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The investigation of ultracold atomic or molecular collision is important for us to understand the essence
of a chemical reaction. We present a simple analytical model of arbitrary-order partial-wave scatterings for
ultracold molecular collision in the threshold regime. The threshold formulas of the transmission and reflection
coefficients are given. For high-partial-wave collision, shape resonance will take place because of the existence
of a centrifugal barrier. We investigate the effect of shape resonance and short-range interaction on molecular
collisions. Moreover, we find a method to fit the loss parameter from the experimental data of ultracold bosonic
molecular collision. As an applied example, we calculate the thermally average loss rate for the ultracold
87Rb 133Cs + 87Rb 133Cs collision, our results are consistent with the recent experimental and theoretical results
of Gregory et al. [Nat. Commun. 10, 3104 (2019)].
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I. INTRODUCTION

Recently, ultracold molecular collision has attracted much
attention from researchers due to its pronounced quantum
effect and excellent controllability [1–6]. Ultracold reactants
can be precisely prepared in some defined quantum states
[7–12]. The probe technique of hypefine states of reaction
products has also made great progress [13,14]. Meanwhile,
new theoretical methods have been developed [15,16]. The
investigation of ultracold molecular collision can help us
understand the essence of a chemical reaction.

Ospelkaus et al. indicated that the chemical reaction rate
is strongly influenced by the long-range interaction [17]. The
discrepancy of the rate coefficient obtained by theory and ex-
periment in ultracold 23Na 40K + 40K collision in different hy-
perfine states suggests that the short-range interaction should
be considered [18]. Both short-range and long-range interac-
tions are equally important for molecular collision [19,20]. In
addition, the formation of long-lived complexes in the short-
range region also has an influence on loss rate [21–24]. For the
collision pairs with a very small reactivity, the reaction rate is
close to zero. At ultralow temperatures, however, the reaction
rate can be dramatically enhanced by the shape resonance due
to tunneling through the centrifugal barrier, although the re-
activity is small [25–28]. For high-partial-wave collision, the
shape resonance will take place due to the presence of quasi-
bound states behind the centrifugal barrier. The calculation of
Sakimoto suggested that the reaction probability approaches
unity which is attributed to the shape resonance [29]. The
shape resonance is closely related to short-range interaction.
Both short-range interaction and shape resonance have some
influence on molecular loss rate, but the relation between them
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is rather complicated and needs to be further clarified. In our
previous work [30], we investigated theoretically the s-wave
molecular collision reaction. For the s-wave molecular colli-
sion, there is no shape resonance. Here, we present a simple
analytical model of arbitrary-order partial-wave scatterings
for ultracold molecular collision in the threshold regime in
order to study the effect of shape resonance on loss rate
and simulate the recent experiments of ultracold molecular
collision more accurately [31,32]. The short-range physics is
characterized by a loss parameter. The threshold formulas of
reflection and transmission coefficients are derived. Our theo-
retical model can be used to fit accurately experimental data.
As an applied example, the loss rate of 87Rb 133Cs molecules
in the 87Rb 133Cs + 87Rb 133Cs collision is calculated, and the
fitting loss parameter y is given.

The paper is organized as follows. In Sec. II, we present
the transmission and reflection coefficients for arbitrary-order
partial-wave scatterings. In Sec. III, we discuss the influence
of shape resonance and short-range interaction on molecular
loss rate. And an applied example for ultracold molecular
collision is given. Finally, a conclusion is drawn in Sec. IV.

II. THEORY

The radial Schrödinger equation describing particle colli-
sion is given by

(
− d2

dR2
s

+ L(L + 1)

R2
s

+ V (Rs) − Es

)
ψ (Rs) = 0, (1)

where Rs = R/βα is the scaled radius, Es = E/sE is the
scaled energy, and L is the relative orbital angular momentum
quantum number. The length scale βα is defined as βα =
(2μCα/h̄2)1/(α−2) with μ being the reduced mass, and the
energy scale is sE = h̄2/(2μβ2

α ). The potential is given by
V (Rs) = −1/Rα

s with α > 2 being a positive integer.
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At nonzero collision energy, there are two sets of asymp-
totic solutions for Eq. (1),

f o± = eiπ/4

√
πks

e±iksRs , (2)

in the long-range region of Rs � 1 and

f i± = eiπ/4

√
πks

exp

(
±i

∫ Rs

Rm

ksdR′
s

)
, (3)

in the short-range region of Rs � 1, where ks =√
Es − V (R′

s) − L(L + 1)/R′2
s and Rm is a reference point

that determines the phases of f i± [30,33–35]. These solutions
can be used to define the traveling wave going inside-out ψ io

and the traveling wave going outside-in ψoi in the long-range
region,

(
ψ io

ψoi

)
Rs�1=

(
t io 0
roi 1

)(
f o+
f o−

)
, (4)

and in the short-range region,(
ψ io

ψoi

)
Rs�1=

(
1 rio

0 t oi

)(
f i+
f i−

)
, (5)

where rio(roi ) and t io(t oi ) are the reflection and transmission
coefficients corresponding to the traveling wave going inside
out (outside in) [30,33–35].

At zero collision energy, two linearly independent solu-
tions for Eq. (1) can be expressed in the Bessel functions as

ψ1(Rs) = √
RsJν (z), ψ2(Rs) = √

RsJ−ν (z), (6)

where ν = (2L + 1)/(α − 2) and z = 2/(α − 2)R(2−α)/2
s .

When Es → 0, we rewrite ψ io and ψoi in terms of zero-energy
solutions as(

ψ io

ψoi

)
Es→0= C

(
ψ1

ψ2

)
=

(
c11 c12

c21 c22

)(
ψ1

ψ2

)
, (7)

where the energy-dependent matrix C is given in the
Appendix [36,37]. Using Eqs. (4) and (5), we straightfor-
wardly get the transmission and reflection coefficients of
partial-wave L,

t io = t oi = 2
√

π (α − 2)−ν−1/2

�(1 + ν)(2L + 1)!!

kL+1/2
s e−iLπ/2

f (ks)e−i(zm−π/4+νπ/2) + e−i(zm−π/4−νπ/2)
, (8)

rio = f (ks)ei(zm−π/4+νπ/2) + ei(zm−π/4−νπ/2)

f (ks)e−i(zm−π/4+νπ/2) + e−i(zm−π/4−νπ/2)
, (9)

roi = f (ks) − eiνπ

f (ks) + eiνπ
e−iLπ , (10)

with

f (ks) = c11/c12 = i�(1 − ν)k2L+1
s /[�(1 + ν)(α − 2)2ν

× (2L + 1)!!(2L − 1)!!], (11)

where �(x) is the � function. zm is the value of z at Rm,
which can be taken to be any value and has no effect on
final results. We here take zm to be π/4 as Gao did [33]. The
derivation of Eqs. (8)–(10) is given in the Appendix. It is noted
that Eqs. (8)–(10) are low-energy expansions of reflection and
transmission coefficients.

The short-range interaction is contained in the matrix Sc =
ei2δs

ei2(−zm+π/4) [30,38] and the loss parameter y [25,39–42].
The short-range phase-shift δs is related to the scattering
length,

a

a
= 1

cos ν0π

tan δs + tan ν0π
2

tan δs − tan ν0π
2

, (12)

where ν0 = 1/(α − 2) and a is the mean scattering length
[43]. The S matrix can be expressed as [25,33]

SL = (−1)L+1

[
roi + t oiζSct io

1 − rioζSc

]
, (13)

where ζ = (1 − y)/(1 + y).

The partial-wave loss rate KL = sK KLs, elastic collision
rate Kel

L = sK Kel
Ls, and thermally average loss rate K (T ) =

sKKs(Ts) are written in dimensionless forms as

KLs = g

ks
(2L + 1)(1 − |SL|2), (14)

Kel
Ls = g

ks
(2L + 1)|1 − SL|2, (15)

Ks(Ts) = 2√
π

T −3/2
s

∫ ∞

0
E1/2

s e−Es/Ts KsdEs, (16)

where sK = π h̄βα/μ is the scaled unit of loss rate and g = 1
for distinguishable particles and g = 2 for identical particles
in the same internal state. Ts = T/sT is the scaled temperature,
where sT = sE/kB is the scaled temperature unit with kB being
the Boltzmann constant. The total loss rate is K = sK Ks =
sK

∑
L KLs, and the total elastic collision rate is Kel = sK Kel

s =
sK

∑
L Kel

Ls.

III. RESULTS AND DISCUSSIONS

For the hard-core plus −1/R6
s potential, moduli and phases

of reflection and transmission coefficients for L = 1–4 are
plotted in Figs. 1(a)–1(c). The black solid lines, red dashed
lines, blue dotted lines and orange short dot-dashed lines are
calculated by the threshold formulas [Eqs. (8)–(10)], and the
black dot-dashed lines, red double dot-dashed lines (squares),
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FIG. 1. (a) Modulus of transmission and reflection coefficients for L = 1 − 4 calculated by the threshold formulas (the black solid lines,
red dashed lines, blue dotted lines and orange short dot-dashed lines represent partial-waves L = 1 − 4, respectively.) and quantum defect
theory (QDT) (the black dot-dashed lines, red double dot-dashed lines (squares), blue short dashed lines (circles) and orange short dotted lines
(triangles) represent L = 1 − 4, respectively.). Es is the scaled energy and is dimensionless. Since the moduli of both rio (t io) and roi (t oi) are
equal, we use |rio| (|t io|) to denote their moduli. (b) and (c) Phases of transmission and reflection coefficients with units of π for L = 1 − 4
calculated by the threshold formulas and QDT. The phases of t io and t oi are equal, thus, we use arg(t io) to denote their phases. (d) Scaled partial
wave loss rate KLs as a function of Es for the universal reaction. The thick green solid (dot-dashed) line represents KLs for L = 0 calculated by
the threshold formulas (QDT).

blue short dashed lines (circles) and orange short dotted lines
(triangles) are calculated by the QDT [33,44]. In Fig. 1, the
black, red, blue, and orange lines show the calculated results
for L = 1–4, respectively. The case for L = 0 was discussed
in our previous paper [30]. As shown in Fig. 1(a), when
Es < 1, the moduli of rio (roi ) and t io (t oi ), calculated by using
the threshold formulas for L = 1, agree well with those by
using the QDT. For L = 2–4, the results calculated by the two
methods are almost identical within the given energy range
in Fig. 1(a). In Figs. 1(b) and 1(c), the phases calculated by
the threshold formulas are consistent with those calculated by
the QDT when Es < 1. In the threshold regime, the phases
of roi are π for L = 1–4, the phases of rio are π/4 for L =
1 and 3, −π/4 for L = 2 and 4, the phase of t io (t oi ) is π/8
for L = 1, 3π/8 for L = 2, −3π/8 for L = 3, and −π/8
for L = 4. The scaled loss rates of partial-waves L = 0–4 for
the universal reaction (y = 1) are shown in Fig. 1(d). The
loss rate for the s-wave collision converges to π/�(5/4)2 as
Es → 0 [30]. In Fig. 1(d), the thick green dot-dashed line,
black dot-dashed line, red double dot-dashed line, blue short
dashed line and orange short dotted line show the partial-wave

loss rates calculated by the QDT for L = 0 − 4, respectively.
It can be seen that the results calculated by the threshold for-
mulas are essentially consistent with those by the QDT when
Es < 3.

When Es → 0, the partial-wave loss rates as a function
of δs and y are plotted in Figs. 2(a)–2(e) where the finite
range 0 � δs < π corresponds to infinite range of scatter-
ing length −∞ < a < ∞. As shown in Figs. 2(a)–2(e), the
peaks appear around δs = π/8 for L = 0 and 4, δs = 3π/8
for L = 1, δs = 5π/8 for L = 2, and δs = 7π/8 for L = 3.
These peaks can be regarded as the results of the quantum
coherent superposition of different reflection paths [33,44]. In
Eq. (14), the loss probability PL = 1 − |SL|2 can be expressed
as [33,44]

PL = 1 − |SL|2 = |
√

1 − ζ 2t oi[1 + rioζSc + (rioζSc)2

+ · · · + (rioζSc)n + · · · ]|2. (17)

When zm = π/4, Sc in Eq. (17) is equal to Sc
eff in

Ref. [44]. It is noted that a phase difference θL = arg(rioSc),
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FIG. 2. (a)–(e) Scaled partial-wave loss rate KLs as a function of y
and δs with Es = 0.001 for L = 0–2 and Es = 0.050 for L = 3 and 4.
(f)–(h) Scaled total loss rate Ks as a function of y and δs for Es =
0.10, 1.08, and 3.00.

where 0 � θL < π exists between the adjacent terms in
the square brackets in Eq. (17). Obviously, the peaks in

Figs. 2(a)–2(e) correspond to the maxima of loss probability
PL, which requires the phase difference θL = 0.

We now calculate θL in the threshold regime. As ks → 0,
the reflection coefficient rio in Eq. (9) reduces to rio = [1 +
i2 f (ks) sin νπ ]e−iνπ , where 1 + i2 f (ks) sin νπ is real and
positive. Thus, the phase difference θL is given by

θL = arg(rioSc) = 2δs − νπ. (18)

Let θL = 0, yielding δs = νπ/2 = Lπ/4 + π/8 with a period
of π for partial-waves L = 0–3, . . . [45,46]. These values
just correspond to the peaks in Figs. 2(a)–2(e). Due to the
centrifugal barrier for L > 0, the zero-energy quasibound state
exists, and the shape resonance will take place.

The total loss rates as a function of δs and y when Es =
0.10, 1.08 and 3.00 are plotted in Figs. 2(f)–2(h). When
Es = 0.10, a small promontory appears around δs = 3π/8,
which is caused by the shape resonance. This indicates that
a quasibound state of partial-wave L = 1 exists and is very
close to the threshold [45,46]. When Es = 1.08, and 3.00,
there is also a small promontory around δs = 5π/8 for L =
2, δs = 7π/8 for L = 3. In addition, the peak around δs =
π/8 (3π/8, 5π/8) for Es = 0.10 (1.08, 3.00) can be also ob-
served. We note that the shape resonance takes place only if
y → 0, indicating that the shape resonance plays an important
role in the collision system with a very small reactivity [47].
As Gao pointed out [33,44], the shape resonance results from
the coherent superposition of reflection paths when a quasi-
bound state exists. The coherent superposition of reflection
paths can change the loss rate.

For the elastic collision, |1 − SL|2 in Eq. (15) can be
expressed as [33,44]

|1 − SL|2 = |1 + eiLπ {roi + t oiζSct io[1 + rioζSc + (rioζSc)2

+ + · · · + (rioζSc)n · · · ]}|2. (19)

When ks → 0, the transmission coefficients t oi and t io are
proportional to kL+1/2

s e−i(ν+L)π/2, and the reflection coefficient
roi reduces to roi = [−1 + 2 f (ks)e−iνπ ]e−iLπ . Substituting the
threshold formulas of t oi, t io, roi, and rio into Eq. (19), we can
obtain that the elastic collision rate also reaches its maximum

(a) (b)

FIG. 3. (a) Scaled partial-wave elastic collision rate Kel
Ls as a function of y and δs. (b) Scaled total elastic collision rate Kel

Ls as a function of
y and δs. Scaled energy Es = 0.10.
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FIG. 4. (a) Thermally average loss rate K (T ) at T = 1.5 μK as a function of y and δs for 87Rb 133Cs + 87Rb 133Cs collision. The black
solid line represents the measured value of Kexp = 0.44 in experiment [32]. (b) The change in Kmin with y and δs. The black dot-dashed line
shows the range of y. Units of K (T ) and Kmin are both 10−10 cm3/s.

at δs = Lπ/4 + π/8. For the s wave, a peak of the elastic
collision rate is located at δs = π/8 as shown in Fig. 3(a).
The total elastic collision rate is plotted in Fig. 3(b) where
a small promontory appears at δs = 3π/8 due to the p-wave
shape resonance.

As an application of our model, we calculate the thermally
average loss rate K (T ) for 87Rb 133Cs + 87Rb 133Cs collision
at T = 1.5 μK corresponding to Ts = 0.45 as shown in Fig. 4
(a). The peak ofK around δs = π/8 is mainly attributed to the
loss rate of the s-wave collision. A small promontory around
δs = 5π/8 is caused by the d-wave shape resonance. As in the
above analysis, both the peak at δs = π/8 and the promontory
at δs = 5π/8 always correspond to the situation of θL = 0
where the superposition of different paths leads to the loss
rate reaching its maximum. The black solid line in Fig. 4(a)
shows the experimental value of 0.44 × 10−10 cm3/s [32].

As shown in Fig. 1(a), the loss rate of the s-wave collision
dominates at low collision energy, and the loss rate of the
high-partial wave dominates at high collision energy. Because
of the contribution of different partial waves to the total loss
rate and the effect of temperature, a minimum Kmin appears
in the thermally average loss rate [44]. Kmin changes with y
and δs. Using a pair of δs and y, we can find a Kmin in the
curve of K (T ). By scanning all the values of y from 0 to
1 and δs from 0 to π , the change in Kmin with y and δs is
given in Fig. 4(b). For a fixed y, Kmin changes with δs with
a period of π . For a fixed δs, Kmin increases monotonously
with y. The dashed-dotted line in Fig. 4(b) corresponds to the
minimal thermally average loss rate of 0.44 × 10−10 cm3/s
measured in experiment [32]. Thus, all the possible values
of y are distributed around the dashed-dotted line. From the
experimental data [32], we find the best-fitting result to be
y = 0.27 and δs = 0.62π . Compared with the fitting values
of Gregory et al. using the QDT, y = 0.26 and δs = 0.56π

[32], the difference in y is 0.01 and that in δs is 0.06π , and
the difference in the scattering length is 44.59a0, where a0

is the Bohr radius. Our theoretical results are consistent with
those calculated by using the QDT [32]. This indicates that
the threshold laws of reflection and transmission coefficients
are precise for studying ultracold molecular collision. In fact,
the result in Fig. 4(b) can be applied to other bosonic systems,
only sK being different. The calculation of Kmin is significant
for fitting y from the ultracold bosonic molecular collision
experiment. For a fermionic system [14,17], the similar cal-
culation can be performed using our model.

IV. CONCLUSION

To summarize, we present a simple theoretical model of
arbitrary-order partial-wave scatterings for ultracold molecu-
lar collision in the threshold regime. The partial wave and total
loss rates as a function of δs and y are calculated. The shape
resonance plays an important role in the ultracold molec-
ular collision with a very small reactivity. We investigate
the effect of shape resonance on molecular collisions. Our
analytical theoretical model can give the reasonable result
for ultracold bosonic or fermionic molecular collision. As
an example of application, the thermally average loss rate
for the 87Rb 133Cs + 87Rb 133Cs collision is calculated, and
the fitting values of y = 0.27 and δs = 0.62π are obtained.
Moreover, we find an efficient method to fit the loss parameter
for ultracold bosonic molecular collision.
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APPENDIX: DERIVATION OF THE REFLECTION AND TRANSMISSION COEFFICIENTS

In the long-range region of Rs � 1, the zero-energy solutions behave asymptotically as

ψ1(Rs)
Rs�1= (α − 2)ν

�(1 − ν)
RL+1

s , ψ2(Rs)
Rs�1= (α − 2)−ν

�(1 + ν)
R−L

s . (A1)

We rewrite Eq. (2) in terms of spherical Bessel functions jL and nL as

f o+ Rs�1= eiπ/4

√
πks

[iksRs jL(ksRs) − ksRsnL(ksRs)]eiLπ/2, (A2)

f o− Rs�1= eiπ/4

√
πks

[−iksRs jL(ksRs) − ksRsnL(ksRs)]e−iLπ/2. (A3)

The behavior of f o± at large Rs and very low energy, i.e., ksRs � 1, can be expressed by the small-argument expansions of
the spherical Bessel functions as [36,37]

f o+ Rs�1=
ks→0

eiπ/4

√
πks

[
i

(ksRs)L+1

(2L + 1)!!
+ (2L − 1)!!

(ksRs)L

]
eiLπ/2, (A4a)

f o− Rs�1=
ks→0

eiπ/4

√
πks

[
−i

(ksRs)L+1

(2L + 1)!!
+ (2L − 1)!!

(ksRs)L

]
e−iLπ/2. (A4b)

Substituting Eqs. (A1) and (A4) to Eqs. (4) and (7), we get

c11
(α − 2)ν

�(1 − ν)
RL+1

s + c12
(α − 2)−ν

�(1 + ν)
R−L

s
Rs�1=
ks→0

i
ei(π/4+Lπ/2)

√
πks

kL+1
s

(2L + 1)!!
RL+1

s t io + ei(π/4+Lπ/2)

√
πks

(2L − 1)!!

kL
s

R−L
s t io, (A5)

c21
(α − 2)ν

�(1 − ν)
RL+1

s + c22
(α − 2)−ν

�(1 + ν)
R−L

s
Rs�1=
ks→0

eiπ/4

√
πks

[
i(eiLπ/2roi − e−iLπ/2)kL+1

s

(2L + 1)!!
RL+1

s + (2L − 1)!!(eiLπ/2roi + e−iLπ/2)

kL
s

R−L
s

]
.

(A6)

Comparing the terms of RL+1
s and R−L

s , respectively, on two sides of the equations, we get

c11
(α − 2)ν

�(1 − ν)
= i

ei(π/4+Lπ/2)

√
πks

kL+1
s

(2L + 1)!!
t io, (A7)

c12
(α − 2)−ν

�(1 + ν)
= ei(π/4+Lπ/2)

√
πks

(2L − 1)!!

kL
s

t io, (A8)

c21
(α − 2)ν

�(1 − ν)
= i

eiπ/4

√
πks

(eiLπ/2roi − e−iLπ/2)kL+1
s

(2L + 1)!!
, (A9)

c22
(α − 2)−ν

�(1 + ν)
= eiπ/4

√
πks

(2L − 1)!!(eiLπ/2roi + e−iLπ/2)

kL
s

. (A10)

Thus, f (ks) in Eq. (11) can be extracted from c11/c12.
In the short-range region of Rs � 1, the zero-energy solutions behave as

ψ1(Rs)
Rs�1=

√
2Rs

πz
cos

(
z − π

4
+ νπ

2

)
, ψ2(Rs)

Rs�1=
√

2Rs

πz
cos

(
z − π

4
− νπ

2

)
. (A11)

As low-energy E is negligible compared with the deep potential well in the short-range region, Eq. (3) can be written as

f i+ = eiπ/4

√
π

Rα/4
s ei(zm−z), (A12a)

f i− = eiπ/4

√
π

Rα/4
s ei(z−zm ). (A12b)

Substituting Eqs. (A11) and (A12) to Eqs. (5) and (7), we get

c11

√
α − 2

π
Rα/4

s cos
(

z − π

4
+ νπ

2

)
+ c12

√
α − 2

π
Rα/4

s cos
(

z − π

4
− νπ

2

)
Rs�1= eiπ/4

√
π

Rα/4
s ei(zm−z) + rio eiπ/4

√
π

Rα/4
s ei(z−zm ),

× [c21ei(zm−π/4+νπ/2) + c22ei(zm−π/4−νπ/2)]ei(z−zm ) + [c21e−i(zm−π/4+νπ/2) + c22e−i(zm−π/4−νπ/2)]e−i(z−zm )

Rs�1= 2t oieiπ/4ei(z−zm )

√
α − 2

. (A13)
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Comparing the terms of ei(z−zm ) and e−i(z−zm ), respectively, on two sides of the equations, we finally obtain Eqs. (8)–(10) and the
matrix C with the elements,

c11 = 2eiπ/4

√
α − 2

f (ks)

f (ks)e−i(zm−π/4+νπ/2) + e−i(zm−π/4−νπ/2)
, c12 = 2eiπ/4

√
α − 2

1

f (ks)e−i(zm−π/4+νπ/2) + e−i(zm−π/4−νπ/2)
,

c21 = −i
2eiπ/4

√
πks

�(1 − ν)kL+1
s

(α − 2)ν (2L + 1)!!

ei(νπ−Lπ/2)

f (ks) + eiνπ
, c22 = i

2eiπ/4

√
πks

�(1 − ν)kL+1
s

(α − 2)ν (2L + 1)!!

e−iLπ/2

f (ks) + eiνπ
. (A14)
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