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Nonequilibrium scenarios in cluster-forming quantum lattice models
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We investigate the out-of-equilibrium physics of monodisperse bosonic ensembles on a square lattice. The
effective Hamiltonian description of these systems is given in terms of an extended Hubbard model with
cluster-forming interactions relevant to experimental realizations with cold Rydberg-dressed atoms. The ground
state of the model, recently investigated in [Phys. Rev. Lett. 123, 045301 (2019)], features, aside from a
superfluid and a stripe crystalline phase occurring at small and large interaction strength V , respectively, a rare
first-order transition between an isotropic and an anisotropic stripe supersolid at intermediate V . By means
of quantum Monte Carlo calculations we show that the equilibrium crystal may be turned into a glass by
simulated temperature quenches and that out-of-equilibrium isotropic (super)solid states may emerge also when
their equilibrium counterparts are anisotropic. These out-of-equilibrium states are of experimental interest, their
excess energy with respect to the ground state being within the energy window typically accessed in cold atom
experiments. We find, after quenching, no evidence of coexistence between superfluid and glassy behavior. Such
an absence of superglassiness is qualitatively explained.
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I. INTRODUCTION

The search for ordered or disordered exotic states of matter
is a very active field of investigation in condensed-matter
physics [1–3]. The interactions between the individual con-
stituents of a given system play a fundamental role in this
context, being intrinsically related to the physical mechanisms
responsible for the stabilization of different (possibly novel)
physical scenarios. Usually, intriguing equilibrium or out-
of-equilibrium (OOE) properties emerge in the presence of
frustration, i.e., the impossibility of simultaneously satisfying
a minimum energy condition for all terms of the Hamiltonian
(see, e.g., Refs. [4,5]). The latter may arise from, e.g., com-
peting interactions, the presence of peculiar substrates (i.e.,
lattices), or polidispersity, i.e., the presence in the system of
particles with different properties such as, for example, mass
and/or size.

Recently, a large class of purely repulsive, isotropic
extended-range interactions (ERI), whose relevance ranges
from classical soft-matter systems [6–8] to cold Rydberg-
atom experiments [9–15], has elicited considerable theoretical
interest. Indeed, these potentials offer the possibility to ex-
plore a variety of equilibrium and OOE phenomena in realistic
models where frustration, in the forms discussed above, is not
included. The main features of pairwise ERI are a plateau
which extends up to interparticle distances of the order of
the critical radius rc and a tail quickly approaching zero for
r > rc [see Fig. 1(a)]. Systems with ERI at high enough
particle density ρ are characterized, in the classical limit,
by a so-called cluster crystalline ground state (GS) where
crystalline sites are occupied by self-assembled aggregates of

particles (i.e., clusters). Classical cluster crystals have been
shown to possess peculiar equilibrium dynamical properties
resembling those of glass-forming liquids, while still retaining
structural order [16]. For these systems, OOE glassy scenarios
where disorder coexists with clusterization have also been pre-
dicted [17,18]. Furthermore, when quantum effects are taken
into account, clusterization may lead to anomalous Luttinger-
liquid behavior in one spatial dimension (1D) [19–22], as
well as to the coexistence of diagonal long range order and
superfluidity (i.e., supersolidity) in 2D free space [23–26] or
on a triangular lattice [27]. In the latter, superfluidity may also
be concomitant to glassiness in a so-called OOE superglass.

In order to gain theoretical insight into the novel physical
phenomena related to clusterization, as well as into its inter-
play with quantum effects, system geometry, and interaction
radius rc, it is of crucial interest to extend the investigation
to different lattices and choices of relevant parameters. In this
context, a recent work by some of us [28] has been devoted to
the study of the GS phase diagram of a cluster-forming model
of hard-core bosons with shoulder ERI on a square lattice. For
such a model the GS is a superfluid (stripe crystal) for suffi-
ciently small (large) interaction strength V . Surprisingly, for
intermediate values of V a first-order phase transition occurs
between two different supersolids: an isotropic one, emerging
from the superfluid when V is increased, and an anisotropic
stripe supersolid emerging from the partial quantum melting
of the large-V , essentially classical, crystal.

The study of the GS phases mentioned above required
extensive calculations and careful temperature and interaction
annealings due to the presence of many OOE states close in
energy to the GS. Indeed, it is known that extended-range
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FIG. 1. Panel (a): examples of extended-range interactions. The
continuous and dashed curves represent a soft-shoulder potential
(see label) with fast-decaying [i.e., (r/rc )−6] tail and a shoulder
interaction of strength V0 and radius rc, respectively. Single-particle
crystalline ground states of the extended Bose-Hubbard Hamiltonian
in Eq. (1) on a triangular lattice for rc = 2a and ρ = 1/7 [panel (b)]
and on a square lattice for rc = 2

√
2a and ρ = 1/9 [panel (c)]. In

panels (b) and (c), black crosses are lattice sites and red dots are
occupied sites. Green circles highlight the range of the interaction
around an occupied site, black arrows are the vectors generating the
crystalline structure, and cyan regions indicate the primitive cells of
the crystals.

interactions on a lattice lead to a plethora of low-energy
metastable states, whose number exponentially increases with
the system size [29,30]. Such OOE states are of importance
to possible quantum simulations of our model of interest with
cold atoms since in these experiments states whose energy is
above the GS one are commonly accessed (even when one
is interested in GS physics, due in this case to the presence
of undesired excitations). As an example, even in the case of
the preparation of a bosonic Mott insulator (a comparatively
simpler state with respect to the ones discussed in this work)
one can currently obtain defect densities of up to the percent
level, which (in the strongly interacting regime) correspond
to differences in energy density of up to a few percent.
As a consequence, the fundamental question which need be

addressed is whether or not theoretical predictions that one
can make for the GS are stable within the characteristic energy
window accessible to experiments [31].

In this work the OOE scenarios of the model studied in [28]
are systematically investigated by means of a path-integral
Monte Carlo (PIMC) approach. In particular, our system can
be driven out of equilibrium via PIMC low-temperature (T )
quenches.

Our main findings are the following. (i) As opposed to the
isotropic and anisotropic supersolid GSs, a low-temperature
quench leads to largely isotropic, OOE (super)solid states.
Remarkably, these are also found for values of V at which the
equilibrium phases are instead anisotropic. (ii) Similarly to
our previous study of the same (albeit with different rc and ρ)
quantum model on the triangular lattice [27], as well as to that
of the classical model in free space [17], the OOE counterpart
of the equilibrium crystal at large V is a normal glass. (iii) In
the investigated parameter range no evidence of superglassy
behavior is obtained. The occurrence of such a state, which
has been predicted for the triangular lattice, crucially depends
on the interplay between lattice geometry, particle density, and
interparticle interactions.

It is worth mentioning that the energy deviations from the
GS of the OOE states analyzed in this work are comparable to
those routinely obtained in cold atom experiments.

The remainder of this paper is organized as follows. In the
next section we describe the details of the Hamiltonian model
of our interest with particular attention to its cluster-forming
regimes and, briefly, the numerical method adopted to carry
out our investigation. In Sec. III we present and discuss our
results, while in the last section we outline the conclusions of
our work.

II. MODEL AND METHODS

The model we investigate is described by the Hamiltonian

H = −t
∑

〈i j〉
(b†

i b j + H.c.) + V
∑

i< j:ri j�rc

nin j (1)

on a square lattice of N = L × L sites and lattice constant
a with periodic boundary conditions. Here t is the hopping
coefficient between nearest-neighbor sites, bi and b†

i are anni-
hilation and creation operators for hard-core bosons on site i,
respectively, ni = b†

i bi, V is the interaction strength, and ri j is
the distance between sites i and j. In the following, a and t
will be taken as units of length and energy, respectively.

For rc = a, i.e., nearest-neighbor potential, the phase dia-
gram of the model contains superfluid, solid, and insulating
phases [32], while supersolid states can be stabilized adding
longer-ranged density-density interactions [33,34]. We study
the model for rc > a, in a regime where cluster formation
takes place in the system.

For low enough ρ, the classical (i.e., t = 0) GS is a zero-
energy single-particle crystal, where the interparticle spacing
is larger than the interaction radius. The maximum density
ρc for which such a crystal exists is determined by rc and
the lattice geometry. For example, in our study of Eq. (1) on
the triangular lattice the choice rc = 2a results in a critical
density ρ tr

c = 1/7. In the equilibrium study performed in [28],
on the other hand, a square lattice geometry with rc = 2

√
2a
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FIG. 2. Schematic phase diagram of Eq. (1) as a function of the interaction strength V/t . Each colored region in the lower part of the
figure corresponds to a GS equilibrium phase: namely, a superfluid (SF, cyan), an isotropic supersolid (IS, orange), a stripe supersolid (SS,
green), and a stripe crystal (SC, pink). The drawings are sketches of the crystalline structure (where present) of each equilibrium phase. The
filling patterns in the upper part of the diagram identify the OOE states reached via simulated temperature quenching at target temperature
T/t = 1/20. The regions where quenching leads to OOE supersolid, solid, and glassy states are denoted by horizontal, diagonal, or dot filling
patterns, respectively.

leads to a critical density ρ
sq
c = 1/9. The single-particle crys-

talline structures corresponding to these densities are shown
in Figs. 1(b) and 1(c), respectively.

For ρ � ρc, a single-particle solid has a higher potential
energy than a solid in which particles group up in tightly
packed clusters. Indeed, the latter can arrange themselves far
enough from each other to be noninteracting (i.e., outside of
their mutual interaction radius). A larger value of ρ results in
the formation of larger clusters. For instance, on the triangular
lattice the chosen value of ρ = 13/36 ∼ 2.5ρ tr

c led to clusters
of three to four particles on average, while on the square
lattice, for ρ = 5/36 ∼ 1.25ρ

sq
c , the largest clusters contain

two particles.
When the system is driven away from thermal equilibrium,

cluster formation can cause effective polidispersity, which
in turn plays a fundamental role in the appearance of (su-
per)glassy states [17,27]. This phenomenon is favored by
large cluster sizes, as well as (sufficiently) strong interactions,
which prevent particles from delocalizing between different
clusters, and entire clusters from spatially rearranging to
establish an ordered (crystalline) structure.

In this work we analyze the OOE physics of Eq. (1) for the
same parameter range investigated in [28]. The model shows
a rich GS phase diagram, characterized by, e.g., competing
supersolid phases. Understanding the robustness of these sce-
narios within the typical experimental accuracy is one of the
main objectives of the present study. Furthermore here, due
to the presence of significantly smaller clusters, frustration
effects should be significantly weaker than those occurring in
the study of Ref. [27] on the triangular lattice. This would
allow one to determine, for instance, to which degree various
OOE phenomena depend on clusterization.

We study the model Eq. (1) by means of path-integral
quantum Monte Carlo simulations using Worm updates [35].
This is a state-of-the-art technique, which yields numerically
exact results for unfrustrated bosonic systems and allows
one to accurately estimate observables such as the superfluid
fraction ρs/ρ = (4βtρ)−1〈W 2

x + W 2
y 〉 and the static struc-

ture factor S(k) = N−2 ∑
i j exp [−ik(ri − r j )]〈nin j〉. These

order parameters measure superfluidity and crystalline order,

respectively, and are defined in terms of the inverse temper-
ature β = (kBT )−1 (kB is the Boltzmann constant, set to one
in the following), of the winding number Wx,Wy in direction
x, y, respectively, and of the lattice wave vectors k. Here, 〈. . .〉
stands for statistical average. We also estimate the renormal-
ized Edwards-Anderson parameter QEA = ∑

i〈ni − ρ〉2/Q0
EA,

a well-known observable which allows one to identify glass
behavior in lattice systems in the absence of crystalline order.
The normalization Q0

EA = Nρ(1 − ρ) is the value obtained
for a fully localized state. Finally, we determine the single-
particle Green function defined as G(r) = N−1 ∑

i〈b†
i bi+r〉,

associated to the presence of off-diagonal quasi-long-range
order in our two-dimensional system.

We perform large-scale simulations with up to N = 96 ×
96 sites and temperatures between T/t = 1 and T/t = 1/20,
the latter yielding essentially GS results in the equilibrium
case [28]. To gain insight into the OOE scenarios, we em-
ploy a simulated quench protocol, by running low-T sim-
ulations starting from high-T configurations without per-
forming simulated annealing steps in T . The experimental
relevance (in the sense discussed in Sec. I) of our obtained
OOE states is assessed a posteriori. In particular, our es-
timated OOE energies never exceed the GS ones by more
than 3.5%.

III. RESULTS

For clarity, we begin our discussion by summarizing the
GS phase diagram of model Eq. (1) (we refer the reader to
Ref. [28] for an exhaustive discussion). The GS (lower part
of Fig. 2) is a superfluid (SF) at weak interactions, which
makes way for an isotropic supersolid (IS) at V/t = 2.6. The
system then undergoes a first-order transition at V/t = 4.0 to
a supersolid state with anisotropic stripe crystalline structure
and superfluid response, i.e., a stripe supersolid (SS). Finally,
superfluidity is lost at V/t = 4.45, and the GS becomes a
stripe crystal (SC).

Driving the system away from thermal equilibrium results
in the OOE phase diagram shown in the upper part of Fig. 2,
obtained via analysis of the relevant observables shown in
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FIG. 3. Results for finite-temperature simulated quenches per-
formed at V/t = 5.0 and V/t = 6.0. Panel (a): maximum value of
the realization-dependent structure factor S(R)

max as a function of the
realization index for L = 96, T/t = 1/20, and V/t = 6.0. Panel (b):
realization-averaged value of Smax as a function of the inverse system
size for V/t = 5.0. Panel (c): same as for panel (b) for V/t = 6.0.
Panel (d): realization-averaged Edwards-Anderson parameter QEA as
a function of the inverse system size for V/t = 6.0. In all panels,
filled (empty) symbols correspond to V/t = 5.0 (V/t = 6.0), while
triangles, squares, and circles correspond to T/t = 1/5, 1/10, and
1/20, respectively. The dashed lines correspond to linear fits in
N−1/2, shown when estimates for the two largest sizes are not
identical within numerical uncertainty.

Figs. 3 and 4 and discussed below. In the strongly interact-
ing regime, i.e., V/t > 5.5, and for temperatures T/t < 1/5,
the simulated quenches stabilize OOE states where diagonal
long-range order vanishes in the thermodynamic limit. As
signaled by the finite value of QEA (see Fig. 3), concomitant
to the absence of superfluidity, the resulting states are normal,
essentially classical, glasses [36].

Conversely, following our quenches at T/t = 1/20 in the
intermediate-V/t region (i.e., 3.8 � V/t � 4.6) the system
retains long-range order, reaching OOE states with crystalline
structures different from those obtained at equilibrium [see
Fig. 4(d)]. These results allow one to identify a variety of crys-
talline states in the OOE phase diagram, as different realiza-
tions of each simulation may converge to states with different
strength and type of diagonal long-range order. For V/t < 4.2
the system displays superfluid behavior [see Fig. 4(c)]. The
latter coexists with diagonal long-range order down to V/t =
3.8, pointing out the occurrence of OOE supersolid states in
this parameter range. For V/t < 3.8 our quenching process
is ineffective, and the system equilibrates to an IS and a SF
for V/t > 2.6 and V/t < 2.6, respectively. Remarkably, the
OOE supersolids display features considerably different from
their equilibrium counterparts. Specifically, both superfluid
responses and crystalline order are essentially isotropic even
when the corresponding equilibrium supersolids are strongly
anisotropic.
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FIG. 4. Panels (a),(b): scaling in the inverse size of Smax and ρs/ρ

for V/t = 3.9 (triangles) and V/t = 4.2 (diamonds) at T/t = 1/20.
Dashed lines are linear fits to the numerical data, shown when
estimates for the two largest sizes are not identical within their un-
certainty. Panel (c): comparison between the equilibrium superfluid
fraction ρeq

s /ρ (filled circles) and the OOE one ρs/ρ (empty circles)
as a function of the interaction strength at T/t = 1/20 and L = 96.
Panel (d): comparison of the equilibrium maximum value of the
structure factor Seq

max (filled squares) and the OOE one Smax (empty
squares) for the same parameters of panel (c). In panels (c) and (d),
solid lines are guides to the eye. In all panels, OOE estimates are
realization-averaged.

In both the high- and intermediate-V/t region, we deter-
mine the degree of equilibration of each simulated quench
by performing it in several (i.e., �30) independent real-
izations, differing in both the initial configuration and in
the thermalization seed of the QMC simulation. This proce-
dure mimics what is customarily done in the laboratory, where
many realizations of an experiment are performed to measure
the observables of interest.

If our quench protocol does not drive the system away from
thermal equilibrium, all the realizations converge to the equi-
librium state, and the details of the QMC stochastic dynamics
in configuration space are inessential. On the other hand,
where the OOE driving succeeds, most of the realizations fail
to equilibrate, with their initial conditions becoming crucial
in determining the state reached by each simulation. A typical
example of the latter behavior is shown in Fig. 3(a), where the
mean value of an observable (in this case, the maximum value
of the structure factor) strongly depends on the realization.

In general, for different realizations of a quench at a
chosen parameter set, observables may take different values;
however, each realization is found to display the hallmark
features of the corresponding OOE phase. For example, in the
OOE supersolid region of Fig. 2 some realizations may yield
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crystalline orders of different strength, as well as different
values of superfluid fraction. Nevertheless, each realization
displays finite superfluid fraction and concomitant diagonal
long-range order.

Figures 3(b)–3(d) show the scaling, as a function of the
system size, of the realization-averaged maximum peak of
the structure factor Smax and of the Edwards-Anderson pa-
rameter QEA after quenching to different target temperatures
for V/t = 5.0 and V/t = 6.0 (filled and empty symbols, re-
spectively). For these values of V/t , the observed OOE states
are nonsuperfluid. We find equilibration to a stripe solid for
T/t = 1/5 (triangles). A decrease of the target temperature
results in failure to equilibrate the vast majority of realiza-
tions, which converge to states where diagonal long-range
order is suppressed with respect to the equilibrium scenario.
For V/t = 5.0, Smax remains finite in the thermodynamic
limit for T/t = 1/10 (filled squares) and T/t = 1/20 (filled
circles), signaling an OOE crystal. Conversely, crystalline
order is lost for V/t = 6.0 and T/t = 1/10 (empty squares)
and T/t = 1/20 (empty circles). For these temperatures, QEA

remains finite [panel (d)], signaling the emergence of glassy
behavior.

Figure 4 shows a detailed comparison of the realization-
averaged superfluid and crystalline order parameters for the
OOE and equilibrium cases (empty and filled symbols, re-
spectively) as a function of V/t . Supersolid behavior occurs,
after quenching, for 3.8 � V/t < 4.2, i.e., in an interaction
strength window smaller than that for which supersolid-
ity is found at equilibrium. In particular, superfluidity van-
ishes in the thermodynamic limit for V/t � 4.2 [diamonds
in Fig. 4(b)]. As mentioned above, the details of these su-
persolid OOE states may be both quantitatively and qual-
itatively different from the equilibrium ones, whose order
parameters are denoted for clarity by ρ

eq
s /ρ and Seq

max, re-
spectively. As expected, for small V/t � 4 our quenching
protocol does not significantly alter the values of ρs/ρ and
Smax with respect to ρ

eq
s /ρ and Seq

max (Figs. 4(c) and 4(d)
and finite-size scaling for V/t = 3.9 [triangles in panels
(a) and (b)]). For intermediate V/t , while at the IS/SS
transition Seq

max [filled squares in Fig. 4(d)] develops strong
anisotropy [28] and features a sizable variation, Smax re-
mains essentially constant [empty squares in Fig. 4(d)]
and isotropic. Indeed, in all quench realizations the max-
imum peaks of the structure factor occur at realization-
dependent wave vectors (k(R)

x , 0) and (0, k(R)
y ) with k(R)

x � k(R)
y

and S(k(R)
x , 0) � S(0, k(R)

y ). Similarly, ρs/ρ [empty circles in
Fig. 4(c)] takes considerably lower values than ρ

eq
s /ρ [filled

circles in Fig. 4(c)] for V/t � 4.0 and the superfluid response,
as opposed to what is found at equilibrium, is essentially
isotropic. This clarifies the difference between the equilibrium
supersolid states, which can be either isotropic or anisotropic,
and the OOE ones, which are found to be always largely
isotropic. Such a difference persists even in the absence of
superfluidity in the OOE states: for example, for V/t > 4.45
the GS is a stripe crystal while quenching results in the
appearance of substantially isotropic crystals and glasses.

The isotropic character of the OOE states can also be
inferred by inspection of Gx and Gy, i.e., the single-particle
Green function G(r) along the x and y directions, respectively.

10-2

10-1

1

(a)

G(r)

10-10
10-8
10-6
10-4
10-2

1

0 10 20 30 40 50
r/a

(b)

FIG. 5. Panel (a): single-particle Green function G(r) for T/t =
1/20, L = 96, and V/t = 4.1. Triangles and circles refer to the
equilibrium G(r) along the x and y direction, respectively (see
text), while squares denote the OOE G(r) along the y direction.
The corresponding OOE G(r) along the x direction (not shown) is
essentially identical. Continuous lines are guides to the eye. Panel
(b): same as panel (a) for V/t = 6.0.

For V/t = 4.1, Gx and Gy of the corresponding anisotropic
SS GS [triangles and circles in Fig. 5(a), respectively]
are clearly different. Specifically, while both decay alge-
braically as a function of the distance, signaling off-diagonal
quasi-long-range order, Gy is characterized by oscillations in
correspondence of the stripe periodicity. The OOE G(r), on
the other hand, is essentially isotropic, i.e., Gx ∼ Gy [squares
in Fig. 5(a)].

Figure 5(b) displays the same comparison for V/t = 6.0.
Here the decay of the G(r), both at equilibrium and OOE,
is exponential, as expected for a nearly classical crystal
and a glass, respectively. Also in this case, the equilibrium
G(r) is strongly anisotropic, while Gx ∼ Gy in its OOE
counterpart.

Further insight into the OOE physics of our model can be
gained from the occupation maps in Fig. 6. In both cases
shown in the figure [V/t = 6.0 in panel (a) and V/t = 4.1
in panel (b)] particles clusterize; for V/t = 6.0, clusters have
in general different shapes and orientations. These induce an
effective polidispersity, ultimately resulting in glassy behav-
ior [17]. On the other hand, for V/t = 4.1, where the system
is supersolid, particles can “hop” between different clusters,
establishing long exchange cycles which give rise to a sizable
superfluid response. The latter is concomitant with a well
defined crystalline structure. While different kinds of diagonal
long-range order may appear depending on the realization, the
vast majority of the latter leads to the same type of crystalline
order of the supersolid state illustrated in Fig. 6(b).

It is important to mention that no evidence of superglassy
behavior has been found in the parameter range investigated
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FIG. 6. Panel (a): portion of a site occupation map for one
realization for L = 96, T/t = 1/20, and V/t = 6.0. Panel (b): same
as panel (a) for V/t = 4.1. In both panels, black dots correspond to
lattice sites, while the size of the red dot on each site is proportional
to its occupation.

in this work. This constitutes an important difference with
respect to the results of our study of model Eq. (1) for rc = 2
on the triangular lattice [27]. Qualitative insight into this
difference can be obtained by analyzing the two fundamental
ingredients of a superglass phase: namely, superfluidity and
frustration.

A source of frustration, in our observed OOE states, is
cluster formation, and the resulting self-induced effective
polidispersity [17]. In this framework, frustration is magnified
for increasing cluster sizes (whose typical value is related to
the ratio ρ/ρc; see Sec. II) and/or interaction strength, since
cluster formation takes place as a mechanism to decrease
the potential energy of the system, and this effect is more
important when V/t is large. This allows one to have strong
frustration even with very small clusters, but in general may
not allow one to obtain a superglass, since for very strong
interactions superfluidity is also suppressed, and one obtains
only a normal (i.e., insulating) glass.

In our study on the triangular lattice we choose ρ ∼ 2.5ρ tr
c ;

as a result, clusters of three to four particles are formed
in the obtained OOE states. Superglassy behavior is found
because frustration-induced suppression of crystalline order
occurs, due to the relatively large cluster size, at moderate
values of V/t , where a sizable superfluid fraction is found
at equilibrium and survives in the OOE scenario. Conversely,

on the square lattice we consider ρ ∼ 1.25ρ
sq
c . As discussed

above, this results in smaller clusters and weaker frustration
effects at a given V/t . In order to observe the structural
order loss characteristic of a glassy state one therefore needs
to go at interaction strengths high enough (V/t ∼ 5.5) that
superfluidity is suppressed.

A further numerical indicator of the difference between the
two systems can be given using a simple energetic argument.
Indeed, the ratio � between potential and kinetic energy can
be used to roughly estimate particle mobility. When � is
large, e.g., for large V/t or large ρ/ρc, particles, and clusters
formed after quenching, are strongly localized, preventing
the realization of a crystalline structure. Superglassy behav-
ior emerges as a delicate balance between localization and
superfluidity, which conversely takes place, at low T/t , for
small �.

Indeed, on the triangular lattice superglasses were observed
as the OOE counterparts of supersolids at � ∼ 9 and ρs/ρ ∼
0.1. On the other hand, the equilibrium supersolid phases
of model Eq. (1) on the square lattice are characterized
by much smaller � ∼ 1.2 and higher ρs/ρ ∼ 0.2. Here the
OOE driving leads to superfluid states where, due to larger
mobility, crystalline order can be restored, and glassy states
can only be obtained at larger V/t , where superfluidity is
suppressed.

IV. CONCLUSIONS AND OUTLOOK

We study the out-of-equilibrium scenarios of a model of
monodispersed hard-core bosons on a square lattice with
an extended-range potential of the shoulder type, of interest
for experiments with cold Rydberg-dressed atoms. In the
parameter region of our investigation, the ground state of the
model is a cluster crystal and a superfluid for strong and
weak interactions, respectively, and a rare transition between
an isotropic and an anisotropic supersolid state occurs for
intermediate interaction strength.

Via simulated temperature quenches, we obtain glasses for
strong interactions, while for moderate values of the latter
(super)solids appear. Such (super)solids are qualitatively dif-
ferent from the ground state ones, being essentially isotropic
even for values of the interaction strength for which the corre-
sponding ground state is anisotropic. The out-of-equilibrium
states we find display energy deviations with respect to the
ground state which are comparable with those of common
cold atom experiments.

For all interaction strength values where out-of-
equilibrium superfluidity remains finite, long-range
crystalline order is also maintained. Therefore, no evidence of
superglassy behavior is found in our region of investigation,
as opposed to the case of the triangular lattice, where we
demonstrated such an exotic state. Indeed, the choice of a
smaller particle density on the square lattice leads to frustra-
tion effects strong enough to cause the loss of crystalline order
only at an interaction value where superfluidity is also lost.
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