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Schrodinger formulation of the nondipole light-matter interaction consistent with relativity
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An alternative and powerful Schrodinger-like equation for describing beyond dipole laser-matter interactions
and leading relativistic corrections is derived. It is shown that this particular formulation is numerically

very efficient with respect to computational effort and convergence rate of the solutions. Furthermore, its
nonrelativistic form turns out to be more compatible with relativity than what seems to be the case with the more
common formulations of the nonrelativistic light-matter interaction. Moreover, the extension of this interaction
form into the relativistic region preserves, to a large extent, the numerical efficiency. In this work, the formulation
is applied to study beyond dipole corrections and relativistic corrections in multiphoton ionization of a hydrogen

atom in the x-ray regime.
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I. INTRODUCTION

The question of how the magnetic component of some laser
field actually alters the strong-field ionization of atoms and
molecules is becoming increasingly important and goes hand
in hand with the ongoing development of new extreme light
sources. Recent experimental activity in the field has already
provided valuable insight into this emerging area of research
[1-9]. The theoretical modeling of the laser-matter interaction
in the intense field regime is particularly challenging, primar-
ily due to the fact that the celebrated dipole approximation
is generally no longer applicable [10-16]. Furthermore, in the
limit of very strong fields the validity of the usual nonrelativis-
tic approximation ultimately breaks down and a relativistic
treatment of the laser-matter interaction becomes necessary
[17-33].

In the present work we outline a coherent and transparent
theoretical model for handling beyond dipole (nondipole)
and relativistic corrections effects on an equal footing. This
derivation is based on the time-dependent Schrodinger equa-
tion and the energy-momentum relation. The resulting interac-
tion Hamiltonian turns out to be very favorable, not only from
a computational point of view, but also from the point of view
of better understanding the transition between the relativistic
and nonrelativistic regimes. The work can be summarized
by the formulas (21) and (25) derived in Sec. II, for the
nonrelativistic and relativistic interactions, respectively. The
usefulness of these formulations is explicitly demonstrated
by studying the ionization dynamics of atomic hydrogen by
a short and intense x-ray laser pulse in a regime where the
ordinary dipole approximation is inaccurate [34]. It is shown
that the here proposed scheme completely outmatches the
more standard formulations of the light-matter interaction
when it comes to comparing the rate of convergence of the
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calculations with respect to the number of angular momenta
included in the calculations. Moreover, for ionization pro-
cesses pertaining to the softly relativistic regime, the ability
to replace fully relativistic equations, i.e., the Dirac equation
and the Klein-Gordon equation, with a dynamical equation
of Schrodinger form, is a very convenient one indeed from
a computational point of view. This is due to the fact that
the numerical solution of the fully relativistic equations is
complicated by numerical challenges such as severe stiffness
and spurious states, from which the Schrodinger equation
does not suffer.
Atomic units (a.u.) are used where stated explicitly.

II. THEORY

In the standard nonrelativistic approach, the wave function
¥ (r, t) of a particle of mass m and charge ¢, evolving in some
laser field A and (Coulomb) potential V, is governed by the
time-dependent Schrodinger equation (TDSE),

ih%w =Hy, D

with the minimal coupling formulation of the light-matter
interaction Hamiltonian,

2 2
H=L1v_da.p+ Ly 2)

2m m 2m
Here the Coulomb gauge restriction, V -A = 0, has been
imposed on the field. The vector potential A(r, ¢) generally
depends on both space and time coordinates and satisfies
separately the wave equation. From a purely computational
point of view, keeping the spatial dependence in the vec-
tor potential most often results in an intractable numerical
problem. Therefore, and in order to simplify the calculations
significantly, the so-called dipole approximation is most often
imposed. In this approximation the spatial dependence of
the field is not considered, the magnetic field component is
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neglected, and the vector potential A is assumed to depend
on time only. One consequence of the approximation is that
the last (diamagnetic) term in the Hamiltonian (2) becomes an
unimportant time-dependent factor that can be left out. The
dipole approximation is usually valid in the limit where the
extension of the quantum system in question is much smaller
than the wavelength of the incoming light, provided that the
laser intensity is not so high that the magnetic field component
of the field must be included.

In an alternative and less known route, the system Hamil-
tonian can instead be written as [20,24,35,36]

2 2

14 q q
H=q1v_24.p4
2m m P 4m?c

where the unit vector k indicates the laser propagation direc-
tion, ¢ is the speed of light, and curly brackets denote the
anticommutator defined by {a, b} = ab + ba. The anticom-
mutator originates from the fact that the two operators A? and
k - p do not generally commute. The interaction Hamiltonian
(3) may also be obtained as the nonrelativistic limit of the
Dirac equation—with the addition of the interaction between
the particle’s spin and the external magnetic field [37].

If we disregard terms beyond first order in 1/c, the two
formulations (2) and (3) are equivalent and can be used
interchangeably, i.e., they would yield the same result in any
exact treatment, provided the laser-matter interaction does
not introduce relativistic effects. Nonetheless, the formulation
(3), also called the propagation gauge formulation [35], has
proven to be numerically advantageous in handling laser-
matter interactions in the intense field limit where the dipole
approximation breaks down [35,37]. The wave function ¥’ in
the propagation gauge is related to the original wave function
¥ in Eq. (1) by the gauge transformation [35],

I/// — eiX , (4)

(A% k- p}, 3)

with
qz
2mhw
where o is the central angular frequency of the laser field and

k = w/c k is the wave vector.
In order to introduce the magnetic field in the standard
formulation (2) of the light-matter interaction, it is common

to write out the vector potential in terms of a Maclaurin series
expansion, i.e., writing

X)) =Xt —k-r)= A2<n ydn',  (5)

1.
Ar.0) = Ao(0) + ~k - TEo@) + ... (6)

where A (f) now refers to the dipole field and Ey = —%AO
represents the corresponding homogeneous electric field. In
this approximation the magnetic field component is given by

1.
B(r,t)=VxA=-kxEy+... @)
c

Applying the expanded potential (6), the minimal coupling
Hamiltonian (2) is now cast into

2 2
p q .2
H=— V——A —A
2m+ 0" +2m 0
——EO'(P—qu)k-r+... (8
mc

The performance of the Hamiltonian (8) in actual numerical
calculations will be demonstrated later.

We will now go back and elaborate on the corresponding
propagation gauge formulation (3). More specifically, we shall
demonstrate that including spatial dependence in the A - p
term in Eq. (2) or (3) may be problematic, both from a
conceptual and a computational point of view.

For pedagogical reasons, we begin with showing how
Eq. (3) can be derived. To this end, we take as starting point
the relativistic minimal coupling Hamiltonian for a spinless
particle of charge ¢ and mass m confined in a (Coulomb)
potential g¢ = V and interacting with some laser field A,

H = \/mzc“-l—(p—qA)zcz —mc*+V

(P—qA)’  (p—qA)
= — -+ V. 9
2m 8m3c? o ©)
Next, we impose the gauge transformation,
A—> A=A+ Vg, (10)
o> ¢ =9—0%, (11)
on the potentials, with
q ! 201 l
E(n)=$(wt—k-r)=2— A™(n)dn'. 12)
me J_o

Note at this point that this gauge transformation on the po-
tentials is equivalent to the unitary transformation imposed on
the system wave function in Eq. (4). The Hamiltonian (9) is
then cast into its propagation gauge form,

(p — gA + L-A%k)’ _(p

2mc

—gA + L A%k)"

2m 8m3c? te
2
q9 2
v-L g
+ 2m
2 2
14 q q A2 i
=4V -a. k-
2m * P e dm?c “ P}
_ p_4 2}
8m3c? 4m3 2 P
¢ o q 2
+ 2m3 SAA - p— m 3 2(A p) + (13)

where in the last step only terms of order (1/c)? and lower
have been written out explicitly. The Hamiltonian (13) in the
present form also accounts for relativistic kinematic effects
and was recently derived in [20,24]. Going to the nonrelativis-
tic limit, i.e., omitting terms of order (1/c)? and higher, the
nonrelativistic propagation gauge Hamiltonian (3) is finally
retrieved.

Now, neglecting the spatial dependence of the vector po-
tential, i.e., letting A(r, 1) — Ao(¢) in Eq. (3), the Hamiltonian
is converted into

e 7
H—2—+V——A0(t) p+2 7

a form which is reminiscent of the interaction used in [38—41].

Already at this point one may notice one clear advantage

of the propagation gauge formulation of the light-matter in-

teraction in that the Hamiltonian (14) actually accounts for

Awk-p, (14
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magnetic field effects through the last term in the interaction
[35], albeit no spatial dependence of the field has been re-
tained. This stands in stark contrast to the standard minimal
coupling formulation (2) for which the vector potential must
be explicitly space dependent in order to account for the
magnetic field; cf. Egs. (6)—(8). The Hamiltonian (14) has yet
another advantage in that in the limit of vanishing potential
V, the momentum p becomes a constant of the motion,
i.e., a conserved quantity. This is the main reason why the
propagation gauge formulation in general tends to be more
favorable from a purely numerical point of view, in particular
in the limit of very strong perturbations.

As mentioned previously, including spatial dependence in
the vector potential in the A - p operator term in the interaction
Hamiltonian (2) or (3) may cause some trouble. Therefore,
we are now about to introduce an additional unitary transfor-
mation to the light-matter formulation that will prove to be
extremely useful in investigating intense field effects beyond
the dipole approximation. To this end, we start out by writing
out the Hamiltonian (3) on the following trivially extended
form:

2

P
H=2-4V@E) = 1Ay p— (A —A))-p
m m m
2
A%k - p}, 15
+4m2c{ r} 15)

where Ag = Ag(t) and A = A(r,t) as defined by Eq. (6).
Next, the goal is to get rid of the (A — Ag) - p term from the
formulation. This may be achieved by introducing the unitary
transformation,

Yy =Uvy, (16)
to the propagation gauge wave function v’ in Eq. (4), with
U =exp [%a(r,r) ~p] (17)
q t
o= ——f (A —Apy)dt'. (18)
mJ_

The transformation will give rise to some new interaction
terms which can be calculated using the Baker-Campbell-
Hausdorff formula:

-2

ebe™ = b+ [a b] +5 [a [a, b]]
l'3
+3lala. la. Pl + . (19)

The Hamiltonian from this new point of view becomes
H' =UHU" +inUU"

p2

=—+4V ——A k-
o +V@Ir+a 0" 4 p}
513 2
A~p}—2m3czAA-p
qz 2
A-p). 20
+ 5 55Ap) (20)

The transformed Hamiltonian (20) contains in total three new
terms that originate from the (A — Ag) - p operator in Eq. (15).

In addition, the potential has been shifted, i.e., V(r) — V(r +
o).

At this point, the attentive reader may already have made
the important observation that the last two terms in Eq. (20)
are also present in the general relativistic Hamiltonian (13)—
but with opposite signs. This means that when introducing
the unitary transformation (16)—(18) to the relativistically
extended formulation (13), all such terms happen to cancel
exactly against each other, and therefore none of them should
appear separately in any consistent model of the light-matter
interaction, neither in the relativistic nor in the nonrelativistic
limit. To this end, the formally correct (nonrelativistic) Hamil-
tonian takes the simpler form,

e
H=2—+V(r+a)——A0 D

4 k- p)

A - p}. 2L

We have here finally arrived at a relatively compact expres-
sion for the light-matter interaction. In this formulation the
pure dipole interaction is represented by a separate term.
In addition, the Hamiltonian contains three terms that are
attributed to radiation of the electromagnetic field beyond the
dipole approximation, i.e., the usual propagation gauge term
proportional A%, a new term proportional to A arising from
the original A - p operator in Eq. (3), and finally, as a side
effect of the transformation, the shifted potential V (r + «).
This modified potential may be expanded in ascending powers
of 1/c,i.e.,

Vir+a) =V + %fc-rVV(r) Aog+.... (22
If we now settle for corrections of first order in 1/c to the
light-matter interaction, we may keep only the leading order
correction to the Coulomb potential as well as substitute A
with Ay in the remaining two beyond dipole interaction terms.
Then, the Hamiltonians (20) and (21) are cast into

2 i q*
H=2 v L1+ ZP 00y p+ 2 Aﬁ(f)kl’
2m m mc 2m
q - 7 2
L k-rvV . Ao(t) — ———AZA -
+mc r 0() 302 OA p
e
+o T 5.5 @0 pY. (23)
and
2 i q*
H=2 v 91 +22 a0 p+ A(%(f)k P
2m m mc 2m
+ L rvv-Ao0), 24)
me

respectively, and where V = V (r) now refers to the unshifted
potential. Note that the anticommutation rules in Egs. (20) and
(21) become unnecessary as A — A since the operators now
commute, and they are therefore omitted in Egs. (23) and (24).

The Hamiltonian (24), which contains all beyond dipole
interaction terms up to and including order 1/c corrections,
constitutes one of the main findings of the present work. The
alternative formulation (23) is reminiscent of the light-matter
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interaction derived recently by Brennecke and Lein [42], and
which was used in explaining experimental data on magnetic
field effects in the strong-field ionization of atoms [6]. In the
nonrelativistic limit, and provided relativistic corrections of
order (1/c)* and higher are unimportant to the dynamics, the
two formulations (23) and (24) would yield similar but not
identical results. Any discrepancy could then be attributed to
the two extra terms appearing in Eq. (23)—both of which are
of relativistic order and both happen to cancel exactly when
the fully relativistic interaction (13) is considered.

We may further include the leading order relativistic cor-
rections in the interaction if we retain higher order terms in
Eq. (13). To this end, the relativistically extended light-matter
interaction correct to order (1/c)? is obtained by imposing the
unitary transformation (16)—(18) to the general Hamiltonian
(13). By comparing Egs. (13) and (20) and including all the
surviving (1/c)? corrections we finally arrive at

2 4 2
iy p q q 2 7
= 2m g TV A et s Wk p)
q q 2
- 2mzc{k~p,A-p}+m{A'P,P}
7 2 2
— P {A , D }’ (25)

which is valid up to but not including order (1/¢)? corrections.
Notice at this point that the two extra terms appearing in
Egs. (20) and (23) are not part of this equation, merely con-
firming that the alternative formulations (21) and (24) comply
better with the theory of relativity. The result (25) is equivalent
but not identical to the results derived recently in [20,24],
the most important distinction being that the transformation
(16)—(18) was not imposed in the previous works.

Inspecting the radius of convergence of the Maclaurin
series expansion in Eq. (9), it is found that the semirelativistic
approach (25) gives the leading order relativistic correction
provided the conditions,

242 2
74 <1 and P

-y -y <1, (26)
are fulfilled throughout the laser-matter interaction. In its
present form only relativistic corrections to the kinetic en-
ergy are accounted for by Eq. (25), and the usual spin-orbit
coupling and Darwin terms, as well as the coupling of the
electronic spin to the magnetic field, have not yet been consid-
ered. These terms may, however, be included in the theory in a
consistent manner following the so-called Foldy-Wouthuysen
transformation scheme applied on the Dirac equation [43—45].
While beyond the scope of the present work, it would be an
interesting topic for future studies to investigate to what extent
such a semirelativistic approach is able to also accommodate
for spin dynamics in a correct manner.

III. RESULTS AND DISCUSSION

We have now come to the point where we want to explicitly
demonstrate the capability of the alternative formulation of the
light-matter interaction, i.e., the power of the nonrelativistic
Hamiltonian (24) in comparison with the standard formulation
(8). However, in order to compare their respective results on

an equal footing, the two terms which were of relativistic
order and correctly left out from the formulation in the tran-
sition from Eq. (20) to (21) had to be reintroduced, i.e., the
Hamiltonian (23) is used for this particular analysis.

For simplicity, we here consider the x-ray regime and a
hydrogen 1s electron exposed to a 1.36-keV laser pulse which
was powered on and off over a period of 15 cycles. The laser
pulse is modeled in terms of the vector potential,

Ey .
Ao(t) = ;f(t)sma)t i, 27

where Ey is the electric-field strength at peak intensity, and
it is a unit vector pointing in the laser polarization direction.
Furthermore, the function f(¢) determines the temporal shape
of the pulse and is here taken to be a sine-squared function,
ie.,

sin? (”—t)

f(t):{o O<t<T

otherwise, (28)

where T indicates the total duration of the pulse.

The TDSE in Eq. (1) is then solved numerically using
spherical coordinates and the spectral method, with the wave
function ¥ expanded in a sufficiently large set of both qua-
sicontinuum (scattering) and bound eigenstates of the field-
free hydrogen atom as obtained by diagonalizing its system
Hamiltonian in a combined B-spline and spherical harmonics
basis [46]. More details on the numerical implementation are
given in [47]. Accurate numerical results were obtained with
a finite radial grid extending to » = |r| = 66 a.u., and with the
maximum attainable kinetic energy of the electron in the re-
stricted basis set truncated at 610 a.u. Moreover, the number of
angular momentum pairs (/, m) included in the expansion of
the wave function was varied until convergence was achieved.
Note that when going beyond the dipole approximation, the
azimuthal symmetry of the problem is broken, which means
that values of the magnetic quantum number m running from
—I to 4/ must be taken into consideration. In our study we
aimed at comparing the rate of convergence of the calculations
with respect to the number of angular momenta included.

The atom is assumed exposed to a laser pulse of peak
intensity 1.26 x 10?> W/cm?, which corresponds to the value
Ep = 600 a.u. in Eq. (27). Furthermore, the value of v = 50 in
atomic units. At this high laser intensity and short wavelength
of the light, the dipole approximation is no longer valid and
magnetic effects become important [24,34].

Having obtained the final wave function at the end of
the laser pulse, the resulting angular- and energy-resolved
probability density is obtained as

2

dzP N\ io C
=) (=) e Yim(Q) D, |yt =T))| . (29)
Im

dkdQ2

where atomic units have been used, ¥ (r,t = T) is the wave
function at the end of the laser pulse, @flm (r) is the Coulomb
wave function (normalized on the k scale), k = V2E is the
wave number in atomic units, and o; = arg I'(l + 1 —i/k) is
the Coulomb phase shift.

The top panel of Fig. 1 shows the energy distribution of
the emitted photoelectron as obtained by solving the TDSE
with the Hamiltonian (23), and for three different choices for
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FIG. 1. Kinetic energy spectrum of the emitted photoelectron,
as obtained by integrating Eq. (29) over all angles of emission, for
a 15-cycle laser pulse with @ = 50 a.u. and Ey = 600 a.u. (Top
panel) The beyond dipole result calculated using the Hamiltonian
(23) and with [,,x = 3 (red line), 5 (blue line), and 10 (black line),
respectively. Note that the three results can hardly be distinguished
on the scale of the figure. (Middle panel) The same result obtained
with the Hamiltonian (8) and with /;,,x = 10 (green upper line), 20
(blue line, second from top), 30 (black line, third from top), and 40
(red lower line), respectively. (Bottom panel) A comparison of the
results of Egs. (8) and (23) with /;,,x = 40 (red upper line) and 10
(black lower line), respectively.

the truncation of the angular momentum quantum number / in
the expansion of the wave function. Specifically, we have set
Imax = 3, 5, and 10, respectively. In total eight multiphoton
peaks are depicted in the spectrum and only very small differ-
ences between the three calculated results are expressed. This
finding merely reflects the fact that numerical calculations
with the light-matter formulations (23) and (24) both converge
very fast with respect to the total number of angular momenta
included in the simulations.

The middle panel of Fig. 1 provides the corresponding
result as obtained solving the TDSE with the conventional

%10
S —Eq. (8) ||
—Eq. (29)
100
0.8 _ ]
10
2 | e
= 0o 05 1 15 2
g 0.6} i
o
o
004}t ]
0.2} .
0 . A V\)\/\/\/\/
0 0.5 1 1.5 2

Time (a.u.)

FIG. 2. Total population in (basis) states with angular momen-
tum quantum number / > 6 as a function of time during the action of
the laser pulse. The laser parameters are as in Fig. 1. Red (upper) line
curve is the result obtained with the Hamiltonian (8). Black (lower)
line curve is the result obtained with the Hamiltonian (23).

Hamiltonian (8), but now for relatively high values of the [
truncation. In this case I,x = 10, 20, 30, and 40, respectively.
As it turns out, and in clear contrast to the upper panel
result, the calculation now converges very slowly with respect
to increasing number of angular momenta included in the
basis expansion, and full convergence is difficult to achieve
in practice. This is clearly manifested in the bottom panel
of Fig. 1 showing a comparison of the result obtained by
Eq. (23) and with /,x = 10, and Eq. (8) with Iy = 40,
merely demonstrating that not even the /;,,x = 40 calculation
seems to be fully converged for the higher electron energies.

The difference in the numerical performance of the two
light-matter formulations (8) and (23) becomes even more ev-
ident when monitoring the temporal evolution of the popula-
tion in high angular momentum states throughout the interac-
tion. Figure 2 depicts the total probability of the electron being
inan/ > 6 state over the course of the pulse illumination. The
figure reveals two important aspects of the time-dependent
dynamics: First, the population in high lying / states increases
significantly during the interaction but ultimately declines to
a rather small value at the very end of the laser interaction,
and second, the increase in the population is much more pro-
nounced when employing the interaction (8) rather than (23),
the difference being almost an order of magnitude in favor of
the formulation (23). Nonetheless, in an exact treatment and
due to gauge invariance, the two calculations should of course
converge to the very same [/ distribution once the interaction
with the laser field ceases. This fact is demonstrated in the
logarithmic plot in the inset in Fig. 2, where it is indeed seen
that the two curves converge to the same value as the field
is turned off. Actually, the main reason why the alternative
gauge (23) provides a numerically favorable formulation of
the interaction is related to the fact that all components in-
volving the momentum operator become constants of motion
in the case of a free electron evolving in the external laser
field, i.e., in the limit of vanishing potential V.
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FIG. 3. A zoom of the six-photon peak of the kinetic energy
spectrum of the emitted photoelectron for a 15-cycle laser pulse
with @ = 50 a.u. and Ey = 600 a.u. The value of [, was set to
10 in the calculations. Red (leftmost) line is the result obtained
with Eq. (23) [or Eq. (8)]. Black (intermediate) line is the result
obtained with Eq. (24). Blue (rightmost) line is the corresponding
dipole approximation result.

Having settled the numerical superiority of the light-matter
interaction formulation (23), which also applies to the formu-
lation (24), we now present a comparison of the results ob-
tained with the two Hamiltonians (23) and (24), respectively.
The intent is to demonstrate the inaccuracy of the former. To
this end, we consider the six-photon resonance peak in Fig. 1,
and the result of the two respective calculations are shown in
Fig. 3 together with the corresponding dipole approximation
result. As it turns out, both the interactions (23) and (24)
predict a shift of the resonance position towards lower electron
energies with respect to the dipole result, effectively giving
rise to a redshift of the multiphoton ionization spectrum.
Furthermore, the former predicts a larger redshift than the
latter.

As a matter of fact, the observed discrepancy between the
results in Fig. 3 and between the data of Eqs. (23) and (24)
in particular, provides some evidence that relativistic effects
may play a certain role in the excitation dynamics. However,
recently it was shown that such effects generally tend to
produce a shift in the opposite direction, i.e., a blueshift of
the spectrum with respect to the corresponding nondipole
and nonrelativistic result [24]. Figure 4 depicts the relativistic
result obtained with Eq. (25), and where the substitution A —
Ay as well as the expansion (22) have been made in the system
Hamiltonian. The corresponding nonrelativistic results given
by Egs. (23) and (24) are also shown for comparison. As it
turns out, relativistic effects are responsible for a tiny shift
of the position of the resonance towards higher energies, i.e.,
a blueshift. Furthermore, the net ionization yield is somewhat
reduced as compared to its nonrelativistic counterparts. Notic-
ing that the resonance is located at an even lower electron
energy according to the calculation with Eq. (23) than with
Eq. (24)—cf. red and black curve in Fig. 4—it is clear that
the latter is more in line with the relativistic treatment. This
merely suggests that the extra terms present in Egs. (20) and

o5 %107 '
—Eq. (23)

— —Eq. (24)
'© ol Eq. (25)] |
<

>
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o

s 1

2

o

205}

E

885 290 295 300 305 310
Kinetic Energy (a.u.)

FIG. 4. Same as Fig. 3, but a comparison of the relativistic and
nonrelativsitic results. Red (leftmost) line is the nonrelativistic result
obtained with Eq. (23) [or Eq. (8)]. Black (intermediate) line is the
nonrelativistic result obtained with Eq. (24). Green (rightmost) line
is the corresponding relativistic result obtained with Eq. (25) in the
limitA — A, and where the shifted potential (22) is expanded to first
orderin 1/c.

(23) are indeed superfluous, at best, and should be omitted in
the general context.

In order to disentangle the role of the different terms of
the Hamiltonian (25) on the underlying ionization dynamics,
it may be useful to rewrite it on the following approximate
form:

2 242 4
)4 q°Aq p q ;
H=+|1- -~ V+—k-rvv-a
2m 2m2c? 8m3c? Tt mc 0
) (U))] 1
7 2 2
q k-p p 9" 2
——|1+—=———|Ag-p+ ——A5k - p,
m me  2m2c2 |70 4 2m2c 0 4
av) W) (\23!

(30)

where we have explicitly made use of the expansion (22) for
the shifted potential and the approximation A >~ A for the
vector potential. Here, the three interaction terms (III), (IV),
and (VI), respectively, are all of nonrelativistic origin and
attributed to light propagation effects, like, for instance, the
radiation pressure.

Now, returning to Fig. 4 and comparing the relativistic and
nonrelativistic results, i.e., the green and black line curves,
respectively, it is the term (I) in the Hamiltonian (30) that is
responsible for the observed blueshift of the spectrum, while
the decrease in the ionization yield is primarily attributed to
the term (V), which effectively reduces the strength of the
dipole interaction. Note that the term (I) is time dependent
and only contributes during the time the laser field is on,
i.e., it represents a temporal relativistic effect, in this case
a transient relativistic mass shift [20]. Finally, the last term
of relativistic origin, the permanent relativistic mass shift
term (II), was found to have only minor influence on the
predicted spectrum. This also applies to the electron’s spin
degree of freedom which was let out in the present analysis.
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FIG. 5. Kinetic energy spectrum of the emitted photoelectron
for the 15-cycle laser pulse with @ =50 a.u. and Ey; = 600 a.u.
Multiphoton resonances corresponding to the net absorption of 5—
10 photons from the field are depicted. (Dashed red line) The
fully relativistic result obtained by solving the time-dependent Dirac
equation (TDDE) within the long-wavelength approximation (LWA).
(Thick black line) The corresponding semirelativistic LWA result
obtained with the Hamiltonian (13) expanded to second order in 1/c.
(Thin green line) The nonrelativistic LWA result obtained with the
Hamiltonian (13) expanded to first order in 1/c.

In fact, it was recently verified by direct solutions of the
time-dependent Dirac equation that the spin-orbit coupling
term as well as the well-known Darwin term do not alter
the kinetic-energy spectrum of the emitted photoelectron for
the present range of field parameters [24], in compliance
with the rule of thumb that spin-orbit effects are of less
importance in atomic hydrogen than in its highly charged ion
counterparts. For such multiply charged ions it has already
been notified that the spin-orbit coupling may give rise to
observable effects in intense laser-ion interactions [25,26].
As a final validation of the semirelativistic approxima-
tion (30) in describing the relativistic ionization dynamics
of the atom, a one-to-one comparison with the exact result
as obtained with the Klein-Gordon and/or Dirac equations
would be in order. Unfortunately, these relativistic equations
of motion are notoriously hard to solve numerically, primar-
ily because they support both positive and negative energy
solutions—resulting in a so-called stiff problem, but also
due to the possible occurrence of spurious (artificial) states
contaminating the spectrum. In addition, the Klein-Gordon
equation is a second-order differential equation in time, and it
does not necessarily preserve the norm of the wave function.
Nevertheless, recently a numerical application to solve the
time-dependent Dirac equation (TDDE) within the so-called
long-wavelength approximation (LWA) and the propagation
gauge was developed [24,37]. In the semirelativistic approach,
the LWA corresponds to letting A(r, 1) — Ao(?) in each term
in the Hamiltonian Eq. (13). For further details about the
relativistic calculations with the Dirac equation the reader
is referred to [20,24,37]. Figure 5 shows a comparison of
the kinetic-energy spectrum as obtained by the TDDE and
the result obtained with the TDSE and the semirelativistic
Hamiltonian (13) expanded to second order in 1/c. The
corresponding nonrelativitic TDSE result is also shown. In
all three cases, the LWA has been assumed. As expected,
the figure shows that relativistic effects become increasingly

FIG. 6. Electron angular distributions, as obtained by integrat-
ing Eq. (29) over the electron energy interval 285 < E < 310 a.u.
(corresponding to the net absorption of six photons from the field;
cf. Fig. 3). The laser pulse is assumed to be linearly polarized in
the horizontal direction and propagating in the upward direction
(indicated with an arrow in the figure), and the pulse parameters are
as in Fig. 3. (Top panel) The (nonrelativistic) dipole approximation
result. (Middle panel) The relativistic result obtained with the Hamil-
tonian (30). (Bottom panel) The corresponding nonrelativistic result
obtained with the Hamiltonian (30) when disregarding all terms of
relativistic order [i.e., the terms (I), (II), and (IV)] as well as the
beyond-dipole terms (IIT) and (VI), i.e., only the nondipole term (IV)
is accounted for in the calculation.

important with increasing kinetic energy of the photoelectron,
and that these are manifested as a systematic shift of the
resonance positions. Furthermore, and more importantly, the
resulting close agreement between the TDDE and semirela-
tivistic TDSE calculations clearly demonstrates the validity
of the semirelativistic approach in describing the relativistic
ionization dynamics.

Finally, in Fig. 6 we present (energy-integrated) angular
distributions of the emitted photoelectron corresponding to
the net absorption of six photons from the field; cf. the six-
photon resonance in Figs. 3 and 4. The top panel shows
the dipole approximation distribution, which is obviously
symmetric with respect to the laser polarization axis. The
middle panel depicts the fully relativistic and beyond-dipole
result as obtained with the Hamiltonian (30), including all
the terms (I-VI) in the interaction. Lastly, the bottom panel
presents the result as obtained when disregarding all terms
but the beyond-dipole term (IV) in the calculation, i.e., only
the term (IV) is taken into consideration in addition to the
ordinary dipole interaction.
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As it turns out, the breakdown of the dipole approximation
is manifested in Fig. 6 as a characteristic bending of the
angular lobes in the laser propagation direction (upward), a
finding that is in accordance with previously published results
[34]. Furthermore, the close agreement found between the
results in the middle and bottom panels in the figure simply
suggests that relativistic effects are not of crucial importance
when it comes to angular resolved (and energy-integrated)
distributions. As such, it is the beyond-dipole term (IV) which
represents by far the most important correction to the dipole
approximation result in this case. Note further that since
both these interactions scale linearly with Ay [see Eq. (30)],
the importance of the term (IV) with respect to the pure
dipole interaction term is largely independent of the laser
intensity and pulse duration, and hence the bending of the
lobes is a general feature related to the photon energy and
the acquired kinetic energy of the photoelectron rather than
the laser intensity.

IV. CONCLUSION

In this work, we have demonstrated that introducing spatial
dependence in the vector potential in the A - p term in the
standard nonrelativistic minimal-coupling formulation (2) can

be problematic, in particular in the limit of intense laser
fields, as this may lead to predictions that are in disagreement
with relativity—even in field regimes where a nonrelativistic
treatment is expected to be valid. With the intent to resolve this
issue, we have here derived an alternative and relatively com-
pact expression for the light-matter interaction Hamiltonian
which in combination with the time-dependent Schrédinger
equation effectively takes into account both beyond-dipole
and relativistic effects. The corresponding nondipole nonrel-
ativistic and relativistic formulations are given by Eqgs. (21)
and (25), respectively, in the present work. The formulation
(21) is, although not relativistic in itself, formulated in concor-
dance with relativity—with the consequence that superfluous
interactions terms which otherwise would have appeared are
consistently omitted. We have further demonstrated that these
interaction forms are computationally much more efficient
than the more standard formulations in describing atomic ex-
citation and ionization dynamics in superintense laser fields.
The reason why the representations (21) and (25) share such
favorable numerical properties is that all components involv-
ing the momentum operator become approximately constants
of motion in the strong coupling limit. Then, noticing that this
finding is largely independent of the laser wavelength, this
provides some evidence that the given numerical advantages
also persist into the optical field regime.

[1] M. Ilchen, G. Hartmann, E. V. Gryzlova, A. Achner, E. Allaria,
A. Beckmann, M. Braune, J. Buck, C. Callegari, R. N. Coffee
et al., Nat. Commun. 9, 4659 (2018).

[2] C. T. L. Smeenk, L. Arissian, B. Zhou, A. Mysyrowicz, D. M.
Villeneuve, A. Staudte, and P. B. Corkum, Phys. Rev. Lett. 106,
193002 (2011).

[3] A. Ludwig, J. Maurer, B. W. Mayer, C. R. Phillips, L.
Gallmann, and U. Keller, Phys. Rev. Lett. 113, 243001 (2014).

[4] H. Zimmermann, S. Meise, A. Khujakulov, A. Magafa, A.
Saenz, and U. Eichmann, Phys. Rev. Lett. 120, 123202 (2018).

[5] S. Eilzer, H. Zimmermann, and U. Eichmann, Phys. Rev. Lett.
112, 113001 (2014).

[6] A. Hartung, S. Eckart, S. Brennecke, J. Rist, D. Trabert, K.
Fehre, M. Richter, H. Sann, S. Zeller, K. Henrichs et al., Nat.
Phys. 15, 1222 (2019).

[7] B. Willenberg, J. Maurer, B. W. Mayer, and U. Keller, Nat.
Commun. 10, 5548 (2019).

[8] J. Maurer, B. Willenberg, J. Danék, B. W. Mayer, C. R. Phillips,
L. Gallmann, M. Klaiber, K. Z. Hatsagortsyan, C. H. Keitel, and
U. Keller, Phys. Rev. A 97, 013404 (2018).

[9] O. Hemmers, R. Guillemin, E. P. Kanter, B. Krissig, D. W.
Lindle, S. H. Southworth, R. Wehlitz, J. Baker, A. Hudson, M.
Lotrakul ez al., Phys. Rev. Lett. 91, 053002 (2003).

[10] N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R.
Vazquez de Aldana, and L. Roso, Phys. Rev. Lett. 85, 1835
(2000).

[11] M. Fgrre, J. P. Hansen, L. Kocbach, S. Selstg, and L. B. Madsen,
Phys. Rev. Lett. 97, 043601 (2006).

[12] H. Bachau, M. Dondera, and V. Florescu, Phys. Rev. Lett. 112,
073001 (2014).

[13] M. Fgrre, S. Selstg, J. P. Hansen, and L. B. Madsen, Phys. Rev.
Lett. 95, 043601 (2005).

[14] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev.
Lett. 113, 263005 (2014).

[15] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev.
A 92,051401(R) (2015).

[16] S. V. B. Jensen, M. M. Lund, and L. B. Madsen, Phys. Rev. A
101, 043408 (2020).

[17] S. Selstg, E. Lindroth, and J. Bengtsson, Phys. Rev. A 79,
043418 (2009).

[18] A. Di Piazza, C. Miiller, K. Z. Hatsagortsyan, and C. H. Keitel,
Rev. Mod. Phys. 84, 1177 (2012).

[19] Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel,
Phys. Rep. 427, 41 (2006).

[20] T. K. Lindblom, M. Fgrre, E. Lindroth, and S. Selstg, Phys. Rev.
Lett. 121, 253202 (2018).

[21] H. Bauke, H. G. Hetzheim, G. R. Mocken, M. Ruf, and C. H.
Keitel, Phys. Rev. A 83, 063414 (2011).

[22] T. Kjellsson, S. Selstg, and E. Lindroth, Phys. Rev. A 95,
043403 (2017).

[23] M. S. Pindzola, J. A. Ludlow, and J. Colgan, Phys. Rev. A 81,
063431 (2010).

[24] M. Fgrre, Phys. Rev. A 99, 053410 (2019).

[25] S. X. Hu and C. H. Keitel, Phys. Rev. Lett. 83, 4709 (1999).

[26] S. X. Hu and C. H. Keitel, Phys. Rev. A 63, 053402 (2001).

[27] M. W. Walser, D. J. Urbach, K. Z. Hatsagortsyan, S. X. Hu, and
C. H. Keitel, Phys. Rev. A 65, 043410 (2002).

[28] S. X. Hu and C. H. Keitel, Europhys. Lett. 47, 318 (1999).

[29] C. H. Keitel, P. L. Knight, and K. Burnett, Europhys. Lett. 24,
539 (1993).

063416-8


https://doi.org/10.1038/s41467-018-07152-7
https://doi.org/10.1103/PhysRevLett.106.193002
https://doi.org/10.1103/PhysRevLett.113.243001
https://doi.org/10.1103/PhysRevLett.120.123202
https://doi.org/10.1103/PhysRevLett.112.113001
https://doi.org/10.1038/s41567-019-0653-y
https://doi.org/10.1038/s41467-019-13409-6
https://doi.org/10.1103/PhysRevA.97.013404
https://doi.org/10.1103/PhysRevLett.91.053002
https://doi.org/10.1103/PhysRevLett.85.1835
https://doi.org/10.1103/PhysRevLett.97.043601
https://doi.org/10.1103/PhysRevLett.112.073001
https://doi.org/10.1103/PhysRevLett.95.043601
https://doi.org/10.1103/PhysRevLett.113.263005
https://doi.org/10.1103/PhysRevA.92.051401
https://doi.org/10.1103/PhysRevA.101.043408
https://doi.org/10.1103/PhysRevA.79.043418
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1016/j.physrep.2006.01.002
https://doi.org/10.1103/PhysRevLett.121.253202
https://doi.org/10.1103/PhysRevA.83.063414
https://doi.org/10.1103/PhysRevA.95.043403
https://doi.org/10.1103/PhysRevA.81.063431
https://doi.org/10.1103/PhysRevA.99.053410
https://doi.org/10.1103/PhysRevLett.83.4709
https://doi.org/10.1103/PhysRevA.63.053402
https://doi.org/10.1103/PhysRevA.65.043410
https://doi.org/10.1209/epl/i1999-00391-2
https://doi.org/10.1209/0295-5075/24/7/006

SCHRODINGER FORMULATION OF THE NONDIPOLE ...

PHYSICAL REVIEW A 101, 063416 (2020)

[30] N. J. Kylstra, A. M. Ermolaev, and C. J. Joachain, J. Phys. B:

At. Mol. Opt. Phys. 30, 1449 (1997).
[31] I. A. Ivanov, Phys. Rev. A 91, 043410 (2015).

[32] I. V. Ivanova, V. M. Shabaev, D. A. Telnov, and A. Saenz, Phys.

Rev. A 98, 063402 (2018).
[33] Y. V. Vanne and A. Saenz, Phys. Rev. A 85, 033411 (2012).
[34] T. E. Moe and M. Fgrre, Phys. Rev. A 97, 013415 (2018).

[35] M. Fgrre and A. S. Simonsen, Phys. Rev. A 93, 013423 (2016).
[36] A.S. Simonsen and M. Fgrre, Phys. Rev. A 93, 063425 (2016).
[37] T. Kjellsson, M. Fgrre, A. S. Simonsen, S. Selstg, and E.

Lindroth, Phys. Rev. A 96, 023426 (2017).

[38] M. Y. Ryabikin and A. M. Sergeev, Opt. Express 7, 417 (2000).
[39] J. R. Vazquez de Aldana, N. J. Kylstra, L. Roso, P. L. Knight, A.
Patel, and R. A. Worthington, Phys. Rev. A 64, 013411 (2001).

[40] A. V. Kim, M. Y. Ryabikin, and A. M. Sergeev, Phys. Usp. 42,
54 (1999).

[41] M. Y. Emelin and M. Y. Ryabikin, Phys. Rev. A 89, 013418
(2014).

[42] S. Brennecke and M. Lein, J. Phys. B: At. Mol. Opt. Phys. 51,
094005 (2018).

[43] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

[44] Y. Hinschberger and P.-A. Hervieux, Phys. Lett. A 376, 813
(2012).

[45] C. M. Soh, K. Younoussa, C. Bouri, M. G. K. Njock, and B.
Piraux, Ann. Phys. 395, 196 (2018).

[46] H. Bachau, E. Cormier, P. Decleva, J. E. Hansen, and F. Martin,
Rep. Prog. Phys. 64, 1815 (2001).

[47] M. Fgrre and A. S. Simonsen, Phys. Rev. A 90, 053411 (2014).

063416-9


https://doi.org/10.1088/0953-4075/30/13/001
https://doi.org/10.1103/PhysRevA.91.043410
https://doi.org/10.1103/PhysRevA.98.063402
https://doi.org/10.1103/PhysRevA.85.033411
https://doi.org/10.1103/PhysRevA.97.013415
https://doi.org/10.1103/PhysRevA.93.013423
https://doi.org/10.1103/PhysRevA.93.063425
https://doi.org/10.1103/PhysRevA.96.023426
https://doi.org/10.1364/OE.7.000417
https://doi.org/10.1103/PhysRevA.64.013411
https://doi.org/10.1070/PU1999v042n01ABEH000448
https://doi.org/10.1103/PhysRevA.89.013418
https://doi.org/10.1088/1361-6455/aab91f
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1016/j.physleta.2012.01.023
https://doi.org/10.1016/j.aop.2018.05.018
https://doi.org/10.1088/0034-4885/64/12/205
https://doi.org/10.1103/PhysRevA.90.053411

