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Ground-state Hartree-Fock-Bogoliubov (HFB) theory is applied to imbalanced spin-1/2 one-dimensional (1D)
Fermi systems that are spatially confined by either a harmonic or a hard-wall trapping potential. It has been hoped
that such systems, which can be realized using ultracold atomic gases, would exhibit the long-sought-after Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) superfluid phase. The HFB formalism generalizes the standard Bogoliubov
quasiparticle transformation by allowing for Cooper pairing to exist between all possible single-particle states
and accounts for the effects of the inhomogeneous trapping potential as well as the mean-field Hartree potential.
This provides an unbiased framework to describe inhomogeneous densities and pairing correlations in the FFLO
state of a confined 1D gas. In a harmonic trap, numerical minimization of the HFB ground-state energy yields a
spatially oscillating order parameter reminiscent of the FFLO state. However, we find that this state has almost no
imprint in the local fermion densities (consistent with experiments that found no evidence of the FFLO phase).
In contrast, for a hard-wall geometry, we find a strong signature of the spatial oscillations of the FFLO pairing
amplitude reflected in the local in situ densities. In the hard-wall case, the excess spins are strongly localized
near regions where there is a node in the pairing amplitude, creating an unmistakable crystalline modulation of
the density.

DOI: 10.1103/PhysRevA.101.063607

I. INTRODUCTION

Irrespective of the temperature, applying a sufficiently
strong external magnetic field to a superconductor destroys
the superconducting state. For a conventional superconductor,
a spin-imbalanced Fermi liquid becomes the energetically
favored phase above this critical-field strength. Driving this
phase transition is the mismatch of the spin-↑ and spin-↓
Fermi energies, which is a consequence of the Zeeman split-
ting caused by the applied magnetic field. Within BCS theory
[1], for an s-wave superconductor and weak interactions, once
the Zeeman splitting reaches a critical value, on the order
of the superconducting gap �, the so-called Chandrasekhar-
Clogston limit [2,3], the superconducting state is no longer
energetically favorable. Depending on the effective dimen-
sionality and interaction strength, a similar phase transition
can occur in neutral fermionic superfluids, which are now
commonly realized using ultracold atomic gases. In such
systems, the mismatch of Fermi energies is accomplished by
selectively populating two pseudo-spin-1/2 hyperfine states of
the atoms. Thus, in contrast to an archetypal condensed-matter
system, the spin imbalance in ultracold atomic gases can be
readily fine-tuned across the full parameter range, from zero
imbalance, equal numbers of each spin, to fully polarized.

The Fermi-liquid phase is not the only possibility for
fields greater than the Chandrasekhar-Clogston limit. Indeed,
several unconventional superconducting and superfluid phases

*kpatton@georgiasouthern.edu

have been theoretically predicted to exist in this regime. One
such phase is the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [4–6], which has attracted considerable attention for
many years. Unlike a conventional fermionic superfluid,
where the Cooper pairs have zero net momentum, the FFLO
state is composed of pairs having momentum Q. In a trans-
lationally invariant system and at weak coupling, it can be
shown that Q ≈ k↑

F − k↓
F, where kσ

F are the Fermi wave vectors
of each spin. This momentum corresponds to a periodic real-
space order parameter �(r) = �(r + a), where the lattice
constant |a| ≈ 2π/|Q|. Fulde and Ferrell (FF) proposed a
plane-wave order parameter �(r) ∝ eiQ·r, while Larkin and
Ovchinnikov (LO) proposed a standing-wave version �(r) ∝
cos(Q · r). Above the Chandrasekhar-Clogston limit, both are
energetically more favorable than a Fermi liquid, but the LO
state is believed to have the lowest energy of the two.

In addition to the ground state spontaneously breaking the
U(1) symmetry related to the fixed particle number, the FF-
state order parameter would also break inversion symmetry,
while the LO state would break translational invariance. It
is thought that the breaking of these additional symmetries,
especially for an LO state, would lead to a clear experimental
signature in the local density [7]. Indeed, an LO-type super-
fluid would possess a modulated density that is commensurate
with the oscillations of the local pairing function. Physically,
this density modulation results from the unpaired atoms due to
the imbalance, localizing near the nodes of the pairing ampli-
tude. As a result, the simultaneous coexistence of a magnetic
lattice order and a superfluid would occur. Unfortunately,
despite considerable effort over the past 60 years, little to no
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conclusive experimental evidence of an FFLO state in either
ultracold gases [8–23] or condensed-matter systems [24–27]
has been found.

As previously mentioned, the particle number of each
pseudospin is externally controllable in ultracold atomic sys-
tems, as well as the atoms’ effective spatial dimensionality
and interparticle interactions. These experimental controls
make ultracold atomic gases an almost ideal physical system
to realize exotic states of matter. While the regime of stability
for the FFLO state of a trapped Fermi gas is predicted to
be rather narrow in three dimensions [28–30], the situation
improves in lower dimensions. In particular, the FFLO phase
has been theoretically predicted to be stable over a wide
parameter range in one dimension (1D) [31,32]. Experiments
[23] for a harmonically trapped gas in 1D show that at small
population imbalances, the gas is locally magnetized only in a
central region of the trap, while the edges of the cloud remain
unpolarized. The spatial extent of the polarized central region
grows with increasing imbalance until a critical polarization
Pc is reached, above which the entire cloud becomes mag-
netic. Nevertheless, no sign of an underlying FFLO-like order
parameter is discernible in the in situ densities. However, it is
unclear how the anisotropic trapping potential, which is om-
nipresent in ultracold atomic systems and breaks translational
symmetry, effects spatially varying phases, such as FFLO, or
their detection.

Further uncertainty arises as predictions from different
theoretical methods have varying degrees of agreement with
each other and the experiments. For example, an exact ther-
modynamic Bethe ansatz combined with the local-density
approximation (BA + LDA) appears to be consistent with
experimental results [31–35]. The results of BA + LDA pre-
dict a magnetized central core that grows with increasing
polarization. The critical polarization Pc, above which the
entire cloud is magnetized, is also in general agreement with
the experimental results. In principle, the Bethe ansatz gives
the exact many-body wave function, from which the local
density can be obtained. Unfortunately, extracting the local
density from the many-body wave function is difficult. Thus,
the results of Refs. [31–35] represent only the average density
(total particle number N per volume V : n = N/V ) in the
thermodynamic limit and not the exact local density n(x). The
average density in the inhomogeneous trap is found within
the LDA, which amounts to replacing the thermodynamic
chemical potential (μ) dependence of the average density
n(μ) by a spatially vary one, μ → μ − V (x), where V (x)
is the trapping potential, n[μ − V (x)]. Unsurprisingly, the
results show no spatial modulation of the average density
that would be indicative of an FFLO-like state. To directly
take into account the effects of the trapping potential, the
present authors put forth a BCS-like variational wave function
in Ref. [36]. Reminiscent of the experiment and BA + LDA,
this wave function also produced magnetized and unmagne-
tized regions, but unlike BA + LDA, it further showed LO-
like oscillations in the local pairing amplitude. Nonetheless,
no signature of these oscillations was reflected in the local
in situ densities. In contrast, local mean-field theory [37–41]
and various lattice models and methods [42–48] tend to show
large oscillations in the pairing amplitude that are clearly (in

most cases) correlated with a modulation of the local density
or magnetization.

In this article, we take yet another approach to the physics
of FFLO phases in trapped fermionic atomic gases with an
imposed population imbalance. We apply the configuration-
based Hartree-Fock-Bogoliubov (HFB) [49–52] theory to
these systems. HFB theory is a generalization of Hartree-Fock
mean-field theory to systems with Cooper pairing. Unlike
standard BCS theory, where the Bogoliubov quasiparticles
are a linear combination of a single particle and a single
hole, in HFB theory, a quasiparticle is represented by a linear
combination of all possible particle and hole states. This is of
importance because, in a balanced and translationally invari-
ant system, the only particle-particle interaction terms that are
meaningful in the renormalization-group (RG) sense are the
ones that give rise to the formation of standard Cooper pairs,
i.e., the interaction between plane-wave-time-reserved states
[53]. However, since the universality class of an infinite FFLO
system is currently unknown, it is not clear what the relevant
interactions (in the RG sense) in a trapped and/or imbalanced
system are. Hartree-Fock-Bogoliubov theory circumvents this
ambiguity by allowing for a broad range of pairing and density
correlations.

An additional advantage of the HFB approach is that it
takes into account the effect of the nontrivial inhomogeneous
Hartree potential. The real-space, or coordinate, version of
HFB was previously applied to trapped and imbalanced sys-
tems [37–40]. Here, we apply HFB in the single-particle
basis, the so-called configuration formalism. This formalism
has been highly developed in the nuclear physics community
[49]. The benefit of this approach is that it results in more
detailed information about the system. For example, besides
the local densities and pairing amplitude, one has access to
the occupation probability of each level, the pairing amplitude
between all single-particle states, the mode-resolved single-
particle density matrix, or any other equal-time ground-state
correlation function. This leads to building a richer and more
physically intuitive picture of the FFLO state in trapped
systems. Additionally, this method allows for optimal con-
trol over the size of the Hilbert space needed for numerical
calculations as the strength of particle-particle interactions is
increased. This will become especially important in higher-
dimensional systems where regularization of the two-body
interaction potential is necessary. Applying HFB to ultracold
atomic gases in higher dimensions will be part of future
work.

In the following sections, we present the application of
HFB theory to find the mean-field ground state of polarized
spin-1/2 fermions in 1D. We obtained results for two specific
systems: fermions with a harmonic (parabolic) confining trap
and fermions with a box-shaped (hard-wall, or “homoge-
neous”) confining potential [54,55]. In the harmonic case, our
HFB method agrees with both experiments and BA + LDA
theory for observables like the critical Pc, giving us confidence
in this method. Our main findings concern the existence
and nature (and potential observability) of any FFLO pairing
correlations in the presence of these two types of trapping
potential. In general, we find that the ground states of both
systems, in the polarized regime, are FFLO-like, showing
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FIG. 1. The top and bottom panels show the local magnetiza-
tion (black curves) and pairing amplitude (red curves) for a one-
dimensional imbalanced Fermi superfluid confined in a parabolic
single-particle potential (top panel) and a homogeneous box trap
(bottom panel). While each case shows oscillatory pairing corre-
lations reminiscent of an FFLO [4,5] phase, the signature of such
pairing in the local density is much stronger in the case of a box trap.
The arrows indicate which y axis each curve corresponds to. (All
parameters are the same as in Figs. 2 and 3).

spatial oscillations in both the local pairing amplitude and the
local densities. However, the details show significant differ-
ences between the two systems, as shown in Fig. 1. For the
harmonically trapped system, the amplitudes of the density
modulations are relatively small, especially in comparison to
the hard-wall case, and would probably be entirely washed out
at finite temperature [38] or by other experimental limitations
(such as imaging resolution). Another striking difference is
that unlike the harmonic trap, there is no central region of
magnetization in the hard-wall system. Instead, at all polar-
izations, the system is magnetic only near the nodes of the
pairing amplitude with zero magnetization elsewhere; that is,
the local magnetization has a definitive crystalline order. Thus,
our results imply that it may be much easier to experimentally
detect the FFLO state in a box-shaped trap.

The rest of this paper is organized as follows. In Sec. II, we
present the general HFB theory for a system of fermions in
one spatial dimension subject to a trapping potential V (x). In
Sec. III we apply the HFB theory to the two specific systems
described above, i.e., the case of harmonically trapped atoms
characterized by trap frequency ω0 [i.e., V (x) = 1

2 mω2
0x2] and

the case of a homogeneous box trap of size L [i.e., V (x) =
0 for 0 < x < L and V (x) = ∞ elsewhere]. In Sec. IV, we
elaborate on these results and discuss the prospects for their
extension and future work.

II. THEORY

Here, for completeness, we recap the salient aspects of
HFB theory, which can be found in the literature [49–52],
although, unfortunately, with varying notational conventions.
In principle, this can be applied to systems of arbitrary di-
mensionality, but currently, we will only be interested in 1D
systems.

We take the second quantized 1D Hamiltonian of a trapped
interacting spin-1/2 Fermi system to be (h̄ = 1)

Ĥ =
∑

σ

∫ ∞

−∞
dx �̂†

σ (x)

[
−∇2

2m
+ V (x)

]
�̂σ (x)

+ 1

2

∑
σ,σ ′

∫ ∞

−∞
dxdx′ �̂†

σ (x)�̂†
σ ′ (x′)U (x−x′)�̂σ ′ (x′)�̂σ (x),

(1)

where V (x) is the external trapping potential and U (x − x′)
is the two-body interaction. In the following sections we will
restrict ourselves to a harmonic or hard-wall trapping potential
and assume an attractive short-range interaction, which is
common for ultracold atomic gases, but for now the trapping
potential and interaction will remain arbitrary.

Expanding the field operators in terms of mode operators,
�̂ (†)

σ (x) = ∑
n ψ (∗)

n (x)â(†)
nσ , the Hamiltonian becomes

Ĥ =
∑
n,σ

εnâ†
nσ ânσ + 1

2

∑
σ,σ ′

∑
i, j,k,l

Ui, j,k,l â
†
iσ â†

jσ ′ âkσ ′ âlσ , (2)

where ∫ ∞

−∞
dx ψ∗

n (x)

[
−∇2

2m
+ V (x)

]
ψn′ (x) = δn,n′εn (3)

and

Ui, j,k,l =
∫ ∞

−∞
dxdx′ ψ∗

i (x)ψ∗
j (x′)U (x − x′)ψk (x′)ψl (x).

(4)

Going forward, it will be convenient to express the terms
appearing in Eq. (2) using a composite orbital-spin index,
α = (n, σ ). Then, the matrix elements of the kinetic energy
and interaction terms are

Tα,β = δnα,nβ
δσα,σβ

εnα
= δα,βεα (5)

and

Uα,β,δ,γ = δσα,σγ
δσβ ,σδ

Uiα, jβ ,kδ ,lγ . (6)

The full Hamiltonian is then

Ĥ =
∑
α,β

Tα,β â†
α âβ + 1

2

∑
α,β,δ,γ

Uα,β,δ,γ â†
α â†

β âδ âγ , (7)

where
∑

α = ∑
n

∑
σ , etc. It will be further convenient to

antisymmetrize the interaction term Uα,β,δ,γ in the last two
indices:

Uα,β,[δ,γ ] = 1
2 (Uα,β,δ,γ − Uα,β,γ ,δ ) ≡ 1

2U α,β,δ,γ . (8)

Using Eq. (4), one can show U α,β,δ,γ has the following sym-
metry relations:

U α,β,δ,γ = −U α,β,γ ,δ = −U β,α,δ,γ = U β,α,γ ,δ = U
∗
δ,γ ,α,β .

(9)

This finally gives [56]

Ĥ =
∑
α,β

Tα,β â†
α âβ + 1

4

∑
α,β,δ,γ

U α,β,δ,γ â†
α â†

β âδ âγ . (10)
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The basic idea of HFB theory is to generalize the well-
known Bogoliubov-Valatin transformation [57,58] to allow
for the most general transformation to quasiparticle operators,
γ̂α and γ̂ †

α , in terms of the single-particle states. To do this we
define

γ̂ †
α =

∑
α′

[
(V T)α,α′ âα′ + (UT)α,α′ â†

α′
]
, (11a)

γ̂α =
∑
α′

[
(V †)α,α′ â†

α′ + (U†)α,α′ âα′
]
, (11b)

where V and U are matrices whose elements are the varia-
tional parameters that will be used to minimize the mean-
field ground-state energy. The inverse transformation from
quasiparticle back to single-particle operators can be most
easily found by first defining the column vector

(
â
â†

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ân1↑
ân2↑

...
ân1↓
ân2↓

...
â†

n1↑
...

â†
n1↓
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

with similar notation for (γ̂
γ̂† ). The unitary transformation,

Eq. (11), between the two can then be written in block matrix
form as (

γ̂

γ̂†

)
=

(
U† V †

V T UT

)(
â
â†

)
≡ U

(
â
â†

)
. (13)

By unitarity (U† = U−1) of the transformation we require

U†U = UU† = 1, (14)

where

U† =
(

U V ∗

V U∗

)
. (15)

Thus, from Eqs. (14) and (15) this implies we must have

U†U + V †V = 1, UU† + V ∗V T = 1,

UTV + V TU = 0, UV † + V ∗UT = 0. (16)

Furthermore, from Eq. (13) the inverse transformation is given
as (

â
â†

)
= U−1

(
γ̂

γ̂†

)
= U†

(
γ̂

γ̂†

)
, (17)

or explicitly by

âα =
∑
α′

(Uα,α′ γ̂α′ + V ∗
α,α′ γ̂

†
α′ ), (18a)

â†
α =

∑
α′

(Vα,α′ γ̂α′ + U ∗
α,α′ γ̂

†
α′ ). (18b)

Next, we assume an (unnormalized) mean-field ground
state of the form |〉 = ∏

α γ̂α|vac〉. The mean-field ground
state acts as a quasiparticle vacuum and satisfies γ̂α|〉 = 0
for all α. This implies 〈|γ̂ †

α γ̂α′ |〉 = 0. We further require
that there be no residual pairing between quasiparticles in the
ground state, i.e.,

〈|γ̂αγ̂α′ |〉 = 〈|γ̂ †
α γ̂

†
α′ |〉 = 0. (19)

Thus, the one-body density matrix in the single-particle basis
is given by

ρα,α′ ≡ 〈|â†
α âα′ |〉

〈|〉 =
∑

β

Vα,βV ∗
α′,β

= (VV †)α,α′ , (20)

and similarly, for the anomalous one-body density matrix

κα,α′ ≡ 〈|âα âα′ |〉
〈|〉 =

∑
β

Uα,βV ∗
α′,β

= (UV †)α,α′ . (21)

One can show that these quantities obey the following sym-
metry conditions:

ρ = ρ†, κ∗ = −κ†. (22)

Using Eq. (18), the full Hamiltonian, Eq. (10), can be
expressed in terms of quasiparticle operators as

Ĥ = E0 + Ĥ1b + Ĥ2b, (23)

where

E0 = Tr
(
Tρ∗ − 1

2�ρ∗ + 1
2�κ∗) (24)

is the quasiparticle mean-field ground- (vacuum) state energy
and Ĥ1b and Ĥ2b are one- and two-body quasiparticle operator
terms. The one- and two-body terms are not of use in the
present work and are quite lengthy and thus will not be
explicitly given here. The inclusion of these terms would be
necessary for excited quasiparticle states, for a finite temper-
ature, or for the inclusion of quasiparticle interactions, which
we do not consider here. They can be found in the literature,
for example, see Ref. [59]. In Eq. (24) we have also defined
the Hartree energy �α,δ and pairing matrix �α,β as

�α,δ =
∑
β,γ

U α,β,δ,γ ρ∗
γ ,β . (25)

�α,β = 1

2

∑
δ,γ

U α,β,δ,γ κδ,γ . (26)

Similarly, the local spin-resolved densities, magnetization,
and pairing amplitude are given by

nσ (x) =
∑
n,n′

ψ∗
n (x)ψn′ (x)ρnσ,n′σ , (27)

m(x) = n↑(x) − n↓(x), (28)

and

�σ,σ ′ (x) =
∑
n,n′

ψn(x)ψn′ (x)κnσ,n′σ ′ , (29)

respectively.
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Finally, we seek to numerically minimize the ground-state
energy E0, Eq. (24), as a function of the matrices U and V ,
subject to the unitary constraints (16), the symmetry relations
of ρ and κ given in Eq. (22), and the total particle number
constraint

N = Tr ρ = Tr VV †. (30)

In an imbalanced gas with different numbers for spin-↑ and
spin-↓

N↑ =
∑

n

ρn↑,n↑, N↓ =
∑

n

ρn↓,n↓ (31)

are the relevant constraints.
Because the ground-state energy, Eq. (24), is expressed in

terms of ρ and κ, it is natural to use their matrix elements
as the variables of minimization as opposed to the matrix
elements of U and V , which appear in the unitary constraints,
Eq. (16). Using the definitions of ρ and κ given in Eqs. (20)
and (21), one can show that the unitary constraints can also be
expressed as

κT + κ = 0, (32a)

κρ − ρκ = 0, (32b)

ρ2 − ρ − κ∗κ = 0. (32c)

Along with the condition ρ = ρ† this completes the minimiza-
tion constraints.

III. RESULTS

Our next task is to apply the HFB formalism outlined in
the previous section to scenarios that are relevant to recent
experiments in ultracold atomic gases, namely, spatially con-
fined one-dimensional imbalanced spin-1/2 Fermi systems.
In Sec. III A, the external trapping potential is chosen to be
harmonic, and in Sec. III B a hard-wall box is assumed. For
both setups we use a short-range particle-particle interaction
U (x − x′) = λδ(x − x′), which is relevant for dilute ultracold
atomic gases.

We will further simplify the problem by assuming both
ρ and κ are real. This choice precludes a complex FF-type
pairing amplitude. Our justification for this assumption is that
the LO-type state (in which pairing is real) is believed to
be energetically more stable [5]; nonetheless, relaxing this
simplification will be left for future work. With this assump-
tion, the HFB ground-state energy and constraint conditions
become

E0 = Tr
(
Tρ − 1

2�ρ + 1
2�κ

)
(33)

and

N↑ =
∑

n

ρn↑,n↑, N↓ =
∑

n

ρn↓,n↓, (34)

along with

ρ = ρT, (35a)

κ = −κT, (35b)

κρ = ρκ, (35c)

ρ2 − ρ = κκ. (35d)

The solution to a large-scale constrained nonlinear mini-
mization problem is needed to find the ground-state energy.
The open-source software IPOPT [60] was used for this pur-
pose. In principle, both ρ and κ are infinite-dimensional ma-
trices, but for computational purposes, a finite representation
must be used. In a subspace of the full Hilbert space, each
matrix has a linear size of 2D, where the 2 accounts for the
spin and D is the dimension of the subspace. For both trapping
potentials, we used D = 40. This amounts to a minimization
problem in approximately 13 000 variables, the total matrix
elements of ρ and κ. With this cutoff, the number of particles,
and interaction strength λ used in the calculations, the occupa-
tion of the highest state in the restricted Hilbert space remains
at only the 1% level for either trapping potential.

A. Harmonic trap

In this section we specialize the general formalism of
Sec. II to the case of a harmonically trapped gas with a short-
range two-body interaction. The external trapping potential of
a 1D harmonic oscillator with trapping frequency ω0 is taken
to be

V (x) = 1
2 m ω2

0x2, (36)

and single-particle wave functions of V (x) are the well-known
harmonic oscillator states

ψn(x) = 1√
2nn!a

√
π

e−x2/(2a2 )Hn(x/a), (37)

where Hn(x) are the Hermite polynomials and a = (mω0)−1/2

is the oscillator length. The allowed principal quantum num-
bers are n = 0, 1, 2, 3, . . ., and the single-particle spectrum
is εn = ω0(n + 1/2). Using the above oscillator states and a
δ function interaction, the matrix elements of the two-body
interaction term, Eq. (4), are given by

Un1,n2,n3,n4
= λ

∫ ∞

−∞
dx ψ∗

n1
(x)ψ∗

n2
(x)ψn3

(x)ψn4
(x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if 2M is odd,

λ

πa
(−1)M−n3−n1 2−1/2(n1!n2!n3!n4!)−1/2 �(M − n2 + 1/2)�(M − n4 + 1/2)

�(M − n2 − n4 + 1/2)
× 3F2(−n1,−n3,−M + n2 + n4 + 1/2; −M + n4 + 1/2,−M + n2 + 1/2; 1) if 2M is even,

(38)
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FIG. 2. (a)–(d) Harmonic trap case: the dimensionless form of the ground-state local spin-resolved densities ñσ (x) = a nσ (a x̃), magneti-
zation m̃(x) = ñ↑(x) − ñ↓(x), and pairing amplitude �̃

σ,σ ′ (x) = a ω−1
0 �

σ,σ ′ (a x̃) for a harmonic trapping potential are shown for various spin
polarizations P = (N↑ − N↓)/(N↑ + N↓), where ω0 and a are the harmonic trap frequency and oscillator length, respectively. For clarity, we
note that the densities always satisfy ñ↑(x) � ñ↓(x). In addition, for each polarization the one-body density matrix ρα,β , the occupations
of the harmonic states ρα,α , and pairing matrix �̃α,β = ω−1

0 �α,β are also shown. The dimensionless interaction strength for all plots is
λ̃ = (ω0a)−1λ = −100/π 2.

where 2M = n1 + n2 + n3 + n4, �(x) is the standard gamma
function, and 3F2(a1, a2, a3; b1, b2; z) is a hypergeometric
function. In the evaluation of Eq. (38) one needs to integrate
the product of four Hermite polynomials times a Gaussian.
This integral can be found in Ref. [61].

For ultracold atomic gases in 1D harmonic traps, the cou-
pling constant λ of the short-range pseudointeraction can be
expressed in terms of an effective 1D scattering length a1D,
λ = 2h̄2/(ma1D), where a1D is related to a measurable three-
dimensional (3D) scattering length a3D and the oscillator
length a by [62]

a1D = − a2

a3D

(
1 − C

a3D√
2a

)
, (39)

with C ≈ 1.46. The results presented in Fig. 2 correspond to
λ = −(100/π2)h̄ω0a or a1D = −(2π2/100)a. In the experi-
ments of Ref. [23] a ≈ 1700aB, where aB is the Bohr radius.
With the experimental value of the oscillator length one finds
that the effective 1D scattering length for these calculations
would be a1D ≈ −340aB. In comparison, Ref. [23] reports an
effective 1D scattering length of approximately −2100aB.

The four panels of Fig. 2 depict our results for the evolution
of a harmonically trapped 1D Fermi gas for four different
values of the total polarization P = (N↑ − N↓)/(N↑ + N↓) at
fixed interaction strength. Each panel shows the local spin-
resolved densities nσ (x) [Eq. (27)], the local magnetization
m(x) [Eq. (28)], the local pairing amplitude �σ,σ ′ (x), the
one-body mode-resolved density matrix ρα,β [Eq. (20)], and
the pairing matrix �α,β [Eq. (26)].
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As we have discussed, our primary interest is how FFLO
pairing correlations emerge with increasing P and how they
would be reflected in the local densities. We start with the
balanced case, P = 0, shown in Fig. 2(a). We find a local den-
sity and pairing amplitude that are spatially inhomogeneous
due to the imposed trapping potential, with shapes that are
consistent with earlier work based on mean-field theory and
the Bethe ansatz [63]. Furthermore, the one-body density and
pairing matrices are mostly diagonal in index space.

Figures 2(b)–2(d) show the evolution of these system
properties with increasing P, as homogeneous pairing is in-
terrupted by the imposed population imbalance. Consistent
with early experiment and theory work [23], we find the
imposed population imbalance leads to a magnetized central
region reflecting a magnetized core and balanced superfluid
edges. With increasing P, the magnetized core increases in
size until a critical polarization Pc is reached, beyond which
the entire cloud is polarized. For the calculations presented
here, we find that Pc lies between 0.11 and 0.14. This is in
close agreement with experiments that find Pc ∼ 0.13 and in
qualitative agreement with BA + LDA, which predicts Pc ∼
0.17 [23].

Figures 2(b)–2(d) also show that the local pairing ampli-
tude �↑↓(x) is oscillatory in real space in the imbalanced
regime, qualitatively consistent with a LO-like pairing func-
tion. A key well-known property of the FFLO state is the
prediction that the FFLO wave vector Q is proportional to the
imbalance. Here, this is reflected in the fact that the number
of nodes in �↑↓(x) increases with increasing P. In fact, for
the results presented here the number of nodes is precisely
N↑ − N↓ since �↑↓(x) shows two, three, and four nodes in
Figs. 2(b)–2(d), respectively. Thus, for each additional “un-
paired” majority spin another node in the pairing function is
created.

Thus, our results confirm the expectation of an FFLO phase
of harmonically trapped 1D imbalanced Fermi gases, with
nodes in the local pairing amplitude. Our next question is
how these nodes are reflected in the principal observable in
cold-atom experiments, i.e., the local atom densities. Unfortu-
nately, as seen in Figs. 2(b)–2(d), the location of the nodes is
only weakly reflected in the local densities and magnetization.
Even if these small oscillations in the magnetization could be
measured, providing a possible signature of the FFLO phase
in experiments, we must recall that our results are for the
ground state. Finite-temperature effects would most certainly
suppress these small oscillations even further, making them
likely undetectable [38] via a direct imaging of the density.
Extending these results to finite temperature [64] will be left
for future work.

The nontrivial off-diagonal values seen in the one-body
density matrix ρα,β and the pairing matrix �α,β signify
scattering from the Hartree potential, and more importantly,
they indicate the fact that the canonically paired states are
not simple pairs of harmonic oscillator states, i.e., �n,n′ �∝
〈ân↑ân↓〉δn,n′ . But by the Bloch-Messiah-Zumino theorem
[65,66] a transformation exists that can bring both ρα,β and
κα,β into diagonal and canonical form, respectively. Thus, the
Cooper paired states can be represented as a linear combina-
tion of many harmonic states. Furthermore, with increasing
polarization, the off-diagonal spectral weight increases, with

no clearly discernible pattern. The nontrivial occupation prob-
abilities ρα,α of the oscillator states is also indicative of an
unusual pairing solution.

B. Hard-wall trap

In this section we turn our attention to the case of a
hard-wall or “box”-shaped trap in one spatial dimension,
characterized by the following single-particle potential for a
1D infinite square well of width L:

V (x) =
{

0 for 0 � x � L,

∞ otherwise. (40)

The single-particle spectrum of the well is

εn = π2

2mL2
n2 ≡ εn2, (41)

where ε = π2/(2mL2), which has units of energy (h̄ = 1).
Numerical results for this system will be shown using ε for
an energy scale and L for length. The single-particle states for
the potential given by Eq. (40) are the conventional

ψn(x) =
{√

2
L sin(knx) for 0 � x � L,

0 otherwise,
(42)

where kn = πn/L, with n = 1, 2, 3, 4, . . .. For a short-range
interaction, U (x − x′) = λδ(x − x′), the matrix elements of
the two-body interaction term, Eq. (4), are then

Un1,n2,n3,n4

= λ

∫ L

0
dx ψ∗

n1
(x)ψ∗

n2
(x)ψn3

(x)ψn4
(x)

= λ

4L

∑
ε1, ε2 = ±
ε3, ε4 = ±

ε1ε2ε3ε4 I (ε1n1 + ε2n2 + ε3n3 + ε4n4),

(43)

where I (n) acts like a Kronecker δ function:

I (n) =
{

1 if n = 0,

0 if n �= 0.
(44)

At the present time, an expression, such as Eq. (39),
that connects the pseudopotential interaction strength λ to a
measurable quantity like the 3D s-wave scattering length is
not known for a box geometry. Nonetheless, one would still
expect that Eq. (39) would be correct to at least the order
of magnitude level when applied to the hard-wall case. As
the results shown in Fig. 3 correspond to λ = −(200/π2)εL,
using a ∼ L and ε ∼ ω0 in Eq. (39) gives an effective 1D
scattering a1D ∼ −700aB for these simulations.

Our results for the hard-wall case are shown in Fig. 3,
where we show the same system properties as in Fig. 2 for four
values of the imposed polarization P. Starting with Fig. 3(a),
P = 0, we find essentially homogeneous results for the local
density and local pairing amplitude, except for small oscil-
lations near the box edge. Our results for the mode-resolved
one-body density matrix and pairing matrix of this balanced
1D gas are approximately diagonal, with no unusual structure.
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FIG. 3. (a)–(d) Hard-wall case: the dimensionless form of the ground-state local spin-resolved densities ñσ (x) = L nσ (L x̃), magnetization
m̃(x) = ñ↑(x) − ñ↓(x), and pairing amplitude �̃

σ,σ ′ (x) = L ε−1 �
σ,σ ′ (L x̃) for a hard-wall trapping potential are shown for various spin

imbalances P = (N↑ − N↓)/(N↑ + N↓), where ε = π 2/(2mL2) and L is the box length. For clarity, we note that the densities always satisfy
ñ↑(x) � ñ↓(x). In addition for each polarization the one-body density matrix ρα,β and pairing matrix �̃α,β = ε−1 �α,β are also shown. The
dimensionless interaction strength for all plots is λ̃ = (εL)−1λ = −200/π 2.

Figures 3(b)–3(d) show the fate of this balanced superfluid
state under an imposed population imbalance. As in the case
of a harmonically trapped gas, such an imbalance leads to a
spatially oscillating pair amplitude �σ,σ ′ (x), with the number
of nodes in the cloud interior being again proportional to N↑ −
N↓ and given by 1,2,3 in Figs. 3(b), 3(c) and 3(d), respectively.
[In this counting we are ignoring the nodes of �σ,σ ′ (x) at the
edges of the box.]

Although the local pairing in the FFLO state is qualitatively
similar to the harmonic case, the reflection of this state in the
local atom densities is strikingly different. Indeed, Figs. 3(b)–
3(d) show relatively narrow peaks in the local density of
spin-↑ atoms (and corresponding small dips in the local spin-
↓ density) located spatially near the nodes in �σ,σ ′ (x).

Another key difference relative to the harmonic case is that
the local magnetization does not exhibit a central polarized

region. Instead, the magnetized regions are localized near the
nodes of pairing amplitude, with near-zero net magnetization
between the nodes. Indeed, this FFLO state can be inter-
preted in terms of well-formed domain walls in the pairing
amplitude, with excess spins ↑ congregating near the nodes,
providing a robust signature of the FFLO phase of a 1D
imbalanced gas in a box trap.

Like the harmonic potential, the mode-resolved one-body
density ρα,β and pairing �α,β matrices process small but
nontrivial off-diagonal spectral weight. Again, this implies
that the Cooper pairs of the system are a combination of many
single-particle states.

Although the off-diagonal terms of ρα,β are small, these
terms are ultimately responsible for the FFLO modulation
seen in the density. For example, if the density matrix was
diagonal, ρα,β ∝ δα,β , then the local density [Eq. (27)] would
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reduce to nσ (x) = ∑
n |ψn(x)|2ρnσ,nσ . Then from Fig. 3 one

can see that the occupation probabilities ρnσ,nσ are qualita-
tively similar to what one would expect to see for a nonin-
teracting Fermi gas at some nonzero temperature; thus, the
density would simply resemble a noninteracting system at a
finite temperature and be devoid of any FFLO oscillations.

In this geometry, the off-diagonal terms of the pairing
matrix also have a much clearer physical interpretation: the
states n and n′ that are generally the most strongly paired
are those that differ by the particle number imbalance. For
example, when N↑ − N↓ = 3, shown in Fig. 3(d), the states
labeled by n = n′ ± 3 show the strongest correlations. This
implies that under an imbalance, a majority spin in state
n tends to most strongly pair with a minority spin in state
n′ = n − (N↑ − N↓). This is in agreement with the ansatz put
forth by the present authors in Ref. [36] for a harmonic trap.
Here, one imagines that a majority spin at its Fermi surface
εF

N↑ will form a pair with a minority spin on the other Fermi

surface εF
N↓ .

IV. DISCUSSION AND CONCLUSIONS

The HFB ground state |〉, which is also the vacuum
state of the generalized Bogoliubov quasiparticles |〉 =∏

α γ̂α|vac〉, can also be, by Thouless’s theorem [49], ex-
pressed as

|〉 ∝ exp

⎛
⎝1

2

∑
α,β

Zα,β â†
α â†

β

⎞
⎠|vac〉, (45)

where Z = (VU−1)† = (ρκ−1)† is an antisymmetric matrix
that gives the probability amplitude of creating a Copper
pair composed of states α and β. Thus, in generality state α

could form Cooper pairs with many other states, instead of
only a single one, as is assumed in the standard BCS wave
function, and therefore, in the presence of a population imbal-
ance all atoms can still take part in the superfluid state. For
the trapped and imbalanced systems considered here, we have
found that it is vitally important to account for all possible
pairing Hartree-Fock correlations, especially in the harmonic
system.

Our analysis shows that while both harmonic and box-
shaped traps can host FFLO-like states in the 1D regime,
the signature of this state in the harmonic case in the local
density is extremely weak and probably unobservable in a real
experiment at nonzero temperature. This suggests a competi-
tion between the spatial variation of the FFLO state and the
slowly varying potential of the harmonic trap. For the case of
a 1D box-shaped trap, however, our results show a striking
signature of the FFLO phase in the density profile, indicating
that spin-sensitive measurements will be able to discern this
exotic state.

Future work will involve generalizing these results to
nonzero temperature, which would involve solving a general-
ized gap equation for the quasiparticle energy spectrum. This
will be essential to determine whether the sharp signatures of
the FFLO state in the box trap survive nonzero temperature.
Additional future work will extend this formalism to higher
dimensions to more generally understand how the spatial
profile of the confining potential affects the FFLO phase of
an imbalanced Fermi gas and its observability in experimental
observables such as the local density.
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