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Local Chern marker of smoothly confined Hofstadter fermions
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The engineering of topological nontrivial states of matter, using cold atoms, has made great progress in the
last decade. Driven by experimental successes, it has become of major interest in the cold-atom community.
In this work we investigate the time-reversal-invariant Hofstadter model with an additional confining potential.
By calculating a local spin Chern marker we find that topologically nontrivial phases can be observed in all
considered trap geometries. This holds also for spin-orbit-coupled fermions, where the model exhibits a quantum
spin Hall regime at half filling. Using dynamical mean-field theory, we find that interactions compete against the
confining potential and induce a topological phase transition depending on the filling of the system. A further
effect of strong interactions yields a magnetic edge, which is localized through the interplay of the density
distribution and the underlying topological band structure.
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I. INTRODUCTION

Optical lattice experiments offer great possibilities in en-
gineering model Hamiltonians in a clean and well-controlled
environment. One focus of current experimental and theoret-
ical interest lies in the investigation of topological states of
matter such as the integer or fractional quantum Hall state.
Realizations of the paradigmatic Harper-Hofstadter [1,2] and
the Haldane models [3,4], which both feature topologically
nontrivial states, are showing that these states are now exper-
imentally accessible within cold-atom setups. The topologi-
cally nontrivial bulk of a quantum Hall state manifests itself
in propagating robust edge states located at the boundary of
the system. In cold-atom experiments these boundaries are
usually defined by a smooth trapping potential. Recent studies
report that this significantly changes the properties of the edge
states, as it decreases their group velocity and results in the
emerging and splitting of edge states [5–7]. For strong har-
monic confinement the trap can even destroy the edge states
and therefore the topological phase [8]. Two-particle interac-
tions, on the other hand, can lead to an enhanced localization
of the edge states even in harmonic confinement [9,10]. The
steepness of the trap affects also the bulk of the system and
can lead to shrinking [6] and localization [11] of the bulk. In
this work we study the influence of smooth confinement on
the topological properties of the bulk and show that these are
preserved in different trap geometries. Time-reversal (TR)-
invariant topological insulators can be realized in cold atoms
by engineering artificial spin-orbit coupling (SOC) [12]. This
has been done experimentally in the absence of optical lattices
[13–16] and proposals for the realization of fully tunable
TR-invariant SOC in optical lattices exist [17,18]. SOC for
bosons on the square lattice leading to a topological nontrivial
band structure has also been realized in experiment [19].

This paper is structured as follows: In Sec. II we intro-
duce the underlying Harper-Hofstadter Hamiltonian, includ-
ing SOC and a staggered potential, and explain the geometry
of the additional trap. To analyze the topological properties

of our system we use a real-space marker for the Chern
number, which we discuss in Sec. III. The results are given
in Sec. IV, where we proceed in the following way. In
Sec. IV A we first discuss phase diagrams of a system with
noninteracting fermions to pick proper parameters for the
calculations including the confining trap potential. We discuss
the topological properties for absent SOC (Sec. IV B) as well
as strong SOC (Sec. IV C) and find topologically nontrivial
phases in all trap geometries. Last, we extend our calculations
to interacting spin-orbit-coupled fermions in Sec. IV D. In
Sec. V we summarize our results.

II. MODEL

The model we consider is the well-known Hofstadter
model [20], which describes electrons in a two-dimensional
square lattice with a strong perpendicular external magnetic
field. Here, we use its spinful and TR-invariant version [21]:

Ĥ0 = −t
∑

j

(ĉ†
j+x̂eiθx ĉ j + ĉ†

j+ŷeiθy ĉ j + H.c.). (1)

Here, ĉ j = (ĉ j,↑, ĉ j,↓) is the annihilation operator on spin-
1/2 fermions for lattice site j = (x, y), t is the tunneling
amplitude, which we set to 1, and θy = 2παxσz denotes the
Peierls phase resulting from coupling of spins to synthetic
gauge fields [22]. It yields an opposite flux per plaquette for
different spins. We choose the plaquette flux α to be 1/6 for
our calculations [23], which yields a six-band model. θx =
2πγσx is a TR-invariant SOC, which mixes different spin
states, where we focus on the cases without spin mixing (γ =
0) and with maximal spin mixing (γ = 1/4). Furthermore,
we add a staggered potential Ĥλ, a trap potential ĤV , and in
Sec. IV D a local Hubbard interaction ĤU to the Hamiltonian

Ĥ = Ĥ0 + Ĥλ + ĤV + ĤU , (2)
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FIG. 1. Band structure for (a) γ = 0 and λ = 0 and (b) γ = 1/4
and λ = 0.7, respectively, within PBCs for all directions. LCM
C calculated for a parameter range of energy E (in units of t)
and staggered potential λ, for (c) γ = 0 and (d) γ = 1/4, respec-
tively, corresponding to vanishing and maximal spin-orbit coupling.
Hatched areas indicate bulk bands obtained within PBCs. Orange
dashed lines correspond to the parameters for the band structures in
(a) and (b). Whereas without spin mixing the system is semimetallic
(SM) at E = 0, spin mixing opens a topologically nontrivial gap for
values of λ < 1.5 [see (d)].

with the staggered potential of amplitude λ,

Ĥλ =
∑

j

(−1)xλĉ†
j ĉ j . (3)

The staggered potential is used to open a gap at half filling in
the case of γ = 1/4 (see Fig. 1) [23]. We choose our system
to have cylinder geometry, i.e. periodic boundary conditions
(PBCs) in the y direction and open boundary conditions
(OBCs) with an additional confining trap potential in the x
direction,

ĤV =
∑

j

V (x)ĉ†
j ĉ j, V (x) = V0

(
2x

L − 1
− 1

)δ

, (4)

with parameter δ to tune the steepness of the trap and L the
number of lattice sites in the x direction. V0 is fixed such that
the trapping potential has the value V (0) = V (L − 1) = 10
at the boundaries of the system. We investigate the system
for a harmonic (δ = 2), a quartic (δ = 4), and a box-shaped
(δ → ∞) trap geometry. All calculations are done for a 48 ×
48 square lattice. The choice of PBCs in the y direction,
instead of OBCs, does, for our system size, not affect the
bulk properties we are interested in; however, this cylinder
geometry is computationally less demanding.

III. LOCAL CHERN MARKER

The topological features of a TR-invariant spin-1/2 sys-
tem are characterized by a topological Z2 quantum number
[21,24,25], which takes the value zero if the system is in a
normal insulating (NI) phase and 1 if it is in a quantum spin
Hall (QSH) phase. If the spins in the system are not coupled

to each other, i.e., γ = 0, the Z2 index is given by

Z2 = 1
2 (C↑ − C↓) = C↑ (mod 2), (5)

where Cσ is the Chern number [26] of the respective spin-σ
subsystem and the second equality holds only in TR-invariant
systems where C↑ = −C↓. The Chern number is expressed
as a Brillouin-zone integral over the Berry curvature and for-
mulated in k-space. Topological invariants for disordered and
interacting systems were defined using the many-body wave
function [27–29] or in terms of the single-particle Green’s
function [30–32]. However, for strongly inhomogeneous sys-
tems a formulation of the Chern number in real space should
be more applicable [33,34]. One approach, which gives not
only a global invariant but yields a spatially resolved quan-
tity to distinguish between topological phases, is the local
Chern marker (LCM), developed in Ref. [35] by mapping the
k-space Berry curvature to real space:

C(x, y) = −2π i〈x, y|[P̂x̂P̂, P̂ŷP̂]|x, y〉, (6)

where P̂ is the projector onto the occupied states, i.e., onto the
states with energies below the Fermi energy EF , and x̂ (ŷ) is
the position operator for the x (y) direction. This approach was
already used to topologically characterize regions in systems
with heterojunctions [35], in quasicrystals [36], and also in
systems with interacting fermions [37,38]. The LCM averaged
over the whole lattice, 〈LCM〉latt , is always zero, since it
corresponds to the trace over a commutator. Nevertheless, its
average over the bulk area, 〈LCM〉bulk, gives the expected
Chern number with good accuracy, where 〈LCM〉bulk is the
average over lattice sites with a distance of several sites to the
edge of the lattice. The LCM shows nonphysical boundary
effects at the edges, to compensate for a finite value in the
bulk, which one needs to cut off to get the right bulk average.
Reference [35] shows that this boundary region broadens if
the system is closer to a phase transition. For our calculations
a distance of 12 sites turned out to be enough to minimize
the error from boundary effects. A scaling analysis of the
LCM [39] has shown that its evaluation over only one unit
cell in the center of the system is enough, if the system is
sufficiently large, underlining the local character of the LCM.
A detailed analysis of the local and nonlocal contributions
to the LCM in terms of the single-particle density matrix
was done in Ref. [40], leading to the conclusion that, for
systems not to close to the phase transition, the contributions
to the local Chern marker are mostly local. This makes
it accessible in experiments by measuring elements of the
single-particle density matrix as proposed in Refs. [40,41]
and recently performed in a system of photonic Landau levels
[42]. The nonlocal contribution to the LCM becomes more
important if the system is close to a phase transition, which
may be the reason for the broadening of the boundary region
mentioned earlier. The size of the boundary region appears to
be not dependent on the system size, which we explain by the
independence of system size of the contributions to the LCM
found in Ref. [40].
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IV. RESULTS

A. Phase diagrams for noninteracting fermions

We use the LCM to obtain the phase diagrams for nonin-
teracting spin-1/2 fermions as a function of the parameter λ.
The LCM is calculated as described and shown in Figs. 1(c)
and 1(d) for a system with OBCs corresponding to a hard-wall
box potential, which gives the same phase diagram as with
PBCs [43], since the topological properties of the bulk are
not affected by the choice of the boundary conditions. In
Figs. 1(a) and 1(b) we show the corresponding band structure
within PBCs for λ = 0 in the case γ = 0 and λ = 0.7 in the
case γ = 1/4, which are also the parameters we study in
smooth confinement. For the latter the system is gapped at
half filling, where between the other bands the gap is rather
small or vanishes through indirect band touching leaving the
system in a metallic (M) phase. The LCM shows a finite value
also for energies within the bulk bands indicated by hatched
areas in Figs. 1(c) and 1(d). However, this should not be
overinterpreted because the Chern number is only well defined
if the Fermi energy lies within a gap. The results of the LCM
should therefore also only be valid if the bulk is gapped.

B. Trapped fermions without spin mixing

We first discuss the case without spin mixing (γ = 0).
Here the Hamiltonian Ĥ is diagonal in spin space and we can
directly apply the LCM. The phase diagram shows a QSH
phase for a Fermi energy within the lowest and highest gap
for all values of λ. At half filling the gap is closed for λ � 1.5
and opens to a NI phase for λ � 1.5. We chose λ = 0 to study
the influence of different trap potentials in the system. For this
purpose we average the LCM in the translationally invariant
y direction and refer to it as LCMx. In Fig. 2 we compare
the results for the LCM to the momentum integrated spectral
density [6]

ρσ
x (E , ky) = −2Im 〈ky| 1

E + μ − Ĥ + iε − �(E )
|ky〉

∣∣∣∣
σσ

xx

,

(7)

ρσ
x (E ) =

∫
dkyρ

σ
x (E , ky), (8)

for a hard wall (δ = ∞), quartic (δ = 4), and harmonic con-
fined (δ = 2) system. Here ε � 1 denotes the broadening of
the spectral density and �(E ) is the self-energy which van-
ishes in the noninteracting case. The spectral density shown
in Figs. 2(a)– 2(c) shows six bulk bands, but gapless edge
states at the boundary of the system. For a Fermi energy
EF = 0 the system is semimetallic due to touching bands. We
compare the LCM in Figs. 2(g)–2(i) to the spectral density in
Figs. 2(d)– 2(f) for Fermi energies within the two lowest gaps
and EF = 0. If the Fermi energy lies within a gap, the LCM
shows a continuous transition from zero outside the trap to a
plateau with constant value in the bulk region. The system is
in a QSH phase if only the lowest band is filled, and in a NI
phase if two bands are filled. If we compare the behavior of
the LCM to the momentum integrated spectral density, we can
clearly identify changes in the LCM with peaks in the spectral
density. Let us consider for example the blue line in Figs. 2(e)
and 2(h), which corresponds to a Fermi energy of EF =
−2.25. The spectral density shows two large peaks located at

FIG. 2. (a)–(f) Spectral density and (g)–(l) LCM C for different
traps (hard wall, harmonic, quartic) and vanishing staggered potential
and γ = 0. (a)–(c) Contour plots of the spectral density ρx (a.u., ε =
0.05) evaluated for Fermi energies EF ∈ [−5, 5] (in units of t). The
lines in (d)–(f) show the spectral density for three chosen values of
the Fermi energy and correspond to the similar lines in the contour
plots (a)–(c). In the same way, (g)–(i) correspond to the lines in the
contour plots (j)–(l) of the LCM. A QSH phase, i.e., a LCM of ±1,
is visible within the highest and lowest gap for all three traps. By
comparing panels (d)–(f) and (g)–(i), one can see that a change of
the LCM is correlated with a peak in the spectral density, i.e., with
an edge state.

the position where the LCM changes from zero to 1 and back.
In between these two edge states the system is gapped and
in a QSH phase. Since we have spinful fermions, each peak
in the spectral density corresponds to a counterpropagating
pair of edge states and we see, as stated by the bulk-boundary
correspondence, how such a counterpropagating pair of edge
states connects topologically distinct regions. The LCM
allows us to distinguish these regions in real space even
without looking at edge states. If the Fermi energy lies within
the second lowest gap we can see two pairs of edge states in
the spectral density and the LCM takes a value of 2 in the
middle of the trap. The two edge states can scatter on each
other and the system becomes NI. For the gapless regime at
half filling the system is also topologically trivial as expected.
In Figs. 2(j)–2(l) we plot the LCM for a large range of Fermi
energies. Each horizontal line shows the values of the LCM
along the x direction for the corresponding Fermi energy. We
can see that the different topological regimes of the system
can be found in all trap geometries and that sharp boundaries
are not necessarily needed for the realization of a topological
insulator.

C. Trapped fermions with spin mixing

Next we consider the case of maximal spin mixing (γ =
1/4). For this case the spin-mixing term in Hamiltonian (1)
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FIG. 3. (a)–(f) Spectral density ρx (a.u., ε = 0.05) and (g)–(l)
LCM for different traps (hard wall, harmonic, quartic) in the case of
maximal spin mixing (γ = 1/4, E in units of t). (a)–(c) Contour plots
of ρx , where the colored (dashed) lines correspond to (d)–(f). In the
same way, the plots in (g)–(i) correspond to lines in the contour plots
of the LCM in (j)–(l). The staggered potential is tuned so that the gap
at EF = 0 has its maximum size. We set λ = 0.7. A quantization of
the LCM is visible in all traps.

simplifies to a hopping in the x direction followed by a spin
flip. To apply the LCM the Hamiltonian needs to be decoupled
in spin space, which can be achieved by using the pseudospin
basis

d̂x,y,σ =
{

ĉx,y,σ if x is even

ĉx,y,σ̄ if x is odd,
(9)

where the Hamiltonian now reads

Ĥ0 = −t
∑

j

(d̂
†
j+x̂d̂ j + d̂

†
j+ŷe(−1)x2π ixσzα d̂ j ) + H.c., (10)

with spinors d̂ j = (d̂ j,↑, d̂ j,↓). The other terms Ĥλ and ĤV

in the full Hamiltonian (2) are invariant under the basis
transformation (9). The phase diagram [see Fig. 1(c)] shows
a topological nontrivial gap at half filling, for appropriate
values of the staggered potential. In this regime interaction
effects are most pronounced, which makes it interesting for
further studies on interacting fermions that are discussed in
Sec. IV D. Therefore, we concentrate on half filling and set
λ = 0.7, where the gap is maximal. Figure 3 shows the results
for the spectral density and the LCM. There we average the
LCM also over the unit cell in the x direction. The spectral
density is very spiky over the whole energy range, but for all
trap geometries a gap is visible at E = 0. Figures 3(g)–3(i)
show how the LCM behaves within this gap. For hard-wall
and quartic confinement the LCM takes the value of 1 even for
Fermi energies close to the bulk band. The LCM shows also a
plateau for harmonic confinement, although it is less smooth.

Nevertheless, the LCM is approximately 1 in the center of the
trap and we could therefore expect the bulk of the system to be
in a QSH phase. The relatively small size of the gapped area in
harmonic confinement can also lead to finite size effects as the
edge states may have a finite overlap. The LCM shows only
valid results within a gap, since it is ill defined otherwise.

D. Trapped interacting fermions

We now study the effect of finite Hubbard interactions; i.e.,
we add the following local term to the Hamiltonian in Eq. (2):

HU = U
∑

j

ĉ†
j,↑ĉ j,↑ĉ†

j,↓ĉ j,↓, (11)

where U is the interaction strength. The unconfined as well as
the hard-wall confined Hofstadter-Hubbard models have been
intensively studied [23,38,43–45] in many different aspects;
however, the interplay of interactions and smooth confinement
is still lacking. We restrict ourselves to the harmonically
trapped case, since it is experimentally the most common one
and yields a topologically nontrivial state as discussed in the
previous sections.

In order to prevent the system from entering a topologically
trivial magnetic phase, we adjust the staggered potential as

λ = 1/2 + U/3 (12)

according to the phase diagram in Ref. [44]. This ensures a
nontrivial bulk topological phase in the center of the trap. For
solving the many-body problem, we make use of dynamical
mean-field theory (DMFT), using a local self-energy [46].
Since the systems in our context are highly inhomogeneous,
we use the real-space version of DMFT [47–49]. Within real-
space DMFT, the full many-body problem on the lattice of
L sites is transformed to L single-impurity problems due to
the local self-energy �σσ ′

i j (ω) = �σσ ′
ii (ω)δi j , where ω denotes

the quasiparticle energy and δi j the Kronecker delta. Since
we consider spin-orbit-coupled situations, the self-energy can
have off-diagonal terms in spin space; i.e., it can be nonzero
for σ �= σ ′. For each single-impurity problem, we use a
continuous-time quantum Monte Carlo solver in the auxiliary
field expansion [50]. Using spatial symmetries, the number
of local self-energies, which have to be calculated, can be
reduced. In our case, only the self-energies of one full row
in the x direction have to be computed since the system in
cylinder geometry is translationally invariant in the y direc-
tion. After all single-impurity problems have been solved, a
lattice Green’s function G(ω) is constructed from the local
self-energies using the Dyson equation

[G−1(ω)]σσ ′
i j = [

G−1
0 (ω)

]σσ ′

i j − �σσ ′
ii (ω)δi j, (13)

where G0(ω) is the noninteracting lattice Green’s function.
The new lattice Green’s function G(ω) defines a new lattice
problem which is again solved by reducing it to single-
impurity problems. These DMFT iterations are repeated until
changes in the self-energy become sufficiently small and self-
consistency is reached.

DMFT is formulated in the grand-canonical ensemble,
which makes it difficult to solve problems with a fixed number
of particles. However, since the latter is experimentally more
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FIG. 4. Density profiles nx along a line in the x direction of the
harmonic trap as a function of interaction strength U for different
number of particles, N̄ . Stronger interactions are broadening the
spatial distribution of the particles and decrease the number of doubly
occupied sites.

feasible, we control the mean number of particles per line in
the x direction, N , by readjusting the chemical potential in
each DMFT iteration during the self-consistency procedure.
The number of particles cannot be perfectly fixed due to
the uncertainty from the quantum Monte Carlo calculations,
which increases with increasing interaction strength due to the
auxiliary field expansion. Therefore, we refer later to N̄ which
is defined as the mean N of different U = 1, . . . , 5.

From real-space DMFT we directly get the two-
dimensional density profiles nσ

xy of spin σ . Since the system
is translationally invariant in the y direction we show the
one-dimensional density profiles nx = n↑

x + n↓
x of the har-

monically trapped system as a function of the interaction
strength for different N̄ in Fig. 4. The stripe pattern stems
from the staggered potential. We observe that the overall effect
of interactions is a spatial broadening of the density profile.
Increasing interaction strength also results in a decreasing
number of doubly occupied sites. The excess particles are then
pushed outwards to occupy sites with higher potential energy
of the trap.

We observe an interesting effect in the density profiles for
strong interactions which is presented in Fig. 5. Here, we
show exemplarily the spin-resolved density and magnetization
profiles for N = 29.2 and U = 5. We observe that in the
center region, 10 < x < 35, as well as in the far edge regions,
x < 5 and x > 40, the two spin densities are equal and the
magnetization vanishes. Locally, however, at x ≈ 9 and x ≈
37 the occupancy between spin-up and spin-down particles

FIG. 5. Spin-resolved density nσ
x and magnetization profiles

n↑
x − n↓

x for strong interactions U (in units of t). N gives the mean
number of particles per line in the x direction. A magnetically
strongly localized edge is emerging at the outer region of the trap.
The spectral density ρx (a.u., ε = 0.01) at the Fermi energy shows
that the edge state surrounding the bulk QSH phase is further inside
and a magnetized phase emerges outside.

FIG. 6. Local Chern marker along a line in the x direction, Cx ,
for the interacting harmonically trapped system as a function of
interaction strength U (in units of t) for different particle number
N̄ . If there are more particles in the system, i.e., a higher N̄ , stronger
interactions are needed to decrease the filling in the center of the trap
and enter the QSH regime.

differs and a finite magnetization emerges. Comparing this
to the spectral density ρx at the Fermi energy shows that
the edge states surrounding the bulk QSH phase are further
inside. Therefore, we explain this effect in the following
way: The bulk QSH phase is protected against magnetization
since we control the staggered potential according to Eq. (12)
as explained above. A phase transition to a magnetic phase
would only be possible if the gap is closing. Due to the
underlying band structure away from the trap center at x ≈ 9
and x ≈ 37, respectively, particles can enter a metallic phase.
The gap is thus closed and a magnetic phase can emerge which
vanishes again when going even further away from the center
where the filling is too small.

We now turn to the computation of the LCM for the
interacting system. To this end, we make use of the topo-
logical Hamiltonian approach [51]. Here, the interacting
Green’s function is smoothly transformed to the noninteract-
ing Green’s function. If no singularity of this Green’s function
occurs during this transformation then there is also no gap
closing and the topological invariant cannot change. This sim-
plifies computations of topological invariants tremendously.
Instead of computing topological invariants of the interact-
ing problem, the topology of the system is covered by an
effective, noninteracting Hamiltonian [Htop]σσ ′

i j = [H0]σσ ′
i j +

�σσ ′
ii (0)δi j in matrix representation, where we have used that

the self-energy is local. Continuous-time quantum Monte
Carlo output is generally expressed in imaginary time which
leaves us with the self-energy as function of the fermionic
Matsubara frequencies ωn = (2n + 1)π/β. We determine the
zero-frequency self-energy �σσ ′

ii (0) by polynomial fitting of
�σσ ′

ii (iωn) around zero. The combination of the topological
Hamiltonian approach and the LCM has been successfully
applied in Refs. [37,38]. We show the interacting LCM in
Fig. 6 as a function of the interaction strength for differ-
ent N̄ . Regions with a topologically nontrivial phase, where
LCM = −1, are depicted in blue. Outside these regions the
LCM assumes arbitrary values, as we have seen in the non-
interacting case in Figs. 3(i) and 3(l). We observe that the
topologically nontrivial region is shifted to higher interaction
strengths as the number of particles in the system is increased.
This is due to the fact that interactions push the particles out
of the center and then reach half filling in the trap center such
that a topologically nontrivial band gap exists. This is a type of
interaction-induced topological phase transition [44,52–54];
however, here the phase transition is not induced through the
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competition of interaction strength and staggered potential but
rather of interaction strength and trapping potential which
completely breaks translational invariance, in contrast to a
staggered potential which only increases the size of the unit
cell.

V. CONCLUSION

We apply the local Chern marker to the trapped Hofstadter
model and find distinct topologically nontrivial phases even
in a smooth confinement. This is complementary to Ref. [6].
We generalize the treatment to the spin-mixed case, which
features a quantum spin Hall gap at half filling. Also here, the
local Chern marker indicates topologically nontrivial phases
in different trap geometries. In addition, we use dynamical
mean-field theory to study the effect of finite on-site inter-
actions. Here, we find an interesting effect of a localized,
magnetic edge but nonmagnetic bulk which we explained
with topological protection. By using the topological Hamil-

tonian approach we compute the local Chern marker for the
interacting, trapped system and find an interaction-induced
topological phase transition depending on the filling.

Based on recent works, we think that our findings can be
observed in experiments with tomography methods including
a quantum gas microscope. Furthermore, these ideas should
be straightforwardly extendable to three dimensions [55] fea-
turing the strong topological insulator phase [56].
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[49] M. Snoek, I. Titvinidze, C. Tőke, K. Byczuk, and W. Hofstetter,
New J. Phys. 10, 093008 (2008).

[50] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M.
Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

[51] Z. Wang and S.-C. Zhang, Phys. Rev. X 2, 031008 (2012).
[52] D. A. Abanin and D. A. Pesin, Phys. Rev. Lett. 109, 066802

(2012).
[53] T. I. Vanhala, T. Siro, L. Liang, M. Troyer, A. Harju, and P.

Törmä, Phys. Rev. Lett. 116, 225305 (2016).
[54] J.-H. Zheng, B. Irsigler, L. Jiang, C. Weitenberg, and W.

Hofstetter, Phys. Rev. A 101, 013631 (2020).
[55] M. S. Scheurer, S. Rachel, and P. P. Orth, Sci. Rep. 5, 8386

(2015).
[56] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803

(2007).

063606-7

https://doi.org/10.1103/PhysRevB.95.121114
https://doi.org/10.1103/PhysRevB.95.121114
https://doi.org/10.1103/PhysRevB.95.121114
https://doi.org/10.1103/PhysRevB.95.121114
https://doi.org/10.1103/PhysRevA.100.023610
https://doi.org/10.1103/PhysRevA.100.023610
https://doi.org/10.1103/PhysRevA.100.023610
https://doi.org/10.1103/PhysRevA.100.023610
https://doi.org/10.1038/s41567-018-0390-7
https://doi.org/10.1038/s41567-018-0390-7
https://doi.org/10.1038/s41567-018-0390-7
https://doi.org/10.1038/s41567-018-0390-7
https://doi.org/10.1038/s41586-018-0817-4
https://doi.org/10.1038/s41586-018-0817-4
https://doi.org/10.1038/s41586-018-0817-4
https://doi.org/10.1038/s41586-018-0817-4
https://doi.org/10.1103/PhysRevLett.109.205303
https://doi.org/10.1103/PhysRevLett.109.205303
https://doi.org/10.1103/PhysRevLett.109.205303
https://doi.org/10.1103/PhysRevLett.109.205303
https://doi.org/10.1103/PhysRevB.94.115161
https://doi.org/10.1103/PhysRevB.94.115161
https://doi.org/10.1103/PhysRevB.94.115161
https://doi.org/10.1103/PhysRevB.94.115161
https://doi.org/10.1103/PhysRevA.99.043628
https://doi.org/10.1103/PhysRevA.99.043628
https://doi.org/10.1103/PhysRevA.99.043628
https://doi.org/10.1103/PhysRevA.99.043628
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.70.241104
https://doi.org/10.1103/PhysRevB.70.241104
https://doi.org/10.1103/PhysRevB.70.241104
https://doi.org/10.1103/PhysRevB.70.241104
https://doi.org/10.1103/PhysRevLett.100.056403
https://doi.org/10.1103/PhysRevLett.100.056403
https://doi.org/10.1103/PhysRevLett.100.056403
https://doi.org/10.1103/PhysRevLett.100.056403
https://doi.org/10.1088/1367-2630/10/9/093008
https://doi.org/10.1088/1367-2630/10/9/093008
https://doi.org/10.1088/1367-2630/10/9/093008
https://doi.org/10.1088/1367-2630/10/9/093008
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevX.2.031008
https://doi.org/10.1103/PhysRevX.2.031008
https://doi.org/10.1103/PhysRevX.2.031008
https://doi.org/10.1103/PhysRevX.2.031008
https://doi.org/10.1103/PhysRevLett.109.066802
https://doi.org/10.1103/PhysRevLett.109.066802
https://doi.org/10.1103/PhysRevLett.109.066802
https://doi.org/10.1103/PhysRevLett.109.066802
https://doi.org/10.1103/PhysRevLett.116.225305
https://doi.org/10.1103/PhysRevLett.116.225305
https://doi.org/10.1103/PhysRevLett.116.225305
https://doi.org/10.1103/PhysRevLett.116.225305
https://doi.org/10.1103/PhysRevA.101.013631
https://doi.org/10.1103/PhysRevA.101.013631
https://doi.org/10.1103/PhysRevA.101.013631
https://doi.org/10.1103/PhysRevA.101.013631
https://doi.org/10.1038/srep08386
https://doi.org/10.1038/srep08386
https://doi.org/10.1038/srep08386
https://doi.org/10.1038/srep08386
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803

