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Simulating the Palmer-Chalker state in an orbital superfluid
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We consider a bosonic s- and p-orbital system in a face-centered-cubic (fcc) optical lattice and predict a
fluctuation-induced instability towards the orbital analog of the Palmer-Chalker state, which was originally
proposed in an electronic spin system. For bosons loaded in the fcc optical lattice, the single-particle spectrum
has four degenerate band minima with their crystal momenta forming a tetrahedron in the Brillouin zone. In
the weakly interacting regime, the ensuing many-particle ground state, at the classical level, underlies a four-
sublattice tetrahedral supercell of spontaneously generated p-orbital angular momenta through the Bravais-Bloch
duality between real and momentum space and is macroscopically degenerate, originating from the geometric
frustration. The fluctuations on top of the classical ground state lift its degeneracy and select the Palmer-Chalker
ordering of p-orbital angular momenta as the quantum ground state through an order-by-disorder mechanism.
These findings raise the exciting possibility of simulating the Palmer-Chalker state with its orbital counterpart in
ultracold atomic gases.
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I. INTRODUCTION

Geometric frustration, usually characterized by a macro-
scopic degeneracy of the classical ground-state manifold, is a
key attribute of emerging exotic quantum ground states. Such
a degeneracy in the energy landscape arises from competing
interactions and can be lifted by quantum fluctuations or
additional interactions, thereby selecting a unique ground
state. A pertinent issue of relevance is the quantum magnets
on geometrically frustrated lattices [1]. For example, the
classical ground state of the Heisenberg antiferromagnet on
a pyrochlore lattice composed of frustrated corner-sharing
tetrahedra has a macroscopic degeneracy [2,3]. The dipolar
interaction, which serves as the perturbation to the isotropic
Heisenberg exchange, lifts the classical degeneracy and se-
lects the unique magnetic state, called the Palmer-Chalker
(PC) state [4]. In recent decades, intensive experimental effort
has been devoted to the search for this state in pyrochlore
oxides [5,6]. To date, the inelastic neutron scattering measure-
ments show compelling evidence of the PC state in several
compounds including Gd2Sn2O7, Er2Sn2O7, and Er2Pt2O7

[7–10]. The microscopic origin of the observed PC state,
however, has remained enigmatic for the diverse interactions
arising in its proximity to competing phases.

Ultracold atomic gases, on the other hand, have natural
advantages in the quantum simulation of artificial solids in
optical lattices [11,12]. In particular, recent experiments have
observed orbital superfluidity in two-dimensional bipartite
optical lattices with the sublattices accommodating s and p
orbitals [13–17]. It is crucial that the coherence between p
orbitals established by the tunneling process via s orbitals
leads to an unexpectedly long lifetime of atoms in high
Bloch bands. Theoretically, these experimental settings have
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also inspired numerous theoretical proposals to simulate the
interacting orbital physics in optical lattices [18–25].

Here we propose a concrete protocol to realize the PC state
with nontrivial interplay between the lattice geometry and or-
bital anisotropy. It is worth remarking that the nature of the PC
state studied in the electronic spin systems is a Mott insulator,
in which the electronic charge degree of freedom is frozen by
strong correlations. In contrast, the PC state we propose can
be induced by the fluctuations from local Hubbard interactions
in a weakly interacting Bose gas. Specifically, we generalize
the sp orbital system from a two-dimensional bipartite lat-
tice to a three-dimensional face-centered-cubic (fcc) lattice
by retaining the essential bipartite ingredient. A remarkable
feature is that the band structure has four degenerate energetic
minima with the crystal momenta forming a tetrahedron in
the Brillouin zone. This yields a finite-momentum condensate
for weakly interacting bosons. Within the Gross-Pitaevskii
approximation, the multiorbital Hubbard interaction breaks
time-reversal symmetry with spontaneous p-orbital angular
momenta residing on a geometrically frustrated tetrahedral
superlattice. The classical ground state thus has extensive
degeneracy due to the emergent frustration, which prevents
the system from choosing a unique ground state. The fluctua-
tions described by the standard Bogoliubov theory are further
examined in the ground-state selection. Finally, we show that
the PC ordering of p-orbital angular momenta is favored by
quantum and thermal fluctuations via the order-by-disorder
mechanism [26–29]. The predicted PC state in the superfluid
phase is characterized by three linearly dispersing Nambu-
Goldstone (NG) modes [30,31] with one arising from the
broken global U(1) gauge field and the other two degener-
ate modes being protected by point-group symmetries. Our
findings extend the search for the PC state from strongly
correlated solid-state materials to weakly interacting Bose
gases.
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FIG. 1. (a) The fcc Bravais lattice with primitive lattice vectors.
(b) Schematic plot of the orbital configuration in the A and B
sublattices. (c) Brillouin zone of the fcc lattice with high-symmetry
lines and points indicated. (d) Band structures with plane-wave
expansions (open circles) and tight-binding approximations (solid
lines) for the optical potentials {V,�V } = {−5ER,−0.9623ER} in
Eq. (1) along the high-symmetry lines indicated in (c). The recoil
energy is defined as ER = π 2 h̄2/2md2.

The remainder of this paper is organized as follows. In
Sec. II we introduce the optical potential for the fcc lattice.
The band structure is solved with plane-wave expansions. A
four-band tight-binding model is also constructed to capture
the low-energy spectrum. In Sec. III the classical ground
states in the weak-coupling limit are obtained within the
Gross-Pitaevskii approximation. The quantum and thermal
fluctuations are further considered to lift the degeneracy of
classical ground states. Finally, we summarize our results and
discuss the possible experimental detection in Sec. IV.

II. SINGLE-PARTICLE PHYSICS

We start with the optical potential for the fcc lattice [32,33]

V (r) = V
3∑

i=1

cos(b̄i · r) + �V
3∑

i=0

cos(bi · r), (1)

where b1 = π (−x̂ + ŷ + ẑ)/d , b2 = π (x̂ − ŷ + ẑ)/d , and
b3 = π (x̂ + ŷ − ẑ)/d are the reciprocal lattice vectors with
d the lattice spacing, b0 = −∑3

i=1 bi, and b̄i = b0 + bi. The
optical potential in Eq. (1) produces a three-dimensional
bipartite lattice structure with �V dictating the staggered
potential difference between A and B sublattices shown in
Figs. 1(a) and 1(b). Without loss of generality, we will restrict
our discussion below to V < 0 and �V < 0. As depicted
in Fig. 1(b), we focus on the case that the B sublattice is
much deeper than the A sublattice such that the former hosts
p ≡ (px, py, pz ) orbitals, while the latter hosts s orbitals. The
low-lying s orbitals in sublattice B are well separated from
the p orbitals in energy and thus can be safely neglected. The
local minimum of the optical potential in Eq. (1) underlies a
fcc Bravais lattice depicted in Fig. 1(a). The band structure is

first solved by the plane-wave expansions (see Appendix A for
details). The calculated band structure is shown in Fig. 1(d)
and has degenerate band minima at four distinct momenta
Li={0,1,2,3} = −bi/2 in the first Brillouin zone.

To facilitate our understanding, the tight-binding model
is desired to capture the band dispersion from plane-wave
expansions. The minimal tight-binding model consists of the
σ bonds tαβσ between α and β orbitals up to the second-
nearest-neighbor sites as well as the on-site energies of s and
p orbitals. The π bond tppπ lies in the nodal plane of the p
orbitals and is typically much weaker than the σ bond tppσ .
Thus, for practical consideration, we neglect the π bonding in
the tight-binding approximation. We next address the on-site
energies of the s and p orbitals taking into consideration
symmetry aspects [34]. Switching to spherical coordinates,
the optical potential in Eq. (1) around A (−) and B (+)
sublattices can be expressed as

V (r) =
∑
� even

�∑
m=−�

4π i�v±
�m(r)Y�m(r̂),

v±
�m(r) ≡

3∑
i=1

V j�(b̄ir)Y ∗
�m(ˆ̄bi )

±
3∑

i=0

�V j�(bir)Y ∗
�m(b̂i ), (2)

where j�(z) is the spherical Bessel function of the first kind
and Y�m(r̂) is the spherical harmonic function. The s orbital
has zero angular momentum and only receives a nonzero cor-
rection from the isotropic channel � = 0, which is predicted
by the section rule on the orbital angular momentum [34].
In contrast, the p orbitals form an � = 1 angular momentum
and thus receive possible corrections from � = 0, 2 channels.
Direct evaluation shows that the v+

�=2,m(r) in Eq. (2) van-
ishes. Therefore, the p orbitals receive nonzero corrections
only from the isotropic channel � = 0 and therefore remain
degenerate. With these in mind, we denote the on-site energies
of s and p orbitals by εs and εp, respectively. Introducing
a spinor representation for the Bloch field operator ψk =
(sk, pxk, pyk, pzk )T, the tight-binding model in momentum
space is then given by

HTB =
∑

k

ψ
†
kHkψk, (3)

where

Hk =

⎛
⎜⎜⎝

ξs 2itspσ sx 2itspσ sy 2itspσ sz

−2itspσ sx ξx −2tppσ sxsy −2tppσ szsx

−2itspσ sy −2tppσ sxsy ξy −2tppσ sysz

−2itspσ sz −2tppσ szsx −2tppσ sysz ξz

⎞
⎟⎟⎠,

with sμ ≡ sin kμ, ξs ≡ ∑μ �=ν
μν tssσ cos kμ cos kν + εs, and ξμ ≡∑

ν �=μ 2tppσ cos kμ cos kν + εp. It is worth noting that the rela-
tive difference εs − εp between the on-site energies of s and p
orbitals can be continuously tuned through the optical poten-
tial �V in Eq. (1). In the band-fitting procedure, the optical
potentials in units of recoil energy ER = π2h̄2/2md2 are cho-
sen as {V,�V } = {−5ER,−0.9623ER} such that the on-site
energies of s and p orbitals are degenerate εs = εp ≡ ε, which

063601-2



SIMULATING THE PALMER-CHALKER STATE IN AN … PHYSICAL REVIEW A 101, 063601 (2020)

greatly simplifies our analysis below. Here we emphasize that
the physics we discussed does not sensitively depends on the
parameters. As shown in Fig. 1(d), the fitted tight-binding
model produces well the overall band dispersion from the
plane-wave expansions and faithfully captures the low-energy
behavior around the band minima.1 With the constructed
tight-binding model, the quasiparticles of the degenerate band
minima have energy εL = −2

√
3t2

spσ + t2
ppσ − 2tppσ + ε and

are given by

ψ
†
Li

= cos �s†
Li

+ i sin �L̂i · p†
Li

, i = {0, 1, 2, 3}, (4)

where � = arctan ϒ with the auxiliary function ϒ ≡ (tppσ +√
t2
ppσ + 3t2

spσ )/
√

3tspσ . Based on these quasiparticles, a set
of degenerate single-particle states that equally minimize the
kinetic energy can be constructed by linear superposition of
the band minima ψ† = ∑3

i=0 φiψ
†
Li

. Its manifold exists on the
surface S7 in R8, |φ| = 1, with φ ≡ (φ0, φ1, φ2, φ3). Because
of the infinite degeneracy of the single-particle states, free
bosons cannot be condensed.

III. WEAKLY INTERACTING MANY-PARTICLE PHYSICS

A. Classical ground state

Having established the single-particle physics, we are then
in a position to study how the many-body interaction lifts
the infinite degeneracy of single-particle states. The on-site
Hubbard interactions can be experimentally realized through
the s-wave Feshbach resonance [35] and take the form

HI = Us

2

∑
r

n̂sr(n̂sr − 1) + Up

2

∑
r

[
n̂2

pr − n̂pr + Ĵ
2
r

3

]
, (5)

where n̂sr = s†
r sr and n̂pr = ∑

μ p†
μr pμr are the density opera-

tors for s and p orbitals, respectively, the μ-component orbital
angular momentum operator Ĵμ

r = −i
∑

νλ εμνλ p†
νr pλr, and

εμνλ is the Levi-Cività symbol. The interaction parameters can
be estimated as Us = 4

3 [1 − 2�V/(V + �V )]3/2Up ≡ U from
the harmonic approximation [36,37]. The last term in Eq. (6)
has SU(2) rotational symmetry and favors spontaneous orbital
angular momenta to lower the energy, which is analogous to
Hund’s coupling for electrons in an atom. According to the
orbital Hund’s rule, the bosons are not subject to the Pauli
exclusion principle and tend to condensate in a single orbital
to maximize the orbital angular momentum.

We next turn to the many-particle wave function of the
condensates. It is worth mentioning that the fragmented con-
densate violates the orbital Hund’s rule and does not optimize
the orbital Hund’s coupling due to the exchange correlations
[38]. Below we will consider the coherent condensate |�〉 =

1√
N0!

(
∑3

i=0 φiψ
†
Li

)N0 |0〉, where |0〉 denotes the vacuum state
and N0 is the number of condensed bosons. Using the coher-
ent state, the time-dependent Gross-Pitaevskii equation can be
readily derived through the Euler-Lagrange equation [39]

∂L
∂φ∗

i

− d

dt

(
∂L
∂φ̇∗

i

)
= 0, i = {0, 1, 2, 3}, (6)

1The fitting parameters are given by {tspσ , tssσ , tppσ , ε} =
{0.073ER, −0.0006ER, 0.002ER, −3.529ER}.

where the Lagrangian L ≡ ∑3
i=0 i h̄

2 (φ∗
i φ̇i − φiφ̇

∗
i ) −

E (φ∗,φ), with E (φ∗,φ) ≡ 〈�|HTB + HI|�〉/NL the energy
functional and NL the number of lattice sites. The derivation
of the Gross-Pitaevskii equation is presented in Appendix B.
Here we briefly discuss the symmetry. As shown in Fig. 2(a),
L0,1,2,3 connect the center of a tetrahedron to its vertices.
The Lagrangian L naturally inherits the Td point-group
symmetry of the tetrahedron through the single-particle states
in Eq. (5). The Gross-Pitaevskii equation is numerically
solved with the imaginary-time evolution by propagating an
initial trial state [40]. With different initial states, a series
of degenerate ground states is obtained. We illustrate the
ground-state configuration φ by several sets of numerical
solutions depicted in Fig. 2(b). The configuration φ splits into
two pairs with identical complex moduli. The complex phases
of φ also have internal structures: Two φ’s have identical
phases and the others are π/2 ahead and behind. With these
insights, the numerical solutions can be described by the
analytic expression [up to a global U(1) phase]

φ = 1√
2

(i cos θ, cos θ,−i sin θ, sin θ ), 0 � θ < π, (7)

or its counterparts with permutations, which is a manifestation
of Td point-group symmetry [41]. Moreover, we have also
verified that the ground-state energy density in numerical
simulations is consistent with the analytic result E0 = εLn0 +
(cos4 �Us + 19 sin4 �Up/27)n2

0/2, where the condensation
density n0 = N0/NL. The ground states spontaneously break
the time-reversal symmetry and support p-orbital angular
momenta due to the aforementioned orbital Hund’s coupling.
The p-orbital angular momenta involve the interference be-
tween the band minima at L{0,1,2,3}, resulting in a reduced
Brillouin zone in Fig. 2(a). With the analytic configuration
in Eq. (7), the trajectories of p-orbital angular momenta Jr

plotted in Fig. 2(c) have an enlarged unit cell with four
sublattices forming a tetrahedron, which we have confirmed
also in the numerical simulations. The classical solution of
the Gross-Pitaevskii equation partially lifts the single-particle
degeneracy on the surface S7 and still has infinite degeneracy
arising from the global U(1) phase and the continuous sym-
metry characterized by θ in Eq. (7). The classical ground-state
degeneracy is a consequence of geometric frustration, i.e., the
inability to simultaneously minimize the energy of all bonds
in the superlattice composed of emergent tetrahedra.

B. Quantum ground state

The ground states of the Gross-Pitaevskii equation can
evolve in the continuous symmetry space without energy cost,
e.g., the trajectories in Fig. 2(c), which makes the system
particularly susceptible to fluctuations. We therefore proceed
to examine the effects of fluctuations on the degenerated
classical ground states. Following the standard Bogoliubov
approximation for a weakly interacting Bose gas [42,43], the
bosonic field ψLi+k around the band minima Li is separated
into the classical condensation φi and the fluctuating field
φik as ψLi+k = φi + φik. We further project both the kinetic
and interaction terms into the four lowest branches at the
band minima, which captures the essential low-energy physics
in the long-wavelength limit. Within the formalism of the
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FIG. 2. (a) The inner blue cube denotes the magnetic Brillouin zone of p-orbital angular momenta in (c) due to the interference of
condensates at momenta L{0,1,2,3}. (b) Illustration of the ground-state configurations φ = (φ0, φ1, φ2, φ3) obtained by the imaginary-time
evolution of the Gross-Pitaevskii equation. Different initial configurations in the numerical simulations are indicated by point types.
(c) Trajectories of spontaneous p-orbital angular momenta with the color encoding the angle θ in Eq. (7).

functional integral, the partition function is given by

Z =
∫

D[φ̄,φ]e−Seff[φ̄,φ], (8)

where the effective action up to quadratic order reads

Seff[φ̄,φ] = 1

2

∑
k

(φ̄k φ−k )G−1
k

(
φk
φ̄−k

)
−

∑
k

TrG−1
k,0

4
,

G−1
k =

(−iωn + εk + � �

�† iωn + ε−k + �T

)
,

k ≡ (k, ωn)

(see Appendix C for the derivation). Here we have defined the
auxiliary matrices

� = {Us + 11Up}1 + 8Up{cos(2θ )γ 0 + i sin(2θ )σ 03},
� = Us{sin(2θ )γ 5 + i cos(2θ )σ 23}

+Up{4iγ 1γ 5 − 4σ 12 + sin(2θ )(7γ 5 − 4γ 2)

+ cos(2θ )(7σ 23 − 4γ 3γ 5)},
with gamma matrices γ 0,1,2,3,5 in the Pauli-Dirac represen-
tation, σμν = i

2 [γ μ, γ ν], the effective interaction parameters
{Us,Up} = {Usn cos4 �,Upn sin4 �/27}, and the total density
of bosons n. The band dispersions εk = diag(ε0k, ε1k, ε2k, ε3k)
are expanded in small k around the band minima and are given
by

εik = β|k|2 + β ′(kykz, kzkx, kxky) · L̂i + O(|k|4), (9)

with {β, β ′} = {tspσ /
√

3 + tppσ ,−2(tppσ /
√

3 + √
3tssσ )}. The

σ bonds tssσ/ppσ between second nearest neighbors are rel-
atively weak. In Eq. (9) we keep up to the linear order in
tssσ/ppσ . A remarkable feature of the second term in Eq. (9)
is the anisotropy, which will be discussed later. Below we will
first focus on the isotropic case β ′ = 0. The excitation spec-
trum ωik is determined by the poles of the Green’s function
detG−1

k = 0 with an inverse Wick rotation iωn → ωk. In the
long-wavelength limit, the excitation spectrum for θ �= Zπ/4
features two linearly dispersing NG modes, arising from
the breaking of the aforementioned continuous symmetries.
In contrast, at θ = 0, π/2 and θ = π/4, 3π/4, the lattice

exhibits a periodic repetition of the collinear antiferromag-
netic (CAFM) and PC ordering of p-orbital angular momenta
shown in Figs. 3(a) and 3(b), respectively. The CAFM and
PC orderings preserve the σd and S4 symmetries of the Td

point group and have an additional NG mode as a consequence

FIG. 3. Schematic plot of the ordering pattern of p-orbital
angular momenta on a single tetrahedron for (a) collinear an-
tiferromagnetic ordering at θ = 0, π/2 and (b) Palmer-Chalker
ordering at θ = π/4, 3π/4 (the p-orbital angular momenta are
the same color as the parallel edges of tetrahedron). (c) Ther-
modynamic potential from the zero-point fluctuation �ZP in the
long-wavelength limit with {β, β ′,U, n} = {tspσ /

√
3, 0, tspσ /10, 1}.

(d) Numerical evaluation on the solid-angle averaged sound veloci-
ties of Nambu-Goldstone modes for the collinear antiferromagnetic
(open red squares) and Palmer-Chalker (open blue circles) states
with {β,U, n} = {tspσ /

√
3, tspσ /10, 1}. For the isotropic case β ′ = 0,

we have also numerically confirmed that the sound velocities of
Nambu-Goldstone modes are θ independent.
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of breaking the continuous symmetry of the σd and S4 coun-
terparts in Eq. (7), respectively. This result is also supported
by our analytical calculations at θ = Zπ/4. The CAFM and
PC states share an identical spectrum, two degenerate gapless
modes with sound velocity v = √

2tspσ (Us + 3Up)/ 4
√

3 and
the other one with velocity v = √

2tspσ (Us + 19Up)/ 4
√

3. It
is worth mentioning that the ordering of p-orbital angular
momenta is a manifestation of the relative phases between or-
bitals and they share the same point-group symmetry. For arbi-
trary θ , analytical results are no longer available. The numer-
ical evaluation of the sound velocities of NG modes suggests
that the velocities are θ independent within numerical resolu-
tions. We next turn to discuss the thermodynamic potential
� = −T lnZ = �ZP + �T, originating from the zero-point
fluctuation �ZP = ∑

k(
∑

i 2ωik − TrG−1
k,0 )/4 and the thermal

fluctuation �T = T
∑

ik ln[1 − exp(−βωik )]. Since the effec-
tive action is only valid in the long-wavelength limit, the
zero-point fluctuation in this limit is shown in Fig. 3(c) and
favors both the CAFM and PC states, which further confirms
our previous analysis of NG modes in terms of symmetry
aspects. At low temperatures, the thermal fluctuation of the
thermodynamic potential is dominated by NG modes ωk =
v|k| with the contributions following a power-law behavior
�T ∝ −T 4/v3. The CAFM and PC states both possess three
NG modes and thus have a lower thermodynamic poten-
tial due to the entropic gain from the zero-point motion of
NG modes through thermal fluctuations. Finally, we would
like to discuss the anisotropy induced by the intraorbital σ

bonds tssσ/ppσ in Eq. (9). The anisotropy β ′ with the present
fitting parameters is weak; however, it can be enhanced
through tuning the staggered potential �V in Eq. (1). Hence
we release β ′ as a free parameter. The anisotropic sound
velocities are numerically evaluated by averaging over the
solid angle of k and are found to be independent of the sign
of β ′. As shown in Fig. 3(d), the averaged sound velocities
of the degenerate NG modes in the PC state are split into
two branches, with the low-lying one well below those in
the CAFM state. The Bogoliubov excitation corresponds to
simultaneous creation or annihilation of two bosons in the
excited states with the momentum ±k relation to the band
minima. The band anisotropy in Eq. (9) is characterized by
the crystal momentum L̂i around the band minimum Li. One
distinction between the CAFM and PC states is that the PC
state involves the Bose condensation at four band minima and
the CAFM state involves only two of the four band minima.
For the PC state, the Bogoliubov spectrum corresponds to the
excitation on top of the Bose condensation at four crystal
momenta Li and naturally inherits the band anisotropy. By
averaging over the solid angle of k, the PC state has a lower
branch of NG modes than the CAFM state and is selected as
the quantum ground state through thermal fluctuations.

IV. CONCLUSION

For weakly interacting Bose gases, we have predicted
that the PC instability can be induced by both quantum
and thermal fluctuations in a fcc optical lattice. Remarkably,
our weak-coupling approach combined with numerical and
analytical calculations is also applicable to a generic bosonic

superfluidity with multiple degenerate minima in its single-
particle spectrum. We would like to briefly discuss the ex-
perimental detection. Based on the current experimental tech-
niques in ultracold atoms, the momentum distribution of Bose
condensates can be measured by the time-of-flight technique
with a sudden expansion of the trapped condensates [44–47].
The crystal momentum distribution in the first Brillouin zone
can be constructed based on the bare momentum distribution
[48]. The PC state is uniquely characterized by the identical
intensity at the corners of magnetic Brillouin zone in Fig. 2(a).
In addition, the NG modes, as the hallmark of continuous
symmetry breaking, can be directly detected by momentum-
resolved Bragg spectroscopy [49]. We hope that our work will
open new avenues to simulate the strongly correlated mag-
netic states in solid-state materials using weakly interacting
Bose gases in optical lattices.
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APPENDIX A: BAND STRUCTURE CALCULATION WITH
PLANE-WAVE EXPANSIONS

In this Appendix we solve the band structure of the Hamil-
tonian

ĤOL =
∫

dr �̂†(r)

[
− h̄2

2m
∇2 + V (r)

]
�̂(r) (A1)

with plane-wave expansions [50]. For fcc optical lattice,
the optical potential V (r + R) = V (r) is invariant under dis-
crete translation vectors R = N1a1 + N2a2 + N3a3 with inte-
ger multiples of three primitive vectors

a1 = d (ŷ + ẑ), a2 = d (ẑ + x̂), a3 = d (x̂ + ŷ), (A2)

where d is the lattice spacing. Making use of Bloch’s theo-
rem, the field operator in Eq. (A1) is represented as �̂(r) =∑

nk ψnk(r)�̂nk with the Bloch wave function

ψnk(r) ≡ exp(ik · r)φnk(r), (A3)

where the quantum number n is the band index and the crystal
momentum k can be composed of the reciprocal lattice vectors
with fractional coefficients

k = k1b1 + k2b2 + k3b3 (A4)

and the reciprocal lattice vectors

b1 = π

d
(−x̂ + ŷ + ẑ),

b2 = π

d
(x̂ − ŷ + ẑ),

b3 = π

d
(x̂ + ŷ − ẑ).

(A5)

The Bloch orbitals φnk(r) in Eq. (A3) inherit the periodicity
of the lattice potential, i.e., φnk(r + R) = φnk(r). Therefore,
the Bloch wave function can be further rewritten as a linear
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combination of plane waves

ψnk(r) =
∑

G

exp[i(k + G) · r]φG
nk (A6)

with plane-wave vectors G = G1b1 + G2b2 + G3b3. Taking
the orthogonality of Bloch wave functions, the eigenstates of
the Hamiltonian in Eq. (A1) can be recast in a coupled set of
matrix eigenvalue equations

4ER(k + G)2φG
nk +

∑
G′

V (G − G′)φG′
nk = εnkφ

G
nk, (A7)

where the recoil energy ER = π2h̄2/2md2. The Fourier trans-
form of lattice potential is given by

V (G) = 1

Vuc

∫
unit cell

d3rV (r) exp(−iG · r), (A8)

where Vuc = |a1 · (a2 × a3)| is the volume of the primitive unit
cell.

APPENDIX B: DERIVATION OF THE TIME-DEPENDENT
GROSS-PITAEVSKII EQUATION

The time-dependent Gross-Pitaevskii equation is obtained
by neglecting the quantum fluctuations of the operators and
replacing them by c numbers, which are usually the averages
of operators in the ground state. We consider the coherent
condensed wave function of an ideal Bose gas

|�〉 = 1√
N0!

(
3∑

i=0

φiψ
†
Li

)N0

|0〉, (B1)

where |0〉 denotes the vacuum state and N0 is the number
of condensed bosons. The condensed boson density is given
by n0 = N0

NL
, with NL the number of lattice sites. The ther-

modynamic limit is defined by taking the limit N0 → ∞
and NL → ∞ with fixed density n0. In the Gross-Pitaevskii
approximation, the operators ψLi are replaced by c numbers

ψLi →
√
N0φi. (B2)

Accordingly, the operators sLi and pμLi are approximated as

sLi →
√
N0φi cos �, (B3)

pμLi → i
√
N0φi sin �L̂

μ

i . (B4)

After lengthy but straightforward algebra, the Lagrangian can
be written as

L ≡
∑

i

i
h̄

2
(φ∗

i φ̇i − φiφ̇
∗
i ) − E (φ∗,φ), (B5)

where the energy functional

E (φ∗,φ) ≡ 1

NL
[〈�|HTB|�〉 + 〈�|HI|�〉], (B6)

with

〈�|HTB|�〉 = N0
[ − 2

(√
2t2

spσ + t2
ppσ + tppσ

) + ε
]

×
∑

i

φ∗
i φi ≡ N0εL

∑
i

φ∗
i φi, (B7)

〈�|HI|�〉 = n0

2
N0Us cos4 �

⎛
⎝∑

i j

φ∗2
i φ2

j + 2
∑
i �= j

φ∗
i φiφ

∗
j φ j

+
∑
(i jkl )

φ∗
i φ∗

j φkφl

⎞
⎠

+ n0

6
N0Up sin4 �

⎛
⎝3

∑
i

φ∗2
i φ2

i + 11

9

∑
i �= j

φ∗2
i φ2

j

+ 22

9

∑
i �= j

φ∗
i φiφ

∗
j φ j + 1

3

∑
(i jkl )

φ∗
i φ∗

j φkφl

⎞
⎠. (B8)

Here εL ≡ −2
√

2t2
spσ + t2

ppσ − 2tppσ + ε and (i jkl ) denotes
all possible permutations of (0,1,2,3). Plugging Eq. (B5) into
the Euler-Lagrange equation

∂L
∂φ∗

i

− d

dt

(
∂L
∂φ̇∗

i

)
= 0, i = {0, 1, 2, 3}, (B9)

yields a set of coupled equations of motion [39]

ih̄φ̇i = ∂E (φ∗,φ)

∂φ∗
i

, i = {0, 1, 2, 3}. (B10)

The ground-state solution can be obtained by numerically
evolving the imaginary-time equations of motion [51].

APPENDIX C: DERIVATION OF THE EFFECTIVE ACTION

In this Appendix we derive the low-energy effective ac-
tion around the band minima at L0,1,2,3, which describes
the quadratic fluctuation on top of the classical solution of
the Gross-Pitaevskii equation. Following the standard Bogoli-
ubov approximation, the bosonic field ψLi+k around the band
minima Li is separated into the classical condensation φi and
the fluctuating field φik as ψLi+k = φi + φik. The quadratic
fluctuation includes the following three parts.

First, let us discuss the fluctuation arising from the energy
functional of classical ground states. As illustrated in the main
text, the configuration of the classical ground state is given by

φ = 1√
2

(i cos θ, cos θ,−i sin θ, sin θ ). (C1)

Substituting Eq. (C1) into the energy functional in Eq. (B6),
we have

E (φ∗,φ) = εLn0 + 1
2 (cos4 �Us + 19

27 sin4 �Up)n2
0, (C2)

where the condensation density n0 = N0/NL. The total
bosons consist of condensed bosons in the band minima
and excited bosons in the fluctuating fields. Therefore, the
conservation of bosons is given by

N = N0 +
∑

ik

φ
†
ikφik. (C3)
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Substituting Eq. (C3) into the energy functional in Eq. (C2),
the quadratic fluctuation can be expressed as

E (2)(φ∗,φ) = − 1

NL

(∑
ik

φ
†
ikφik

)

×
[
εL + (cos4 �Us + 19

27
sin4 �Up)n

]
, (C4)

with n the total boson density.
Second, let us turn to the fluctuation from the tight-binding

model. The band structures of the tight-binding model have
four degenerate minima εL = −2

√
2t2

spσ + t2
ppσ − 2tppσ + ε

at momenta L0,1,2,3. The eigenstates of the band minima at
Li are given by

ψi = [cos �, i sin �L̂
x
i , i sin �L̂

y
i , i sin �L̂

z
i ]

T. (C5)

The effective low-energy band dispersions around the band
minima are obtained by projecting the tight-binding model
into the eigenstates in Eq. (C5) and take the form

Eik = 〈ψi|HLi+k|ψi〉
= εL + β|k|2 + β ′(kykz, kzkx, kxky) · L̂i + O(|k|4), (C6)

with {β, β ′} = {tspσ /
√

3 + tppσ ,−2(tppσ /
√

3 + √
3tssσ )}. In

Eq. (C6) only the linear order in tssσ/ppσ is kept. It is worth

mentioning that we have verified that the second-order virtual
process in which the boson first hops from the lowest band
to the upper bands and then hops back to the lowest band
contributes in order |k|4 and is thus neglected. Therefore, the
quadratic fluctuation in the tight-binding model is given by

H (2)
TB = Eik

∑
ik

φ
†
ikφik. (C7)

Finally, we discuss the fluctuation from the on-site Hub-
bard interaction. Let us illustrate the case for s orbitals first.
The fluctuation for s orbitals takes the form

H (2)
I,s = Us

2
n cos2 �

∑
{i}k

φi1φi2 s†
Li3 +ks†

Li4 −kδLi1 +Li2 −Li3 −Li4 ,G

+ Us

2
n cos2 �

∑
{i}k

φ∗
i1φi2 s†

Li3 +ksLi4 +kδ−Li1 +Li2 −Li3 +Li4 ,G

+ Us

2
n cos2 �

∑
{i}k

φ∗
i1φ

∗
i2 sLi3 +ksLi4 −kδ−Li1 −Li2 +Li3 +Li4 ,G.

(C8)

Here we have replaced n0 by n, which is correct to the
order we are calculating. After projecting into the lowest
band sLi+k ≈ cos �φik and summation over L{i}, lengthy but
straightforward algebra leads to

H (2)
I,s = Us

2
n cos4 �

∑
k

⎡
⎣∑

i j

φiφiφ
†
jkφ

†
j−k +

∑
i �= j

2φiφ jφ
†
ikφ

†
j−k +

∑
(i jkl )

φiφ jφ
†
kkφ

†
l−k

⎤
⎦

+Us

2
n cos2 �

∑
k

⎡
⎣∑

i

φ
†
ikφik +

∑
i �= j

(φ∗
i φ jφ

†
ikφ jk + φ∗

i φ jφ
†
jkφik) +

∑
(i jkl )

φ∗
i φ jφ

†
kkφlk

⎤
⎦

+Us

2
n cos2 �

∑
k

⎡
⎣∑

i j

φ∗
i φ∗

i φ jkφ j−k +
∑
i �= j

2φ∗
i φ∗

j φikφ j−k +
∑
(i jkl )

φ∗
i φ∗

j φkkφl−k

⎤
⎦, (C9)

where (i jkl ) denotes all possible permutations of (0,1,2,3). Similarly, the fluctuation for p orbitals is given by

H (2)
I,p = Up

6
n sin4 �

∑
k

⎡
⎣∑

i

⎛
⎝16

9
φ2

i + 11

9

∑
j

φ2
j

⎞
⎠φ

†
ikφ

†
i−k +

∑
i �= j

22

9
φiφ jφ

†
ikφ

†
j−k +

∑
(i jkl )

1

3
φiφ jφ

†
kkφ

†
l−k

⎤
⎦

+2Up

3
n sin4 �

∑
k

⎡
⎣∑

i

(
16

9
|φi|2 + 11

9

)
φ

†
ikφik +

∑
i �= j

11

9
(φ∗

i φ j + φ∗
j φi )φ

†
ikφ jk +

∑
(i jkl )

1

3
φ∗

i φ jφ
†
kkφlk

⎤
⎦

+Up

6
n sin4 �

∑
k

⎡
⎣∑

i

⎛
⎝16

9
φ∗2

i + 11

9

∑
j

φ∗2
j

⎞
⎠φikφi−k +

∑
i �= j

22

9
φ∗

i φ∗
j φikφ j−k +

∑
(i jkl )

1

3
φ∗

i φ∗
j φkkφl−k

⎤
⎦. (C10)

Collecting the fluctuations discussed above, the Hamiltonian for the quadratic fluctuation is given by

H (2)
QF = NLE (2)(φ∗,φ) + H (2)

TB + H (2)
I,s + H (2)

I,p . (C11)

It is straightforward to construct the effective action by following Ref. [52].
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