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We compute the fluctuations of the number of bosons with a given momentum for the Tonks-Girardeau gas
at zero temperature. We show that correlations between opposite momentum states, which are an important
identifying characteristic of long-range order in weakly interacting Bose systems, are suppressed and that
the full distribution of the number of bosons with nonzero momentum is exponential. The distribution of the
quasicondensate is however quasi-Gaussian. The experimental relevance of our findings for recent cold-atom
experiments is discussed.
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I. INTRODUCTION

Ultracold-atom experiments represent now an established
playground to test theories of many-body physics and mimic
solid-state strongly correlated systems [1,2] with incredible
accuracy. One-dimensional systems can be routinely achieved
by confining atoms along transverse directions [3–5] with
the possibility to monitor the interaction strength and the
temperature at will. In particular, it is possible to span the
entire range of the one-dimensional Bose gas from the weakly
interacting to the strongly interacting regime. While pair
correlations have a tendency to build albeit without forming
a true condensate in the weak-coupling limit, strong repul-
sion tends to make the bosons behave more like fermions.
This is the celebrated Tonks-Girardeau gas [6]. Although
physical quantities involving diagonal elements of the den-
sity matrix such as spatial density correlations [3] or the
real-space emptiness formation probability [7] are fermion-
like, the off-diagonal part behaves very differently. The most
common example is the momentum distribution, namely, the
average occupation number of a state with a given mo-
mentum p, 〈Np〉, which is the so-called Fermi-Dirac distri-
bution for fermions but is completely different for bosons
[8,9].

This momentum distribution is a key observable in the field
of ultracold atoms since it is easily obtained experimentally
with time-of-flight images and contains crucial information
on quantum correlations, interaction effects, and symme-
tries of the many-body wave function [10]. However, as we
know from quantum optics, mesoscopic transport or even
the physics of phase transitions, the fluctuations around the
average are sometimes the most interesting physical signal.
This is why the community is now studying higher moments
of the momentum occupation number, like its variance 〈N2

p 〉 −
〈Np〉2, covariance 〈NpNq〉 [11–16], or even the full distribution
(full counting statistics) [15]. This can be a great help in
unraveling different regimes [11,13,17,18] or in identifying
exotic phenomena such as the dynamical Casimir effect [19]
or Hawking radiation [20–24].

In this paper we study the fluctuations of the momentum
occupation number Np in the Tonks-Girardeau limit at zero
temperature for all momenta. This is an extension of the work
of Lovas et al. [15] on the full counting statistics of Np in
the low-momentum regime described by bosonization [25,26]
and the one of Refs. [11,13,14] on the weakly interacting Bose
gas. In particular, we show that the full counting statistics of
Np is, for momentum p in almost all regimes, exponential and
that the different occupation numbers are uncorrelated. This
is in sharp contrast to the weakly interacting regime where
Bogoliubov theory predicts positive correlations between op-
posite momentum states [11,14,27].

This article is organized as follows. In Sec. II we describe
the model and explain the general formalism used to compute
the second moment 〈N2

p 〉 and the correlations 〈NpNq〉 of the
momentum occupation number in terms of Toeplitz matrices.
Section III concentrates on intermediate- and long-wavelength
properties. It explains how results from standard bosonization
[15] can be retrieved. Section IV deals with the opposite
limit of high momentum. A short-distance expansion of the
two-body density matrix enables us to make predictions about
the variance of the number of particles with a given mo-
mentum. The full probability distribution is also obtained.
Sections V and VI complement our analytical results with
numerical calculations of the variance and the correlations
for all values of the momentum and for the specific case of
the quasicondensate mode. In Sec. VII we discuss how our
predictions could be tested in realistic experiments as well as
perspectives for future research on other systems along these
lines. Technical details can be found in Appendixes A–C.

II. MODEL

We consider a gas of N identical bosons existing on a
strictly one-dimensional segment of length L with periodic
boundary conditions. The average density ρ = N/L is con-
stant and we will mainly be interested in the thermodynamic
limit N → ∞ and L → ∞ with N/L fixed. However, the for-
malism also allows us to straightforwardly calculate finite-size
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FIG. 1. (a) One-dimensional identical interacting bosons at zero
temperature. (b) Sketch of the momentum distribution of the one-
dimensional Bose gas in the Tonks-Girardeau limit (pF = π h̄N/L).
The data represent a single shot measurement whereas the full line
is the average 〈Np〉. The inset shows the full distribution of Np for a
given p.

corrections. We focus on the limit of infinite and hard-core
repulsion between bosons, which is known as the Tonks-
Girardeau gas. The Hamiltonian is a limiting case of the
Lieb-Liniger model [28], which reads

H = − h̄2

2m

N∑
i=1

∂2

∂x2
i

+ g
∑
i> j

δ(xi − x j ), (1)

where xi is the position of the ith bosonic particle of mass m
and g is the repulsive interaction strength [29]. In the Tonks
limit, g is sent to infinity. In this regime, the ground state
is constructed by filling all the momentum states up to the
Fermi momentum pF = h̄πN/L while preserving the bosonic
statistics as described below. This is the so-called regime of
fermionization where all physical observables that depend
only on density or density correlations are similar to the ones
of a perfect gas of fermions [6]. However, quantum statistics is
crucial whenever off-diagonal elements of the density matrix
are involved in an observable and this is in particular the case
of the momentum distribution [8,9]. This quantity 〈Np〉 is the
Fourier transform of the one-body density matrix

〈Np〉 =
∫∫

e−ip(x−x′ )/h̄ρ1(x, x′)dx dx′, (2)

ρ1(x, x′) =
∫

�∗(X )�(X ′)dx2 · · · dxN , (3)

where X = (x, x2, . . . , xN ), X ′ = (x′, x2, . . . , xN ), and
�(x1, . . . , xN ) is the many-body wave function of the
system, which corresponds to the average number of bosons
in a state with momentum p and therefore is proportional to
the probability of finding a particle with momentum p in an
actual experiment. For the Tonks-Girardeau gas considered
in this paper, its shape is represented in Fig. 1 (thick blue
line), which obviously shows that it has no relation with the
one of a perfect Fermi gas (a Fermi-Dirac step function at
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FIG. 2. Standard deviation �Np =
√

〈N2
p 〉 − 〈Np〉2 (blue thick

solid line) and average number of bosons 〈Np〉 (black thin solid line)
as a function of p for N = 100 bosons. Dashed lines are the limiting
cases (see the text). The inset shows the same data in linear scale in a
slightly different form. The ratio 〈N2

p 〉/〈Np〉2 is plotted as a function
of the momentum p in units of 2π h̄/L. The horizontal black lines
correspond to the two limiting values 1.33 and 2 [see Eqs. (19) and
(10)]. The blue solid line connecting the data points is merely a guide
to the eye.

zero temperature). Therefore, much important information is
accessible from this observable such as the quasicondensate
fraction or the symmetry of the wave function. In the Tonks
regime, it is known to display several interesting properties.
First, the average occupation of the ground state (p = 0 here)
is proportional to

√
N [8,30] and not N like in a weakly

interacting Bose gas, signaling the absence of Bose-Einstein
condensation in one dimension in the presence of strong
interactions. At low momentum, namely, for p 	 pF , the
momentum distribution decays as 1/

√
p, while for p 
 pF

it decays as p−4. The latter behavior is universal as long
as particles have contact interactions and does not depend
on quantum statistics or on the interaction strength. The
coefficient in front of this power law, however, strongly
depends on these parameters and is called the Tan contact
[31,32]. Some of these features are illustrated in Fig. 2 (thin
black solid line and black dashed lines on the main panel).

However, the momentum distribution is only an average
quantity. In an experiment, shot-to-shot fluctuations (blue
circles in Fig. 1) may be an incredible source of information,
as it was pointed out by Landauer in his famous quote “the
noise is the signal.” With the important advances in the
field of single-atom detection [33], fluctuations around the
average will be an additional channel for collecting precious
information about the physical properties of quantum liquids,
but there seems to be very little information about them in
the literature. For example, the variance 〈N2

p 〉 − 〈Np〉2 is not
known in general. Recently, Lovas et al. [15] calculated the
probability distribution of the momentum occupation, but only
in the long-wavelength limit, using bosonization [3]. They
found that Np is distributed exponentially in this regime for
p �= 0 and that N0 follows a Gumbel distribution for weak
interactions. In the opposite limit of high momentum or for
a strong interaction, nothing is known at the moment. It is
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the purpose of this paper to answer these questions. We now
explain how to compute the variance, the covariance, and
the full distribution of Np for a Tonks-Girardeau gas at zero
temperature.

In order to calculate the fluctuations of Np, we need the
two-body density matrix, defined as

ρ2(x, u; y,w) =
∫∫

· · ·
∫

�∗(x, u, x3, . . . , xN )

×�(y,w, x3, . . . , xN )dx3 · · · dxN , (4)

with � the ground-state wave function for periodic boundary
conditions [6]

�({xi}) = 1√
N!LN

∏
1� j<k�N

|ei(2π/L)x j − ei(2π/L)xk |. (5)

Following the steps done in Ref. [30] for the one-body density
matrix, we apply the method therein to the two-body density
matrix and cast ρ2(x, u; y,w) as a determinant of a Toeplitz
matrix. Technical details are given in Appendix A. This results
in

ρ2(x, u; y,w) = 1

L2
|eiθu − eiθx ||eiθw − eiθy |det(	i, j ), (6)

where θx = 2πx/L (θy, θu, and θw are defined in a similar
fashion) and det denotes the determinant of the matrix 	 of
elements 	i, j . This matrix is of Toeplitz type, which means
that 	i, j is a function of n = i − j only. In addition, 	 is also
Hermitian. Explicitly,

	n =
∫ 2π

0
F (θ )einθ dθ

2π
, (7)

where

F (θ ) = 16

∣∣∣∣sin

(
θ − θx

2

)
sin

(
θ − θy

2

)

× sin

(
θ − θu

2

)
sin

(
θ − θw

2

)∣∣∣∣. (8)

Finally, the second moment 〈N2
p 〉 can be calculated by tak-

ing a double Fourier transform of ρ2(x, u; y,w). The covari-
ance, namely, the correlations between occupation numbers at
different momenta p and q, is written as

〈NpNq〉 =
∫

[0,L]4
ei[p(y−x)/h̄]ei[q/(w−u)h̄]

× ρ2(x, u; y,w)dx dy du dw. (9)

Following this recipe, we will now evaluate these quantities
analytically at low momentum in Sec. III and high momentum
in Sec. IV and numerically in Sec. V for any momentum.
The reader not interested in technical details may want to go
directly to Sec. V. Finally, the quasicondensate case (p = 0)
is treated separately in Sec. VI.

III. FLUCTUATIONS IN THE HYDRODYNAMIC REGIME

In this section we explain how to retrieve the findings of
Ref. [15] on the full distribution of Np but also compute the
covariance in the low-momentum regime. Instead of standard
bosonization, which is commonly used to describe the physics

at low energy, we develop an alternative and more general
approach based on asymptotic properties of Toeplitz matrices.
At low momentum p 	 pF but p �= 0, or long distances
compared to ξ = L/N , the mean interparticle distance, we
show that

〈NpNq〉 = (1 + δp,q)〈Np〉〈Nq〉. (10)

To do so, we first compute the two-body density matrix in
the limit of low momentum as explained in Appendix A. Our
calculation, based on the theory of Fisher-Hartwig singular-
ities [34,35], not only reproduces the standard bosonization
approach [15] but also allows us to compute the numerical
prefactor that in general is not possible to obtain. The density
matrix reads

ρ2(x, u; y,w) = 2N

L2
ρ2

∞|eiθw − eiθu |−1/2|eiθw − eiθx |−1/2

× |eiθw − eiθy |1/2|eiθy − eiθu |−1/2

× |eiθy − eiθx |−1/2|eiθu − eiθx |1/2, (11)

with ρ∞ = G(3/2)4/
√

2 and G is the Barnes function [36].
In addition, if all distances are also much shorter than L we
obtain an expression that only depends on terms like |u − w|,
which is given in Appendix A.

Having determined the two-body density matrix for dis-
tances longer than ξ , we need to assess the behavior of 〈N2

p 〉
and 〈NpNq〉. We start with the former case and notice that,
due to the oscillatory behavior of the integrand, the integral
is dominated by contributions where p(y − x)/h̄ and p(w −
u)/h̄ (direct term) or p(y − u)/h̄ and p(w − x)/h̄ (exchange
term) are smaller than or of order 1. We therefore consider
configurations in real space where pairs of coordinates are
separated by a distance of order h̄/p. By analogy with classi-
cal electrodynamics, or to use more sophisticated language, in
the Coulomb gas formulation of the Tonks-Girardeau gas [37],
we call these pairs dipoles. Moreover, in the thermodynamic
limit, it is very unlikely that two dipoles overlap since their
size is typically of order h̄/p 	 L. It is then reasonable to
assume that the dipoles are well separated and to simplify the
expression of the two-body density matrix to ρ2(x, u; y,w) �
2N
L2 ρ2

∞|eiθw − eiθu |−1/2|eiθy − eiθx |−1/2 in the direct term and a
similar expression for the exchange term. In the approxima-
tion of the dilute gas of dipoles, the direct and the exchange
terms give the same contribution and Eq. (9) factorizes to

〈
N2

p

〉 = 2N

L2
ρ2

∞

∫ L

0

ei(p/h̄)(y−x)√∣∣sin
(

π (y−x)
L

)∣∣d (y − x)

×
∫ L

0

ei(p/h̄)(w−u)√∣∣sin
(

π (w−u)
L

)∣∣d (w − u). (12)

Here we recognize twice the square of the momentum
distribution [see Eq. (34) of Ref. [30] for instance] in the
low-momentum limit 〈Np〉 =

√
N

L ρ∞
∫ L

0 |sin(πx/L)|−1/2dx.
This completes the proof of 〈N2

p 〉 = 2〈Np〉2. Note that
corrections to this approximation can be calculated by taking
into account interactions between dipoles. This can be done by
expanding [in Eq. (A7)]

√|u − x||w − y|/√|w − x||y − u| �
1 + (w − u)(y − x)/(u − x)2 in the direct term (the
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calculation is similar for the exchange term), but this
yields positive corrections of the form 〈Np〉2/p, which are
subdominant since h̄/L 	 p 	 pF in the thermodynamic
limit.

We now compute the covariance 〈NpNq〉 using the same
procedure. The direct term gives obviously 〈Np〉〈Nq〉, whereas
the exchange term is a bit more subtle to analyze and reads

〈NpNq〉ex =
∫

ei(p/h̄)(y−u)ei(p/h̄)(w−x)ei[(p−q)/h̄](u−w)

× ρ2(x, u; y,w)dx dy du dw.

Using the same arguments as before, the two-body density
matrix factorizes and no longer depends on u − w, which, due
to the presence of the third exponential factor, yields a factor
δ(p − q) in the thermodynamic limit. It is therefore equal to
zero for p �= q. Putting pieces together we prove Eq. (10),
which suggests that Np is distributed exponentially. Indeed,
putting forth the dilute gas of dipoles approach, we obtain, for
all integers n, 〈Nn

p 〉 = n!〈Np〉n, which is the signature of an
exponential distribution

P(Np) = exp(−Np/〈Np〉)/〈Np〉. (13)

This is precisely the result obtained in [15] using bosoniza-
tion. However, we will show in the next section that this result
is also valid beyond the hydrodynamic regime.

IV. SHORT-WAVELENGTH FLUCTUATIONS

We now turn to the regime of high momentum p 

pF and extend the previously known results (10) and
(13). In other words, we demonstrate that Np is also ex-
ponentially distributed with no correlations in the high-
momentum regime. To prove this, we study the behav-
ior of ρ2(x, u; y,w) for small |y − x| and |w − u| sim-
ilar to the short-distance expansion of the one-body
density-matrix expansion ρ1(x) = ρ1(0) + ax2 + b|x|3 + · · ·
[8,38,39]. We recall that in the case of the average mo-
mentum distribution 〈Np〉, the leading term giving the so-
called p−4 contribution comes from the Fourier trans-
form of |x|3. Indeed, the first two contributions give
zero for symmetry reasons and the remaining terms are
subdominant in the high-p regime. This comes from
Watson’s lemma [40], which states that if a function
f (z) behaves as |z − a|α in the vicinity of a, then for
high p, to leading order in p,

∫ +∞
−∞ eipz f (z − a)dz =

2 f (a)eipa	(α + 1) cos[π
2 (α + 1)]p−(α+1). We will see that

the situation is similar for the second moment of the
distribution.

Although it is technically possible to perform a cumulant
expansion of det(	n), we will not pursue this route. We rather
use the development by Lenard [8]. This formal series is an
expansion of the two-body bosonic density matrix in terms of
the fermionic ones and reads

ρ2(x, u; y,w) = sgn(u − x)sgn(w − y)

(
〈x, u|ρF |y,w〉 + (−2)

1!

∫
J
〈x, u, x3|ρF |y,w, x3〉dx3 + · · ·

+ (−2)n

n!

∫
J

∫
J
· · ·

∫
J

dx3 · · · dxn+2〈x, u, x3, . . . , xn+2|ρF |y,w, x3, . . . , xn+2〉 + · · ·
)

, (14)

where the interval J is defined as J ≡ [x, y] ∪ [u,w] and ρF is the fermionic density matrix. The m-body fermionic density
matrix reads

〈x, u, x3, . . . , xm|ρF |y,w, x3, . . . , xm〉 = L−m

∣∣∣∣∣∣∣∣∣∣

f (y − x) f (w − x) f (x3 − x) · · · f (xm − x)
f (y − u) f (w − u) f (x3 − u) · · · f (xm − u)
f (y − x3) f (w − x3) f (x3 − x3) · · · f (xm − x3)

... · · · · · · · · ·
f (y − xm) f (w − xm) f (x3 − xm) · · · N

∣∣∣∣∣∣∣∣∣∣
, (15)

with f (z) ≡ sin(Nπz/L)
sin(πz/L) for z �= 0 and f (0) = N . Although it

is possible to compute all terms for finite N , we directly
take the thermodynamic limit for the sake of simplicity.
Moreover, it is again sufficient to consider dilute dipole
configurations since clusters of more than two points give
subdominant contributions. This time, it is simply related
to the fact that the density matrix vanishes as a power law
when two spatial coordinates approach each other (in the
Coulomb gas formulation of the Tonks-Girardeau gas, these
configurations are strongly penalized by Coulomb repulsion).
This can be easily understood by looking at the functional
dependence of the many-body wave function (5). In this
limit, we have computed this expansion explicitly up to
seventh order in |u − x| and |w − y| as it was necessary to
obtain the relevant contribution. All the terms are collected
in Appendix B.

In order to compute the variance and the correlations,
we use a similar dipole decomposition of the Fourier trans-
form with a direct term corresponding to |x − y| 	 ξ and
|w − u| 	 ξ with |u − x| 
 ξ and an exchange term with
|x − w| 	 ξ and |y − u| 	 ξ , also with |u − x| 
 ξ . It turns
out that, as long as |u − x| 
 ξ , the expansion is independent
of u − x, which makes the calculation of the Fourier transform
rather easy. The expansion for the direct term is of the form

ρ2(x, u; y,w) =
∞∑

n=0

n∑
m=0

Am,n

∣∣∣∣y − x

ξ

∣∣∣∣
m∣∣∣∣w − u

ξ

∣∣∣∣
n−m

. (16)

When looking carefully at the different terms, it turns out that
the relevant term is A3,6|(y − x)/ξ |3|(w − u)/ξ |3. Performing
the same expansion for the exchange term and lumping the
two expansions together yields immediately 〈N2

p 〉 = 2〈Np〉2,
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FIG. 3. Normalized correlations between different momentum
occupation numbers 〈NpNq〉/〈Np〉〈Nq〉 − 1 for N = 100 bosons as a
function of p and q. The dashed line indicates the diagonal p = q. A
cut along the diagonal is visible in the inset of Fig. 2.

with 〈Np〉 = C p−4 and C = 4
3π2 p4

F since the direct and the
exchange contributions are identical. However, for the correla-
tions, the exchange contribution vanishes for the same reason
as in Sec. III. Therefore, we also find that no correlation exists
between different momenta in this limit. In particular, Np and
N−p are not correlated, as opposed to what happens in the
weakly interacting regime [27].

The above analytical part of the calculation
can be generalized to the n-body density matrix
ρn(z1, z2, . . . , zn; s1, s2, . . . , sn). This gives access to the
nth moment of Np, 〈Nn

p 〉, resulting in 〈Nn
p 〉 = n!( C

p4 )n, in the
limit p 
 pF . The knowledge of all the integer moments 〈Nn

p 〉
enables [41,42] us to reconstruct the probability distribution
P(Np), which is therefore exponential.

V. INTERMEDIATE REGIME

We have now proven that the occupation number of a
state with momentum p is exponentially distributed according
to Eq. (13) and that occupation numbers with a different
momentum are uncorrelated for low but nonzero (h̄/L 	
p 	 pF ) and high momenta (p 
 pF ). It is then natural
to wonder if this statement is correct for intermediate mo-
mentum. In that case, we have computed numerically the
variance and covariance of Np using Eqs. (6) and (9). Our

results are presented in Figs. 2 and 3 for the standard
deviation �Np =

√
〈N2

p 〉 − 〈Np〉2 and the normalized corre-
lations 〈NpNq〉/〈Np〉〈Np〉 − 1, respectively.

As can be seen in Fig. 2, the numerically obtained curves
�Np and 〈Np〉 are almost indistinguishable from each other for
all values of p/pF , not only in the high- and low-momentum
regimes. The inset in Fig. 2 shows deviations from this law,
which will be discussed in the next section. Although it is not
a proof, it is strong evidence that the equation 〈N2

p 〉 = 2〈Np〉2

is valid for any momentum p, as long as p is not too close to
zero, as discussed in Sec. VI below. It is therefore reasonable
to believe that Np is distributed exponentially for any value of
p �= 0. This has the important consequence that for a Tonks-
Girardeau gas, the relative fluctuations of Np never vanish in
the thermodynamic limit. They are always equal to the signal
itself. This is schematized in Fig. 1.

Concerning the correlations, one can also observe in
Fig. 3 that they exist only for p = q, in agreement with
Eq. (10). Indeed, only one straight line on the colormap
〈NpNq〉/〈Np〉〈Nq〉 − 1 as a function of p and q is visible, the
rest of the colormap being zero. This is in sharp contrast to
the physics of a weakly interacting Bose gas discussed in
Refs. [11,13,14], where, for instance, correlations between
p and −p are clearly visible. This is not really a surprise
since these pair correlations stem from the existence of a
condensate and are the hallmark of long-range coherence.
They basically emerge from the low-energy excitations of
this system that are phonons which are quasiparticles with
equal weight of opposite momentum components, whereas
in the Tonks-Girardeau gas, the low-energy excitations are
particle-hole-like and independent of each other.

VI. QUASICONDENSATE MODE

So far, we have focused on the statistical distribution and
correlations of momentum state occupation numbers with
nonzero momentum. As discussed in [15], the quasicon-
densate mode which has zero momentum must be treated
differently. Using arguments based on Bogoliubov theory in
the weak-coupling regime, Lovas et al. explained that the
distribution of N0 was of Gumbel type.1 However, at larger
coupling (when the Luttinger parameter K approaches one
in Fig. 3 of [15]), important deviations from this prediction
are visible. In the following, we briefly discuss how this
problem is related to other models that have been studied in
the literature and discuss some important results such as the
variance and the shape of the distribution of N0.

The nth moment of the number of bosons in the zero-
momentum state 〈Nn

0 〉 is given by the formula

〈
Nn

0

〉
(ρ∞

√
2N )n

=
∫ 2π

0
· · ·

∫ 2π

0

∏
1�i< j�n

∣∣∣∣4 sin

(
θi − θ j

2

)
sin

(
θ ′

i − θ ′
j

2

)∣∣∣∣
α

⎡
⎣ n∏

i=1

n∏
j=1

∣∣∣∣2 sin

(
θi − θ ′

j

2

)∣∣∣∣
α

⎤
⎦

−1

dθ1

2π
· · · dθn

2π

dθ ′
1

2π
· · · dθ ′

n

2π
,

(17)

1In the weak-interaction regime [15], x = (N0 − 〈N0〉)/�N0 (where �N0 is the standard deviation of N0) is distributed according to the
Gumbel distribution P(x) = c exp[cx − γ − exp(cx − γ )], with c = π/

√
6 and γ � 0.5772 Euler’s constant.
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with α = 1/2. This kind of expression shows up in other
physical problems and has been studied in different contexts.
For instance, if divided by n!2, it can be interpreted as
the canonical partition function of a neutral two-component
Coulomb gas with 2n (in total) logarithmically interacting
charges [43]. Then θi and θ ′

j are the positions of the positive
and negative charges on the unit circle, respectively. The
inverse temperature of the Coulomb gas is β = α. It is also
related to the partition function which describes tunneling
through a barrier of an interacting spinless Luttinger liquid
with attractive interactions [44] and the interaction parameter
g = 4 in the notation of Ref. [44]. The gas is in the disordered
phase, at a temperature T well above the Kosterlitz-Thouless
transition TKT, which occurs at β = 1/TKT = 2 in their units.
Finally, this problem of finding the full distribution of N0

is closely related to the full counting statistics of the av-
erage interference patterns between two Bose condensates
[45,46]. However, in the case of Refs. [45,46], there are
two condensates, each one having a Luttinger parameter K .
Consequently, Eq. (17), giving 〈Nn

0 〉, translates to the same
problem they studied but with α = 1

2K and not 1/K . For the
Tonks-Girardeau gas, α = 1/2 and we can thus use the results
derived in Ref. [45], with K = 2, instead of K = 1, as one
might naively think. Therefore, most of the results about the
distribution of N0 are available in the references mentioned
above. In particular, using previous work by Bazhanov et al.
[47], the authors of Ref. [45] were able to obtain a distribution
related to P(N0) exactly.

We now discuss several simple results, namely, the two first
moments of the distribution and its shape. The average value
of N0 was calculated in [30] and reads

〈N0〉 =
√

2π

[	(3/4)]2
ρ∞

√
N, (18)

while the second moment can be evaluated numerically from
Eq. (17) and gives2 〈

N2
0

〉 � 1.33〈N0〉2, (19)

which shows that N0 is no longer exponentially distributed:
〈N2

0 〉 �= 2〈N0〉2. Nevertheless, the fluctuations of N0 are pro-
portional to its average and therefore do not disappear in
the thermodynamic limit either as it has also been noticed
in lattice systems [12]. The prefactor in Eq. (19) is smaller
than 2, which means that fluctuations are smaller in the
quasicondensate than in other modes. We associate this with a
reminiscent effect of coherence that would reduce fluctuations
in the condensate. This result is depicted in the inset of Fig. 2.
At p = 0 it can be seen that the prediction of Eq. (19) is
verified (see the lower black horizontal line) and that for p �= 0
the statistics quickly converge to the exponential one.

In addition to the average and the variance, we have access
to the full distribution. Following the method employed in
Ref. [45] (see Appendix C) for K = 2 in the notation therein,

2The multidimensional integral in Eq. (17) with n = 2 has been
evaluated with a Monte Carlo algorithm with 108 points. The statis-
tical sampling over 10 000 configurations gives 〈N2

0 〉/〈N0〉2 = 1.328
with a standard deviation equal to 0.015.
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FIG. 4. Probability densities of N0/〈N0〉 (thick blue line) and
Np/〈Np〉 (thin black line) for p �= 0 (but p 
 h̄/L). The inset shows
the same data in semilogarithmic scale. The red dot-dashed curve is
the Gumbel distribution (see footnote 1) and the black dashed curve
is a Gaussian fit for guidance.

we have calculated the distribution of N0. The result is shown
in Fig. 4 and demonstrates that in the Tonks-Girardeau regime,
it is neither exponential nor Gumbel but still contains large
fluctuations. Some insight into the full distribution of N0 can
also be obtained by looking at the asymptotic behavior of the
moments. Using the results of Ref. [37], we obtain, for n 
 1,〈

Nn
0

〉 � (ρ∞
√

2N )n exp
[

1
2 n ln n + O(n)

]
, (20)

which can easily be checked to be the asymptotic expression
of the moments of a positive Gaussian-distributed random
variable. This is indeed what is apparent in the inset of
Fig. 4, where we show the probability density in logarithmic
scale. This result can also be retrieved analytically by looking
at the behavior of spectral determinants, along the lines of
Refs. [45,46] (see Appendix C). The advantage of this method
is that it also permits us to obtain information on the behavior
of P(Np) for very low but nonzero momenta p, but we leave
this for future investigation.

VII. CONCLUSION AND PERSPECTIVES

In this work we have proposed a scheme to compute the
quantum fluctuations, at zero temperature, of the number of
particles Np with momentum p, for the Tonks-Girardeau gas.
We have shown analytically in the low- (h̄/L 	 p 	 pF )
and high-momentum limits (p 
 pF ) and have given strong
numerical evidence for intermediate values of momentum
that Np is distributed according to an exponential law. In
particular, we have demonstrated that the standard deviation
of the momentum distribution was equal to its mean value.
In addition, we have computed the covariance 〈NpNq〉 and
shown that correlations were only visible on the axis p = q
and that correlations between Np and N−p were suppressed,
contrary to the case of a weakly interacting Bose gas described
by Bogoliubov quasiparticles. Finally, the distribution of the
quasicondensate mode at p = 0 was shown to behave differ-
ently, as already observed for weak and moderate interactions
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in [15]. We argued that, in the Tonks regime, the tail of
its distribution is neither exponential nor Gumbel but rather
of Gaussian type. The case of correlations for very low but
nonzero momentum (p � h̄/L) is more difficult and is left for
future investigation.

Our findings can be relevant for ultracold-atom exper-
iments where high-order correlation functions in momen-
tum space can be measured, for instance, with time-of-flight
techniques [48]. In actual experiments, atoms are generally
released from a harmonic trap and the effect of the well
potential on the momentum distribution has to be taken into
account [48,49]. Inclusion of finite temperature would also
be a natural generalization of this work [50–52] as well as
finite interaction corrections in the regime of high momentum
[53]. Investigating the weak coupling or intermediate coupling
of the boson interaction, i.e., using the Lieb-Liniger model
[28], would also provide more insight [54–56] into how the
quasicondensate correlations build up [57]. Finally, another
important lead to follow would be the study of the fermionic
counterpart where generalization of random matrix theories
[58,59], including off-diagonal contributions of the density
matrix, would be considered.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF THE
TWO-PARTICLE DENSITY MATRIX FROM
DETERMINANTS WITH FISHER-HARTWIG

SINGULARITIES

In this Appendix we derive the expression of the two-body
density matrix of the Tonks-Girardeau gas in terms of Toeplitz
matrices and compute its long-distance approximation using
asymptotic properties of these matrices [34,35].

Starting from Eq. (4), inserting the ground-state wave func-
tion (5), and defining θxi = 2πxi/L, we obtain ρ2(x, u; y,w),

ρ2 = 1

N!LN

∫ 2π

0
· · ·

∫ 2π

0
|eiθx − eiθu ||eiθw − eiθy |

×
(

N∏
l=3

|eiθx − eiθl ||eiθy − eiθl ||eiθu − eiθl ||eiθw − eiθl |
)

×
∏

3�m<n�N

|eiθm − eiθn |2dx3 · · · dxN . (A1)

Then using the formulation in terms of a determinant of a
Toeplitz matrix (see Refs. [8,60]), we use the lemma

1

N!

∫ 2π

0
· · ·

∫ 2π

0

N∏
l=1

f (θl )
∏

1�n<m�N

|eiθm − eiθn |2 dθ1

2π
· · · dθN

2π

= det(M ), (A2)

where M is the square matrix with elements Mm,n =∫ 2π

0 eiθ (m−n) f (θ ) dθ
2π

. This lemma follows directly from

expressing
∏

3�m<n�N |eiθm − eiθn |2 as the square of a
Vandermonde determinant, namely,

∏
1�n<m�N

|eiθm − eiθn |2 =
∑
P,Q

ε(P )ε(Q)
N∏

l=1

eiθl [P (l )−Q(l )],

(A3)
where P and Q are permutations of the N integers from 1 to
N and ε(P ) is the signature of the permutation P . The sum on
P runs over all the N! permutations, as does the one on Q. In
our case, we take out the term 1

LN |eiθx − eiθu ||eiθw − eiθy | and
apply the lemma with N − 2 instead of N and

f (θ ) = |eiθx − eiθ ||eiθy − eiθ ||eiθu − eiθ ||eiθw − eiθ |. (A4)

Since |eiθx − eiθ | = 2|sin( θ−θx
2 )|, we obtain Eqs. (6)–(8).

We now evaluate the large-N behavior of the two-body
density matrix. In the spirit of Refs. [61,62], we adapt the
method used there for the one-body density matrix to the
long-distance behavior of the two-body density matrix which
is governed by the Fisher-Hartwig singularities of the matrix
	i, j , in Eqs. (6) and (7). We suppose that x, y, u, and w are all
separated by a distance longer than L/N . Starting from Eq. (6),
we need to evaluate the asymptotic behavior of det(	i, j ) for
large N , with θx, θy, θu, and θw larger than N−1. The symbol
F (θ ) of the Toeplitz matrix 	i, j is given by Eq. (8) and
satisfies

∫ 2π

0 ln F (θ )dθ = 0. This implies that the determinant
does not increase nor does it decay exponentially for large N .
There are however four distinct Fisher-Hartwig singularities
located at θ = θx, θy, θu, and θw. These singularities are all of
the same type, a discontinuity of the slope in F (θ ); in other
words, there are four α-type singularities in the notation of
Ref. [62], with α = 1/2. Applying theorems (2) and (3) from
Ref. [62], we obtain

det(	i, j ) � NG(3/2)8|eiθy − eiθx |−1/2|eiθy − eiθu |−1/2

× |eiθw − eiθx |−1/2|eiθw − eiθu |−1/2|eiθw − eiθy |−1/2

× |eiθu − eiθx |−1/2, (A5)

with G the Barnes function [36]. Now, taking into account the
prefactor in Eq. (6),

ρ2(x, u; y,w) � (N/L2)G(3/2)8|eiθy − eiθx |−1/2|eiθy − eiθu |−1/2

× |eiθw − eiθx |−1/2|eiθw − eiθu |−1/2

× |eiθw − eiθy |+1/2|eiθu − eiθx |+1/2, (A6)

which is Eq. (11). In order to retrieve the familiar result
of bosonization on the infinite line, we suppose that all
arguments x, y, u,w are small with respect to L, but can be
large with respect to L/N . This allows us to approximate
|eiθy − eiθx |−1/2 � √

L/2π |y − x|−1/2 and yields

ρ2(x, u; y,w) = N[G(3/2)8/2πL]|w − u|−1/2|w − x|−1/2

×|w − y|1/2|y − u|−1/2|y − x|−1/2|u − x|1/2.

(A7)
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APPENDIX B: THERMODYNAMIC LIMIT OF ρ2(x, u; y, w)
FOR |u − x| � ξ AT SHORT DISTANCES |y − x|

AND |w − u| � ξ

We give here explicit expressions of the Lenard expansion
in the thermodynamic limit, in the regime of the dilute gas of
dipoles, up to seventh order. These results are simply obtained
by computing the determinants in the large-N limit. Here
we consider the configuration where x and y and u and w

constitute the two dipoles (|y − x| 	 ξ and |w − u| 	 ξ ) that
are far apart (|u − x| 
 ξ = L/N), but it is straightforward
to obtain all possible permutations since the bosonic density
is symmetric with respect to permutations. In that case, an
important simplification comes from the fact that sin[πN (u−x)/L]

sin[π (u−x)/L]
is always of order 1 and never of order N , giving lower
powers of N . A tedious calculation to the seventh order
yields

ρ2(x, u; y,w) = N2

L2
sgn(u − x)sgn(w − y)

7∑
n=0

Tn, (B1)

with

T0 = 1, T1 = 0, (B2)

T2 = −π2

6
(Y 2 + W 2), T3 = −π2

9
(|Y |3 + |W |3), (B3)

T4 =
(

π4

120
+ π2

9

)
(Y 4 + W 4) + π4

36
Y 2W 2, (B4)

T5 = − 11

1350
π4(|Y |5 + |Y |5) − π4

54
(|Y |3W 2 + Y 2|W |3), (B5)

T6 =
(

π2

9

)2

|Y |3|W |3 −
(

π6

5040
+ 11

450
π4

)
(Y 6 + W 6)

−
(

π6

720
+ π4

54

)
(Y 4W 2 + Y 2W 4), (B6)

T7 = 61

264 600
π6(|Y |7 + |W |7) + 11

1800
π6(|Y |5W 2 +Y 2|W |5)

+ π6

1080
(Y 4|W |3 + |Y |3W 4), (B7)

where Y = N (y − x)/L and W = N (w − u)/L. To obtain
Eq. (16) we have defined

Tn =
n∑

m=0

Am,n|Y |m|W |n−m. (B8)

APPENDIX C: DISTRIBUTION OF N0 FROM
SPECTRAL DETERMINANTS

We briefly explain here how we have calculated the distri-
bution of N0 shown in Fig. 4 and how the Gaussian behavior of
the tail of the distribution P(N0) can be retrieved with the help
of spectral determinants of Ref. [47]. Using the formulation of
Ref. [45] (for a different problem of interferences between two
interacting bosonic gases but mathematically similar to the
problem considered in this article), the statistical properties
of N0 are related to the spectrum {εn} of the radial sextic
oscillator

−d2ψ (r)

dr2
+

(
r6 + �(� + 1)

r2

)
ψ (r) = εnψ (r), (C1)

with angular momentum � = − 1
2 and r ∈ [0,+∞[. The dis-

tribution of N0 is given by the integral [45]

P(α) = 2
∫ ∞

0

∞∏
n=1

(
1 − κ

x2

εn

)
J0(2x

√
α)x dx, (C2)

with α = N0/〈N0〉, κ = 8
√

2	(3/4)2/π2, and J0 the Bessel
function. This is the result shown in Fig. 4.

The moments of the distribution can be cast in the form

〈
Nn

0

〉 ≡ (ρ∞
√

2N )nZ2n

= (n!)2(ρ∞
√

2Nκ )n
∑

i1,i2,...,in, all different

∏
ε−1

i1
ε−1

i2
· · · ε−1

in
.

(C3)

As explained in Ref. [47], for j larger than 2 basically, ε j

increases as j3/2 and thus Z2n behaves as
√

n! for large n. This
in turn implies that P(N0) � exp(−CN2

0 ) for large N0, where
C is a real positive constant. The behavior of 〈Nn

p 〉 for low but

nonzero p = j 2π h̄
L is obtained in the same way, except that

now the energy levels εi are no longer the energy levels of
the oscillator in (C2) with l = − 1

2 but with l = 4 j − 1
2 . For j

much smaller than n, the behavior of 〈Nn
p 〉 still has the same

behavior as 〈Nn
0 〉, so the tail of the distribution P(Np) is also

Gaussian. However, for n much smaller than j, 〈Nn
p 〉 behaves

as n!〈Np〉n, signaling the exponential behavior of P(Np) for
Np 	 j〈Np〉.
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