403
https://doi.org/10.1103/PhysRevLett.87.060403
https://doi.org/10.1103/PhysRevLett.87.060403
https://doi.org/10.1103/PhysRevLett.87.060403
https://doi.org/10.1103/PhysRevLett.87.120405
https://doi.org/10.1103/PhysRevLett.87.120405
https://doi.org/10.1103/PhysRevLett.87.120405
https://doi.org/10.1103/PhysRevLett.87.120405
https://doi.org/10.1103/PhysRevLett.91.030402
https://doi.org/10.1103/PhysRevLett.91.030402
https://doi.org/10.1103/PhysRevLett.91.030402
https://doi.org/10.1103/PhysRevLett.91.030402
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1063/1.4772198
https://doi.org/10.1063/1.4772198
https://doi.org/10.1063/1.4772198
https://doi.org/10.1063/1.4772198
https://doi.org/10.1103/PhysRevX.7.021031
https://doi.org/10.1103/PhysRevX.7.021031
https://doi.org/10.1103/PhysRevX.7.021031
https://doi.org/10.1103/PhysRevX.7.021031
https://doi.org/10.1103/PhysRevLett.104.150404
https://doi.org/10.1103/PhysRevLett.104.150404
https://doi.org/10.1103/PhysRevLett.104.150404
https://doi.org/10.1103/PhysRevLett.104.150404
https://doi.org/10.1103/PhysRevA.97.053608
https://doi.org/10.1103/PhysRevA.97.053608
https://doi.org/10.1103/PhysRevA.97.053608
https://doi.org/10.1103/PhysRevA.97.053608
https://doi.org/10.1103/PhysRevA.63.041603
https://doi.org/10.1103/PhysRevA.63.041603
https://doi.org/10.1103/PhysRevA.63.041603
https://doi.org/10.1103/PhysRevA.63.041603
https://doi.org/10.1103/PhysRevA.74.043618
https://doi.org/10.1103/PhysRevA.74.043618
https://doi.org/10.1103/PhysRevA.74.043618
https://doi.org/10.1103/PhysRevA.74.043618
https://doi.org/10.1103/PhysRevLett.86.4725
https://doi.org/10.1103/PhysRevLett.86.4725
https://doi.org/10.1103/PhysRevLett.86.4725
https://doi.org/10.1103/PhysRevLett.86.4725
https://doi.org/10.1103/PhysRevLett.91.090403
https://doi.org/10.1103/PhysRevLett.91.090403
https://doi.org/10.1103/PhysRevLett.91.090403
https://doi.org/10.1103/PhysRevLett.91.090403
https://doi.org/10.1103/PhysRevLett.93.080406
https://doi.org/10.1103/PhysRevLett.93.080406
https://doi.org/10.1103/PhysRevLett.93.080406
https://doi.org/10.1103/PhysRevLett.93.080406
https://doi.org/10.1103/PhysRevLett.113.165303
https://doi.org/10.1103/PhysRevLett.113.165303
https://doi.org/10.1103/PhysRevLett.113.165303
https://doi.org/10.1103/PhysRevLett.113.165303
https://doi.org/10.1103/PhysRevA.65.063606
https://doi.org/10.1103/PhysRevA.65.063606
https://doi.org/10.1103/PhysRevA.65.063606
https://doi.org/10.1103/PhysRevA.65.063606
https://doi.org/10.1103/PhysRevA.71.043610
https://doi.org/10.1103/PhysRevA.71.043610
https://doi.org/10.1103/PhysRevA.71.043610
https://doi.org/10.1103/PhysRevA.71.043610
https://doi.org/10.1103/PhysRevLett.89.130401
https://doi.org/10.1103/PhysRevLett.89.130401
https://doi.org/10.1103/PhysRevLett.89.130401
https://doi.org/10.1103/PhysRevLett.89.130401
https://doi.org/10.1103/PhysRevLett.120.230401
https://doi.org/10.1103/PhysRevLett.120.230401
https://doi.org/10.1103/PhysRevLett.120.230401
https://doi.org/10.1103/PhysRevLett.120.230401
https://doi.org/10.1063/1.869126
https://doi.org/10.1063/1.869126
https://doi.org/10.1063/1.869126
https://doi.org/10.1063/1.869126
https://doi.org/10.1103/PhysRevLett.86.377
https://doi.org/10.1103/PhysRevLett.86.377
https://doi.org/10.1103/PhysRevLett.86.377
https://doi.org/10.1103/PhysRevLett.86.377
https://doi.org/10.1103/PhysRevLett.87.190402
https://doi.org/10.1103/PhysRevLett.87.190402
https://doi.org/10.1103/PhysRevLett.87.190402
https://doi.org/10.1103/PhysRevLett.87.190402
https://doi.org/10.1103/PhysRevLett.92.020403
https://doi.org/10.1103/PhysRevLett.92.020403
https://doi.org/10.1103/PhysRevLett.92.020403
https://doi.org/10.1103/PhysRevLett.92.020403
https://doi.org/10.1103/PhysRevLett.95.145301
https://doi.org/10.1103/PhysRevLett.95.145301
https://doi.org/10.1103/PhysRevLett.95.145301
https://doi.org/10.1103/PhysRevLett.95.145301
https://doi.org/10.1103/PhysRevA.73.061603
https://doi.org/10.1103/PhysRevA.73.061603
https://doi.org/10.1103/PhysRevA.73.061603
https://doi.org/10.1103/PhysRevA.73.061603
https://doi.org/10.1088/0953-4075/40/18/004
https://doi.org/10.1088/0953-4075/40/18/004
https://doi.org/10.1088/0953-4075/40/18/004
https://doi.org/10.1088/0953-4075/40/18/004
https://doi.org/10.1103/PhysRevLett.86.4443
https://doi.org/10.1103/PhysRevLett.86.4443
https://doi.org/10.1103/PhysRevLett.86.4443
https://doi.org/10.1103/PhysRevLett.86.4443
https://doi.org/10.1103/PhysRevLett.88.070406
https://doi.org/10.1103/PhysRevLett.88.070406
https://doi.org/10.1103/PhysRevLett.88.070406
https://doi.org/10.1103/PhysRevLett.88.070406
https://doi.org/10.1103/PhysRevA.51.1382
https://doi.org/10.1103/PhysRevA.51.1382
https://doi.org/10.1103/PhysRevA.51.1382
https://doi.org/10.1103/PhysRevA.51.1382
https://doi.org/10.1103/PhysRevLett.76.6
https://doi.org/10.1103/PhysRevLett.76.6
https://doi.org/10.1103/PhysRevLett.76.6
https://doi.org/10.1103/PhysRevLett.76.6


STATIONARY STATES, DYNAMICAL STABILITY, AND … PHYSICAL REVIEW A 101, 063608 (2020)

[55] H. Lamb, Hydrodynamics, 6th ed. (Dover, New York, 1945),
Chap. 5, pp. 146–147.

[56] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed.,
Course of Theoretical Physics No. 6 (Butterworth-Heinemann,
Oxford, UK, 1987).

[57] W. D. Heiss and R. G. Nazmitdinov, Self-consistent harmonic
oscillator model and tilted rotation, Phys. Rev. C 65, 054304
(2002).

[58] W.-C. Wu and A. Griffin, Quantized hydrodynamic model and
the dynamic structure factor for a trapped Bose gas, Phys. Rev.
A 54, 4204 (1996).

[59] A. A. Svidzinsky and A. L. Fetter, Normal modes of a vortex
in a trapped Bose-Einstein condensate, Phys. Rev. A 58, 3168
(1998).

[60] W. Bao and Y. Cai, Mathematical theory and numerical methods
for Bose-Einstein condensation, Kinetic Relat. Models 6, 1
(2013).

[61] W. Bao and H. Wang, An efficient and spectrally accurate
numerical method for computing dynamics of rotating Bose-
Einstein condensates, J. Comput. Phys. 217, 612 (2006).

[62] M. Tsubota, K. Kasamatsu, and M. Ueda, Vortex lattice forma-
tion in a rotating Bose-Einstein condensate, Phys. Rev. A 65,
023603 (2002).

[63] K. Kasamatsu, M. Tsubota, and M. Ueda, Nonlinear dynamics
of vortex formation in a rotating Bose-Einstein condensate,
Phys. Rev. A 67, 033610 (2003).

[64] R. M. W. van Bijnen, D. H. J. O’Dell, N. G. Parker, and
A. M. Martin, Dynamical Instability of a Rotating Dipo-
lar Bose-Einstein Condensate, Phys. Rev. Lett. 98, 150401
(2007).

[65] R. M. W. van Bijnen, A. J. Dow, D. H. J. O’Dell, N. G. Parker,
and A. M. Martin, Exact solutions and stability of rotating
dipolar Bose-Einstein condensates in the Thomas-Fermi limit,
Phys. Rev. A 80, 033617 (2009).

[66] A. M. Martin, N. G. Marchant, D. H. J. O’Dell, and N. G.
Parker, Vortices and vortex lattices in quantum ferrofluids, J.
Phys.: Condens. Matter 29, 103004 (2017).

[67] S. B. Prasad, T. Bland, B. C. Mulkerin, N. G. Parker, and A. M.
Martin, Instability of Rotationally Tuned Dipolar Bose-Einstein
Condensates, Phys. Rev. Lett. 122, 050401 (2019).

[68] S. B. Prasad, T. Bland, B. C. Mulkerin, N. G. Parker, and
A. M. Martin, Vortex lattice formation in dipolar Bose-Einstein
condensates via rotation of the polarization, Phys. Rev. A 100,
023625 (2019).

[69] L. B. Taylor, R. M. W. van Bijnen, D. H. J. O’Dell, N. G.
Parker, S. J. J. M. F. Kokkelmans, and A. M. Martin, Syn-
thetic magnetohydrodynamics in Bose-Einstein condensates
and routes to vortex nucleation, Phys. Rev. A 84, 021604(R)
(2011).

[70] C. Qu and S. Stringari, Angular Momentum of a Bose-Einstein
Condensate in a Synthetic Rotational Field, Phys. Rev. Lett.
120, 183202 (2018).

063608-17

https://doi.org/10.1103/PhysRevC.65.054304
https://doi.org/10.1103/PhysRevC.65.054304
https://doi.org/10.1103/PhysRevC.65.054304
https://doi.org/10.1103/PhysRevC.65.054304
https://doi.org/10.1103/PhysRevA.54.4204
https://doi.org/10.1103/PhysRevA.54.4204
https://doi.org/10.1103/PhysRevA.54.4204
https://doi.org/10.1103/PhysRevA.54.4204
https://doi.org/10.1103/PhysRevA.58.3168
https://doi.org/10.1103/PhysRevA.58.3168
https://doi.org/10.1103/PhysRevA.58.3168
https://doi.org/10.1103/PhysRevA.58.3168
https://doi.org/10.3934/krm.2013.6.1
https://doi.org/10.3934/krm.2013.6.1
https://doi.org/10.3934/krm.2013.6.1
https://doi.org/10.3934/krm.2013.6.1
https://doi.org/10.1016/j.jcp.2006.01.020
https://doi.org/10.1016/j.jcp.2006.01.020
https://doi.org/10.1016/j.jcp.2006.01.020
https://doi.org/10.1016/j.jcp.2006.01.020
https://doi.org/10.1103/PhysRevA.65.023603
https://doi.org/10.1103/PhysRevA.65.023603
https://doi.org/10.1103/PhysRevA.65.023603
https://doi.org/10.1103/PhysRevA.65.023603
https://doi.org/10.1103/PhysRevA.67.033610
https://doi.org/10.1103/PhysRevA.67.033610
https://doi.org/10.1103/PhysRevA.67.033610
https://doi.org/10.1103/PhysRevA.67.033610
https://doi.org/10.1103/PhysRevLett.98.150401
https://doi.org/10.1103/PhysRevLett.98.150401
https://doi.org/10.1103/PhysRevLett.98.150401
https://doi.org/10.1103/PhysRevLett.98.150401
https://doi.org/10.1103/PhysRevA.80.033617
https://doi.org/10.1103/PhysRevA.80.033617
https://doi.org/10.1103/PhysRevA.80.033617
https://doi.org/10.1103/PhysRevA.80.033617
https://doi.org/10.1088/1361-648X/aa53a6
https://doi.org/10.1088/1361-648X/aa53a6
https://doi.org/10.1088/1361-648X/aa53a6
https://doi.org/10.1088/1361-648X/aa53a6
https://doi.org/10.1103/PhysRevLett.122.050401
https://doi.org/10.1103/PhysRevLett.122.050401
https://doi.org/10.1103/PhysRevLett.122.050401
https://doi.org/10.1103/PhysRevLett.122.050401
https://doi.org/10.1103/PhysRevA.100.023625
https://doi.org/10.1103/PhysRevA.100.023625
https://doi.org/10.1103/PhysRevA.100.023625
https://doi.org/10.1103/PhysRevA.100.023625
https://doi.org/10.1103/PhysRevA.84.021604
https://doi.org/10.1103/PhysRevA.84.021604
https://doi.org/10.1103/PhysRevA.84.021604
https://doi.org/10.1103/PhysRevA.84.021604
https://doi.org/10.1103/PhysRevLett.120.183202
https://doi.org/10.1103/PhysRevLett.120.183202
https://doi.org/10.1103/PhysRevLett.120.183202
https://doi.org/10.1103/PhysRevLett.120.183202

