
PHYSICAL REVIEW A 101, 063415 (2020)

Landau-Zener transitions and adiabatic impulse approximation in an array of two Rydberg atoms
with time-dependent detuning
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We study the Landau-Zener (LZ) dynamics in a setup of two Rydberg atoms with time-dependent detuning,
both linear and periodic, using both the exact numerical calculations as well as the method of adiabatic impulse
approximation (AIA). By varying the Rydberg-Rydberg interaction strengths, the system can emulate different
three-level LZ models, for instance, bow-tie and triangular LZ models. The LZ dynamics exhibits nontrivial
dependence on the initial state, the quench rate, and the interaction strengths. For large interaction strengths, the
dynamics is well captured by AIA. In the end, we analyze the periodically driven case, and AIA reveals a rich
phase structure involved in the dynamics. The latter may find applications in quantum state preparation, quantum
phase gates, and atom interferometry.
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I. INTRODUCTION

Landau-Zener transition (LZT) between two energy levels
occurs when a two-level system is driven across an avoided
level crossing. The paradigmatic example is the LZ model
in which the diabatic energy levels cross each other linearly
in time [1,2]. This has been generalized to both multilevel
systems [3–18] and many-body setups [19–27]. If driven
periodically across an avoided level crossing, the separate
LZTs interfere, leading to Landau-Zener-Stückelberg (LZS)
interferometry [28]. The LZS interference patterns have been
analyzed in various physical setups [17,28–40]. The interfer-
ence is attributed to multiple exciting phenomena such as the
coherent destruction of tunneling [41], dynamical localization
in quantum transport [42], and population trapping [43,44].
On the application side, the interference features can be
utilized to control the qubit states [37,45,46].

Different techniques have been employed to analyze the
complex dynamics in periodically driven quantum systems
[28,47–49]. The most straightforward approach is to solve the
corresponding Schrödinger equation. Sometimes, specific ap-
proximation methods can provide significant insights into the
mechanisms involved in quantum dynamics. One successful
approach is adiabatic impulse approximation (AIA). While
using AIA, the time evolution is discretized into adiabatic and
nonadiabatic regimes. It has been employed to study quantum
systems undergoing a quench [50,51] or periodically driven
across an avoided level crossing or a transition point [47]. It is
thereby analyzing the LZTs and quantum phase transitions,
including the Kibble-Zureck mechanism [50,52,53]. At the
impulse point, the transition probability obtained from the LZ
model in which the system is driven past the avoided level
crossing linearly in time is used [1,2].

Interacting few- or many-body periodically driven
quantum systems are known to exhibit a variety of phenomena
[47–49,54–56]. In this regard, Rydberg-excited atoms consti-

tute an ideal platform for such studies [57]. Strong interactions
between two Rydberg atoms can suppress further Rydberg
excitations within a finite volume, which is called the Rydberg
blockade [58–61]. Rydberg blockade and the breaking of the
blockade (antiblockade) [62–64] have been at the heart of the
Rydberg-based quantum simulators and quantum information
applications [57]. For two atoms, it has been proposed that
through modulation-induced resonances, one can engineer the
parameter space for both Rydberg blockades and antiblock-
ades [65]. Periodic modulation in detuning can suppress Rabi
couplings, which can lead to selective (state-dependent) popu-
lation trapping. Not only that, but periodic driving in Rydberg
gases also provides insights into fundamental problems and
has applications in developing robust quantum gates [66,67].
To implement periodic driving in a Rydberg chain, one can
modulate the light field, which couples the ground to the Ryd-
berg state. Another way is to apply additional radio-frequency
or microwave fields, and they provide off-resonant couplings
to other Rydberg states. The two methods respectively create
sidebands either in the driving field or in the atomic levels
[68,69]. Rydberg atoms in oscillating electric fields [70]
have been explored experimentally for manipulating the
dipole-dipole interactions via Förster resonances [71–74].
Also, LZTs across a Förster resonance are probed in an
experiment using a frozen pair of Rydberg atoms in which
the dipole-dipole interaction is vital [75], but most of the
experiments probing LZTs are limited to either a single
Rydberg excitation or conditions in which the Rydberg-
Rydberg interactions (RRIs) are not relevant [44,76–83].

In this paper, we analyze the dynamics in two two-level
atoms in which the ground state is coupled to a Rydberg state
with a time-dependent detuning. We consider both linear and
periodic variation of detuning in time. Before indulging in
the two-atom case, we revisit the AIA for a single two-level
atom. The exact results are in an excellent agreement with that
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from AIA under suitable criteria. Also, we identify a striking
similarity between the expression for the excitation probabil-
ity obtained via AIA for the periodically driven case and the
intensity distribution of the narrow, equal-amplitude, multislit
(or uniform antenna array) interference pattern. The two-atom
setup features three distinct avoided level crossings, and it
realizes a bow-tie LZ model for vanishing interactions and a
triangular LZ model for strong RRIs. The energy gaps and
the energetic separation between the avoided crossings, the
two relevant parameters in LZ dynamics, can be modified
by varying RRIs. Also, the ratio between the interaction
strength and the square root of the quench rate plays a vital
role. We observe various features in the LZ dynamics, for
instance, Rabi-like oscillations in diabatic states, sharp LZ
transitions between adiabatic states at large RRIs, and beats
in the triangular LZ model. At large RRIs, AIA captures
the exact dynamics accurately. In the end, we look at the
case of periodically modulated detuning, especially for large
RRIs. These assure that the avoided crossings are well isolated
and involve only two adiabatic states. When the detuning
is modulated across the first avoided crossing, at shorter
periods, the dynamics is identical to that of a two-level atom.
At more extended periods, due to resonances, all the three
levels become relevant, resulting in the violation of AIA. As
the amplitude of modulation gets larger, incorporating other
avoided crossings, more resonances emerge in the dynamics.
For AIA to capture the exact dynamics, all the adiabatic states
must be involved in the LZTs. Besides that, AIA reveals the
rich structure of phases involved in the dynamics, including
the dynamical ones. The detailed information about phases
could be very relevant in applications such as the coherent
preparation of quantum states, implementing quantum (phase)
gates, and atom interferometry.

The paper is structured as follows. In Sec. II, we review
the dynamics in a two-level atom subjected to time-dependent
detuning, both linear and periodic in time. We introduce the
concepts of AIA, and the exact numerical results are com-
pared to that of AIA. The validity criteria for AIA is discussed.
In Sec. II B results from AIA for a periodically driven atom
is compared to the multislit interference pattern. In Sec. III,
we extend the studies to the two-atom setup. The three-level
LZ model is analyzed in Sec. III B. Different cases based on
the initial states are considered, and population dynamics in
both adiabatic and diabatic basis are discussed, including the
formation of beats (see Sec. III B 4). In Sec. III B 5, the results
from exact numerics for the three-level LZ model are com-
pared to those of AIA. Finally, the periodically driven setup
is studied in Sec. III C, and based on the driving amplitude,
various cases are studied. We summarize in Sec. IV.

II. SINGLE TWO-LEVEL ATOM AND ADIABATIC
IMPULSE APPROXIMATION

In this section, we briefly summarize the LZ dynamics in
a single two-level atom for both linear and periodic variation
of detuning. The two-level atom constitutes the ground state
|g〉 and a Rydberg state |r〉, driven by a laser field with a Rabi
frequency � and a time-dependent detuning �(t ). We neglect
the motional dynamics of the atom and the system is described
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FIG. 1. (a) The linear variation of detuning and the instantaneous
energy eigenvalues. The dashed lines show the diabatic energy levels.
Panel (b) shows the inverse of the energy gap between the adiabatic
levels (top one), and we approximately identify the impulse, and
the adiabatic regimes, separated at ±t ′. The bottom plot shows the
population in the excited state (P+ = |a+|2) vs time t for which the
atom is initially prepared in the ground state and subject to a linear
quench in the detuning. Solid line shows the exact result and dashed
line is from the LZ model [Eq. (3)]. Panel (c) depicts the periodic
time dependence of �(t ), and panel (d) shows the corresponding
instantaneous energy eigenvalues E±. At the avoided crossings, t =
τ2n(τ2n+1) LZT takes place, described by the operator ĜLZ (ĜT

LZ ), and
on either side of it the adiabatic evolution takes place, determined by
Û1 and Û2. The shaded area indicates the accumulated phases (ζ±)
during the adiabatic evolution.

by the Hamiltonian (h̄ = 1),

Ĥ (t ) = �

2
σ̂x − �(t )σ̂rr, (1)

where σ̂rr = |r〉 〈r| and σ̂x = |g〉 〈r| + |r〉 〈g| are projec-
tion and transition operators, respectively. The states
{|g〉 , |r〉} form the diabatic basis whereas the adiabatic ba-
sis consists of the instantaneous eigenstates of the Hamil-
tonian, Ĥ (t ) |φ±(t )〉 = E±(t ) |φ±(t )〉. The time-dependent
energy eigenvalues are E±(t ) = ±�

2 β∓(t ) with β±(t ) =
[�̄(t ) ± �(t )]/� and �̄(t ) =

√
�(t )2 + �2. The variation of

E±(t ) with the instantaneous detuning for both the linear and
the periodic variation in time is shown in Figs. 1(a) and 1(d),
respectively. The adiabatic and diabatic bases are related to
each other by the time-dependent coefficients β±(t ) via

|φ±(t )〉 =
√

�

2�̄
(±

√
β± |g〉 +

√
β∓ |r〉), (2)

Far away from the avoided level crossings (|�| � �), the
adiabatic levels converge to the diabatic states [see Fig. 1(a)].
The exact dynamics of the system is obtained by numerically
solving the Schrödinger equation: i∂/∂t |ψ (t )〉 = Ĥ |ψ (t )〉. In
the adiabatic basis, we can write |ψ (t )〉 = a+(t ) |φ+(t )〉 +
a−(t ) |φ−(t )〉, where a±(t ) is the time-dependent probability
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amplitude for finding the atom in the instantaneous adiabatic
states |φ±(t )〉.

A. Adiabatic impulse approximation

The basic idea of AIA is to divide the time evolution into
adiabatic and nonadiabatic regimes, as shown in Fig. 1(b)
[28,84,85]. In the adiabatic regime, the system remains in the
instantaneous eigenstate of the Hamiltonian, whereas in the
nonadiabatic or impulse regime, the LZT takes place. In
the LZ model, �(t ) = vt , where v is the rate at which the
detuning is varied across the avoided level crossing [1,2]. As
seen in Fig. 1(a), the energy gap between the two levels (E+
and E−) is maximum in the limit t → ±∞ and is minimum
at t = 0 with a gap of �. The system evolves adiabatically
if (E+ − E−)2/v � 1 and nonadiabatically otherwise [86].
We approximately show the adiabatic and diabatic regimes
in Fig. 1(b) separated at the time t ′, and while implementing
AIA we take t ′ → 0. Assuming the atom is initially in the
ground state, the transition probability to the excited state after
a single sweep across the avoided level crossing is

PLZ = exp

(
−π

�2

2|v|
)

. (3)

For a slow quench (v → 0), the excitation probability is
minimal (PLZ → 0), whereas, for a sudden (v → ∞) one,
there is a complete transition to the excited state (PLZ → 1).
As shown in Fig. 1(d), the exact dynamics are more involved,
and the transition mostly takes place in the vicinity of the
avoided level crossing, which constitutes the impulse region.

Now, we consider the detuning periodic in time: �(t ) =
�0 + δ sin(ωt ), where δ and ω are the amplitude and the
frequency of the modulation, respectively. In this case, the
system is taken across the avoided level crossing (�(t ) =
0) periodically at times τ2n = [2nπ + sin−1 (−�0/δ)]/ω
and τ2n+1 = [(2n + 1)π − sin−1 (−�0/δ)]/ω, where n =
0, 1, 2, .... The adiabatic evolution between the two avoided
level crossings is governed by the unitary matrix (written in
the adiabatic basis {|φ+〉, |φ−〉}),

Û (t2, t1) =
(

e−iζ+ 0
0 e−iζ−

)
,

where ζ± = ∫ t2
t1

dtE±(t ) are the accumulated dynamical
phases. For nonzero bias (�0 	= 0), we have ζ+ 	= ζ−, and the
matrices Û1 and Û2, for the left and right sides of the crossings,
become nonidentical [see Fig. 1(d)].

Nonadiabatic evolution

In the vicinity of the avoided level crossings, the de-
tuning can be approximated as �(τn ± t ) ≈ ±vt with v =
ω

√
δ2 − �2

0 [28]. It makes the scenario identical to that of
the LZ model, and we can use the result given in Eq. (3).
Eventually, we obtain the nonadiabatic LZT matrix in the
adiabatic basis as

ĜLZ =
(

e−iφ̃s
√

1 − PLZ −√
PLZ√

PLZ eiφ̃s
√

1 − PLZ

)
, (4)

where φ̃s = γ (ln γ − 1) + arg �(1 − iγ ) + π
4 is the Stokes

phase with γ = �2/4v being the adiabaticity parameter, and
� is the � function [28]. In terms of γ , the slow and sudden
quenches are indicated respectively by γ � 1 and γ � 1.

B. Comparison with multislit interference pattern

Over a half-cycle, say from ti = τ1 − π/2ω to
t f = τ1 + π/2ω, we can write the evolution matrix as
Û2(t f , τ1)ĜT

LZÛ1(τ1, ti ). In general, the order of the transition
and adiabatic matrices should be carefully chosen depending
on �0 and the initial (ti) and final (t f ) times. Similarly,
the evolution matrix for one complete cycle, and ti = 0
to t f = 2π/ω with �0 > 0 [see Figs. 1(c) and 1(d)], is
F̂ = Û1(2π/ω, τ2)ĜLZÛ2(τ2, τ1)ĜT

LZÛ1(τ1, 0), where the
label T stands for the transpose of the matrix. For the full
cycle, the LZTs take place at two instants. Writing the
matrix as

F̂ = eiφG

(
g11 −g∗

21

g21 g∗
11

)
, (5)

where φG = exp (i
∫ 2π/ω

0 �(t )dt/2),

g11 = e−iη0 (1 − PLZ ) + e−iη1 PLZ , (6)

g21 = (e−iη3 − e−iη2 )eiφ̃s
√

(1 − PLZ )PLZ , (7)

with η0 = 1
2

∫ 2π/ω

0 �̄dt + 2φ̃s, η1 = 1
2

∫ 2π/ω

0 �̄dt − ∫ τ2

τ1
�̄dt ,

η2 = 1
2

∫ 2π/ω

0 �̄dt − ∫ 2π/ω

τ2
�̄dt + 2φ̃s, and η3 = ∫ τ1

0 �̄dt −
1
2

∫ 2π/ω

0 �̄dt being the dynamical phases. Assuming the sys-
tem is initially in the ground state, the transition probability to
the excited state after one full cycle is

P1
+ = |g21|2 = 4(1 − PLZ )PLZ sin2 φs. (8)

Equation (8) implies that the transition probability after one
period is the result of the quantum interference between
the transition amplitudes at τ1 and τ2, and also a periodic
function of the phase φs = 1

2

∫ τ2

τ1
�̄dt + φ̃s, called the Stück-

elberg phase. Thus, the dynamical phase acquired between
the LZTs at τ1 and τ2, and the phase change during the
LZTs (φ̃s) become highly relevant to characterize the full
cycle dynamics. We have constructive (destructive) interfer-
ence with |g21|2 = PLZ (|g21|2 = 0) when φs = (n + 1/2)π
(φs = nπ ) where n = 0, 1, 2, .... As long as the LZT time
(the duration for which the LZT takes place across an avoided
crossing) is sufficiently shorter than the duration of adiabatic
evolution between the two transitions, i.e., when τLZ < [π −
2 sin−1(−�0/δ)]/ω AIA is valid. The upper limit for τLZ is
given by (

√
γ /�) max(1, γ ), and the validity of AIA requires

δ − �0 > � and δω > �2 [28,84,85]. In Fig. 2(a), we show
the transition probability to the excited state after a single
cycle for δ = 20�, ti = π/2ω, t f = 5π/2ω, and �0 = 5�

when the atom is initially prepared in the ground state. The
results from AIA are found to be in an excellent agreement
with the exact numerical results.

It is straightforward to extend AIA for multiple cycles, and
we have F̂ k = (Û1ĜLZÛ2ĜT

LZÛ1)k for k cycles. Writing it in
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FIG. 2. The transition probability to the excited state as a func-
tion of ω when the atom is initially prepared in the ground state
for δ = 20�, �0 = 5�, ti = π/2ω after (a) one cycle and (b) 10
cycles. The solid line shows the exact results, and the dashed line is
that from AIA. In panel (b), the peak at ω/� = 2.5 corresponds to
the resonance 2ω = �0. (c) Interferometric pattern using AIA: the
long-time averaged population in the excited state (P̄+) as a function
of �0/� and δ/� for ω = 0.32�. The density peaks correspond to
the resonances, and the solid lines mark the validity of AIA.

the matrix form [28] gives

F̂ k = eikφG

(
u11 −u∗

21

u21 u∗
11

)
, (9)

where u11 = cos kα + iIm(g11) sin kα/ sin α and u21 =
g21 sin kα/ sin α with cos α = Re(g11). Therefore, the
transition probability from the ground to the excited state
after k cycles is

Pk
+ = |u21|2 = 4(1 − PLZ )PLZ sin2 φs

sin2 kα

sin2 α
. (10)

The long-time (k � 1) averaged occupation probability in the
excited state is

P̄+ = 2(1 − PLZ )PLZ sin2 φs√
[4(1 − PLZ )PLZ sin2 φs]2 + Im(g11)2

. (11)

Thus, a complete resonant transition between the adi-
abatic states (P̄+ = P̄− = 1/2) occurs when Im(g11) =
−[(PLZ ) sin η1 + (1 − PLZ ) sin η0] = 0. In the fast passage
limit (γ � 1), PLZ ≈ 1, the resonance condition reduces to
�0 = nω. The peak at ω/� = 2.5 in Fig. 2(b) is attributed
to the resonance at 2ω = �0. In the slow passage limit, a
simple relation for the resonances are not possible but can
be identified from the density peaks of P̄+ [see Fig. 2(c)] for
smaller values of δ/� [87]. The resonances �0 = nω, also
imply a coherent Rabi oscillations between the states, |g〉 and
|r〉 [84].

We identify an interesting similarity in the form of the
Eq. (10) with the intensity distribution of an array of k
narrow equal amplitude slits (or an antenna array) interference
pattern. For the latter case, the intensity along the direction θ

is given by [88]

I (θ ) = I0
sin2(kφ/2)

sin2(φ/2)
, (12)

where I0 is the intensity from a single slit. The angle, φ =
2πd sin θ/λ is the phase difference between the consecutive
slits, where d is the spacing between the adjacent slits and λ

1.0

0.8

0.6

0.4

0.2

00

FIG. 3. The excitation probability after 10 cycles as a function of
α for δ/� = 20, �0 = 0, and ω is varied. A given α is not associated
with a unique value of ω, leading to the scattered points, but bounded
by a maximum value of sin2 kα shown by the solid line.

is the wavelength of light. When we neglect the slit widths
(I0 becomes a constant), the intensity pattern has principal
maxima at φ = 2nπ where n = 0, 1, 2, 3, ..., and between
two principal maxima there are k − 1 minima located at
φ/2 = π/N, 2π/N, ..., (N − 1)π/N . Also, there are N − 2
secondary maxima between two principal maxima. Though
the form of equations is the same, they exhibit significant
differences. For instance, I0 in Eq. (12) does not depend on φ,
whereas the corresponding term |g21|2 in Eq. (10) and α are
not independent. In the latter case, a little algebra reveals that
the maxima in the transition probability occur at cos kα = 0
or α = (2n + 1)π/2k, and the minima occur at sin kα = 0 or
α = nπ/k. Thus, α = 0 does not correspond to a maximum
but a minimum, in contrast with the antenna array intensity
distribution for which φ = 0 represents a principal maximum.
The other difference is that there are no secondary maxima
in the excitation probability and consequently one minimum
between the maxima. It can be seen in Fig. 3, which shows
the results from AIA for the excitation probability after 10
cycles (k = 10) as a function of α for δ/� = 20, �0 = 0,
and ω is varied (similar results can be obtained if δ or �0

is varied). There is no one-to-one correspondence between
α and ω, leading to scattered red dots in Fig. 3. For a fixed
α, the maximum value of Pk

+ is provided by the condition
Im(g11) = 0, and we have (Pk

+)MAX = sin2 kα, which is shown
by the solid line in Fig. 3. As the number of cycles (k)
increases, the number of peaks increases and also they get
sharper. These results imply that, by correctly choosing the
driving parameters and the number of cycles k, we can control
the transition probability in a two-level atom or a qubit. The
same results also hold for the periodically driven two-atom
case, which will be discussed in Sec. III C 1.

III. TWO TWO-LEVEL ATOMS:
RYDBERG-RYDBERG INTERACTIONS

The two-atom setup has been a common scenario in several
experimental studies [60,89–100] and in this case, the RRIs
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become relevant. The system is described by the Hamiltonian

Ĥ = −�(t )
2∑

i=1

σ̂ i
rr + �

2

2∑
i=1

σ̂ i
x + V0σ̂

1
rr σ̂

2
rr, (13)

where V0 = C6/R6 is the RRI between the atoms separated by
a distance R with C6 being the van der Waals coefficient [101].
For V0 = 0, the two atoms are decoupled, and each of them
exhibits independent LZ dynamics. To analyze the interacting
case, we use the diabatic basis {|gg〉 , |s〉 , |rr〉} where |s〉 =
(|gr〉 + |rg〉)/

√
2 is the symmetric state and the asymmetric

state (|gr〉 − |rg〉)/
√

2 can be disregarded in our study. The
instantaneous eigenstates of Ĥ in the diabatic basis are

| j〉 = 1

A

⎛
⎜⎜⎝

−V0−2�(t )−Ej

E j

−
√

2(V0−2�(t )−Ej )
�

1

⎞
⎟⎟⎠, (14)

where j ∈ {1, 2, 3}, A is the normalization constant and the
states | j〉 form the adiabatic basis. Thus, the two-atom setup
effectively acts as a three-level system. Asymptotically the
state | j〉 approaches the diabatic ones as lim�→−∞ |1〉 = |gg〉,
lim�→∞ |1〉 = |rr〉, lim�→±∞ |2〉 = |s〉, lim�→−∞ |3〉 =
|rr〉, and lim�→∞ |3〉 = |gg〉. Upon diagonalizing the
Hamiltonian, the instantaneous eigenenergies Ej are obtained
as the roots of the cubic polynomial, f (x) = −x3 + (V0 −
3�)x2 + (V0� − 2�2 + �2)x − V0�

2/2 + ��2, and we get

En = 1
3 [V0 − 3� + 2|C| cos(θn/3)], (15)

where θn = 3 arccos[Re(C)/|C|] + λn with λn = 2(3 − n)π ,

C = [(D1−
√

D2
1−4D3

0)/2]
1/3

, D0 = V 2
0 −3V0�(t )+3�(t )2+

3�2, and D1 = 2V 3
0 − 9V 2

0 �(t ) + 9V0�(t )2 − 9V0�
2/2. For

sufficiently large V0, the spectrum exhibits three distinct
avoided level crossings, located at (i) � = 0 (|1〉 ↔ |2〉), (ii)
� = V0/2 (|2〉 ↔ |3〉), and (iii) � = V0 (|1〉 ↔ |2〉), as seen
in Fig. 4(b).

The energy gaps �Eα∈{0,V0/2,V0} at the avoided crossings [as
a function of V0 are shown in Fig. 4(c)] are very relevant in
LZ dynamics. We have �E0 = �EV0 , which increases with
V0 and eventually saturates to

√
2� at large V0, whereas

�EV0/2 decreases inversely with V0, i.e., �EV0/2 ∼ 1/V0. The
vanishingly small �EV0/2 at large V0 can be associated with
the fact that |gg〉 and |rr〉 are not directly coupled. Note that, a
sufficiently large V0 can isolate the different avoided crossings
from each other.

A. Different LZ models

Among the diabatic states, |s〉 couples to both |gg〉 and |rr〉,
but |gg〉 and |rr〉 are not coupled to each other. Therefore,
for vanishing interactions, the two-atom setup converges to
a three-level bow-tie LZ model [3,4,102,103]. The same two-
atom setup can mimic a four-level bow-tie model if an offset
in Rabi frequencies or detunings is provided between two
atoms [18,104]. For sufficiently large V0 (blockade regime),
the avoided level crossings form a triangular geometry [see
Fig. 4(b)]. A triangular LZ model is known to exhibit beats
and step patterns in the population dynamics [10,17]. The
Hamiltonian in Eq. (13) can be written as an SU(3) model

Energy(b)Energy(a)

0
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1.5

1.0

0.5

1 2 3 4 5 6 7 8 9 10
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,

FIG. 4. Energy eigenvalues Ej as a function of the instantaneous
detuning (the time dependence, �(t ) = vt is shown at the bottom)
for (a) V0 = 0.1� and (b) V0 = 5�. The dashed lines show the
diabatic energy levels. The avoided crossings in panel (b) form
a triangular LZ model. The inset in panel (b) shows the avoided
crossing at V0/2. The asymptotic states at t → ±∞ are given in the
left and right ends of the level diagrams. Panel (c) shows the energy
gaps �Eα = �Eα/� at the avoided crossings as a function of V0. The
inset shows the schematic setup for the LZ interferometer in which
the first (S1) and the second (S2) crossings act as beam splitters. At
the last crossing, O mixing takes place.

using the mapping: {|gg〉 , |s〉 , |rr〉} → {|+1〉 , |0〉 , |−1〉},
i.e., [9,10]

Ĥs =
[
�(t ) − V0

2

]
Ŝz + �Ŝx + V0

2
Ŝ2

z , (16)

where Ŝz and Ŝx are the spin-1 matrices, and the last term is
known as the easy-axis single-ion anisotropy in the context of
magnetic systems. In the limit V0 → 0, the three avoided level
crossings merge at the point of zero detuning [see Fig. 4(a)],
and we get a spin-1 SU(2) model [8]. The presence of RRI
makes the model in Eq. (16) nonlinear in the SU(2) basis, but
the nonlinearity can be removed by expressing in terms of the
generators (Gell-Mann matrices) of the SU(3) group [10].

B. Three-level Landau-Zener model

In the three-level LZ model, the detuning varies linearly
in time [3,7,8] and the Hamiltonian in the diabatic basis
{|gg〉 , |s〉 , |rr〉} is given by

Ĥ =

⎛
⎜⎝

0 �√
2

0
�√

2
−vt �√

2

0 �√
2

−2vt + V0

⎞
⎟⎠. (17)

We consider a linear sweep from far left to far right including
all the three avoided level crossings, and analyze the LZ
dynamics as a function of both v and V0 for different initial
states. We set the initial (ti) and final (t f ) times such that
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FIG. 5. The dynamics of populations in the adiabatic [(a)–(d)] and the diabatic [(e)–(h)] states for the initial state |ψ (ti )〉 = |1〉 ∼ |gg〉,
v = (1�2, 10�2), and V0 = (0.1�, 10�). The first LZT takes place in the vicinity of t = 0. The thin arrows show the times around which the
second (t2) and the third (t3) LZTs occur. In panels (a), (b), (e), and (f), the LZTs are not resolvable, so a single arrow is shown. The dashed
horizontal lines in the bottom row show the results from the noninteracting model.

the adiabatic states converge to the diabatic ones. The first
LZT takes place from |1〉 to |2〉 at around the time t1 = 0, the
second one from |2〉 to |3〉 around t2 = V0/2v, and the last
one is between |1〉 and |2〉 around t3 = V0/v. The state |3〉
is involved only in one LZT (the second one), whereas |1〉
and |2〉 are part of more than one LZTs. The latter implies
that the final population in |1〉 and |2〉, i.e., P1(t f ) and P2(t f ),
is determined by the interference of distinct LZTs. Also,
using simple scaling arguments (defining t̃ = t/

√
v in the

Schrödinger equation), we can argue that the transition prob-
abilities will only be a function of two parameters: �/

√
v and

V0/
√

v. Below, we discuss the dynamics for three different
initial states.

1. Initial state: |ψ(ti )〉 = |1〉
Adiabatic states. The population dynamics in the adiabatic

states is shown in Figs. 5(a)–5(d) for the initial state, |ψ (ti)〉 =
|1〉, and ti is such that |1〉 ∼ |gg〉. For V0 � �, the avoided
level crossings are closely spaced [see Fig. 4(a)], and hence,
both |2〉 and |3〉 get populated almost simultaneously if v is
sufficiently large, as seen in Figs. 5(a) and 5(b). For V0 � �,
we can resolve the three LZTs in the dynamics as long as
V0/

√
v is sufficiently large [see Figs. 5(c) and 5(d)]. The first

and third transitions are seen as two major dips in P1(t ),
and they correspond to the population transfer from |1〉 to
|2〉, which takes place at around t ∼ 0 and t3, respectively.
Once the LZTs are resolved, we have a basic setup for the
LZ interferometer based on amplitude splitting. It is schemat-
ically shown in the inset of Fig. 4(c). The (avoided) crossings
play the role of beam splitters [S1 and S2 in Fig. 4(c)],
and the energy gaps and the rate v can be related to their
thickness. At the last crossing O, the mixing takes place, and
the final population in |gg〉 is taken to be the leakage from the
interferometer.

Figure 6 shows the final population in the adiabatic and
diabatic states. As expected, for a fixed V0, larger v leads
to higher transition probabilities, which results in a smaller
P1(t f ) and a larger P3(t f ). However, P2(t f ) displays a non-
monotonous behavior. A better understanding of Pj (t f ) can

be obtained by accessing the dynamics across each avoided
crossing separately. For instance, after the first avoided cross-
ing, P2(t ) becomes independent of V0 for large V0, but depends
on v. This is because �E0 saturates to

√
2� at large V0 [see

Fig. 4(c)]. At the same time, �EV0/2 decreases and becomes
significantly small (�EV0/2 � �) at large V0. The latter results
in a complete and a sharp transition from |2〉 to |3〉 at the
second LZT for sufficiently large v [see the dash-dotted line
in Fig. 5(d)]. As a result, P3(t f ) becomes independent of V0

at sufficiently large V0 and only depends on v [see Fig. 6(c)].
Counterintuitively, even for small V0, we see that P3(t f ) is in-
dependent of V0, which is better explained using the dynamics
in the diabatic states (see below).

Diabatic states. In Figs. 5(e)–5(h), we show the population
dynamics in the diabatic states for the same in Figs. 5(a)–5(d).
In contrast to the adiabatic states, the population in the
diabatic states exhibits clean oscillations (akin to Rabi os-
cillations) with the amplitude being damped over time [see
Figs. 5(e)–5(h)] [86]. The frequency of these oscillations
increases over time since the effective instantaneous Rabi
frequency increases with an increase in the detuning. For
small values of V0 and v, the amplitude of oscillation is larger.
The reasons are twofold: First, for small V0, the three LZTs
are closely placed, and second, having a small v, the system
spends more time in the impulse regime. In the adiabatic
limit (v � �2), after the sweep, the initial population in
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FIG. 6. The final population in (a) |1〉 ∼ |rr〉, (b) |2〉 ∼ |s〉, and
(c) |3〉 ∼ |gg〉, after the linear quench, as a function of v and V0 for
the initial state |ψ (ti )〉 = |1〉, �(ti ) = −10�, and �(t f ) = 30� +
10v/�.
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FIG. 7. (a) The final population in the adiabatic and diabatic
states as a function of v for V0 = 0.1� with the initial state |1〉 ∼
|gg〉. (b) The same as in panel (a) but as a function of V0 for v = 2�2.
The solid lines show exact results, and the filled squares, circles,
and triangles are the theoretical predictions for small V0 in the limit
t f → ∞.

|gg〉 gets completely transferred to |rr〉 independent of the
value of V0 [see Fig. 6]. As v increases, there is nonzero
population in both |s〉 and |rr〉 states. With further increase in
v, the transition between the diabatic states gets suppressed,
reducing the final population in both |s〉 and |rr〉. Now, we
consider weakly and strongly interacting cases separately.

Weakly interacting case. For V0 � � and V0/
√

v � 1, the
population get transferred to both |s〉 and |rr〉 at around t ∼ 0,
and the system does not spend significant time across the
avoided crossings, making the effect of interactions minimal.
In this case, we can assume the atoms to be noninteracting,
and we have P3(t → ∞) = Pgg ∼ P2

LZ , P2(t → ∞) =
Ps ∼ 2PLZ (1 − PLZ ), and P1(t → ∞) = Prr ∼ (1 − PLZ )2,
where PLZ is given in Eq. (3). Dashed horizontal lines in
Figs. 5(e)–5(h) show the results from the noninteracting
approximation and are in good agreement with the numerical
results. As v gets smaller, V0 introduces small corrections to
the noninteracting results. From the numerical results, we see
that Pgg(t f ) is independent of V0 [see Fig. 6(c)], and therefore,
we simply have Pgg(t → ∞) = P2

LZ . Based on the scaling
arguments and insights from the numerical results, we can
write down

Ps(t → ∞) ∼ 1 − P2
LZ − (1 − QLZ )2, (18)

and Prr (t → ∞) ∼ (1 − Q2
LZ ), where

QLZ = PLZ exp

(
−π�2V0

4v3/2

)
. (19)

These results are in an excellent agreement with the exact
results for Pj (t f ) (see Fig. 7), even for sufficiently large values
of V0.

Strongly interacting case. For V0 � �, the three avoided
crossings are well separated, but the dynamics in the diabatic
states do not show signatures of all three LZTs. The reason
is that |gg〉 is not directly coupled to |rr〉, leaving no sign
of second LZT (around t2) in the dynamics [see Figs. 5(g)
and 5(h)]. Around the first LZT (t ≈ 0), Pgg decreases, and
Ps increases. If v is sufficiently small, almost a complete
transfer from |gg〉 to |s〉 takes place. As �(t ) approaches
the third LZT at around t3, we have a population transfer
from |s〉 to |rr〉. Thus, if V0/v � 1/�, the system evolves
from an uncorrelated state (|gg〉), transits through an entangled
state (|s〉), and eventually settles in the (uncorrelated) doubly

excited state (|rr〉). The duration in which the system stays in
each of these states can be controlled via both v and V0.

Previously, we have seen that P3(t f ) ∼ Pgg is independent
of V0 [see Fig. 6(c)]. This feature has been explained for large
V0 using the adiabatic basis. A simple and complete picture,
irrespective of V0, can be obtained using diabatic states. The
state |gg〉 is coupled only to |s〉, and hence, V0 has no role in
determining how much population transfer takes place from
|gg〉 to |s〉. But, V0 can affect the reverse since |s〉 is also
coupled to |rr〉. In a single sweep and all the population
initially in |gg〉, the reverse process is absent, leaving the final
population in |gg〉 independent of V0. Similarly, as we see later,
if the initial state is |rr〉, the population P1(t f ) ∼ Prr becomes
independent of V0.

2. Initial state: |ψ(ti )〉 = |2〉
At this point, we comment briefly on the adiabaticity crite-

ria. When the initial state is |1〉 and for sufficiently large V0,
the gap �E0 ∼ √

2� (same as �EV0 ) sets the adiabatic limit,
and is independent of V0. Whereas, if the initial state is either
|2〉 or |3〉, the adiabatic limit is determined by �EV0/2 (small-
est among the three gaps), which decreases monotonously
with V0 as seen in Fig. 4(c). Therefore, for large V0, when
�(t ) = V0/2, there is almost a complete population transfer
between the states |2〉 and |3〉 unless v is negligibly small. In
other words, a large value of V0/

√
v may not guarantee an

adiabatic evolution if the initial state is |2〉 or |3〉. For V0 �
�, approximating each avoided level crossing composed of
only two levels and using the adiabatic theorem, we require
v � 2�2 for an adiabatic evolution with the initial state |1〉.
Similarly, we require v � 4�4/V 2

0 for an adiabatic evolution
if the initial state is |2〉 or |3〉.

Figure 8 shows the population dynamics in both adiabatic
and diabatic states for the initial state |2〉. For V0/

√
v � 1,

the interaction V0 is irrelevant, and we have P1(t ) = P3(t )
[see Fig. 8(b)]. Keeping V0 � �, and for sufficiently small
v, RRIs introduce an offset in the dynamics of the states
|1〉 and |3〉, i.e., P1(t ) 	= P3(t ) [see Fig. 8(a)]. For large V0,
the population from |2〉 first gets transferred to |1〉 at around
t = 0 [see Figs. 8(c) and 8(d)]. The remaining population
in |2〉 gets completely transferred to |3〉 after the second
avoided crossing. At around t3 when the system crosses the
third avoided crossing, the state |2〉 gains population from |1〉.
Therefore, the final population in |2〉 increases with v whereas
that of |1〉 and |3〉 decreases.

Concerning the diabatic states, initially, the system is pre-
pared in the |s〉 state. For V0 � �, and sufficiently large v,
the population in |s〉 gets transferred to |gg〉 and |rr〉 states
symmetrically, as seen in Fig. 8(f). In this case, from the
noninteracting LZ model, we have Pgg(t → ∞) = Prr (t →
∞) ∼ 2PLZ (1 − PLZ ) and Ps(t → ∞) ∼ 1 − 4PLZ (1 − PLZ ),
which have been shown as horizontal lines in Figs. 8(e) and
8(f) that are valid for V0/

√
v � 1. Incorporating the effect of

finite V0 that is still small, we get

Prr (t → ∞) ∼ 1 − P2
LZ − (1 − RLZ )2, (20)

Pgg(t → ∞) ∼ 1 − P2
LZ − (1 − QLZ )2, (21)
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FIG. 8. The dynamics of populations in the adiabatic [(a)–(d)] and the diabatic [(e)–(h)] states for the initial state |ψ (ti )〉 = |2〉 ∼ |gg〉,
v = (1�2, 5�2), and V0 = (0.1�, 10�). The first LZT takes place in the vicinity of t = 0. The thin arrows show the times around which the
second (t2) and the third (t3) LZTs occur. In panels (a), (b), (e), and (f), the LZTs are not resolvable, so a single arrow is shown. The dashed
horizontal lines in panels (e) and (f) show the results from the noninteracting model.

where

RLZ = PLZ exp

(
− π�2V0

25/2v3/2

)
,

and Ps(t → ∞) = 1 − Prr − Pgg. These results are in excel-
lent agreement with the exact results (not shown).

For V0 � �, the first population transfer takes place
around t = 0 to |gg〉, as shown in Figs. 8(g) and 8(h). The
second LZT is inactive since |gg〉 and |rr〉 are not directly
coupled, leaving no sign in the dynamics. At around t3, the
population is transferred from |s〉 to |rr〉. If the evolution
across the first avoided crossing is entirely adiabatic, the
system finally ends up in |gg〉, a state having no Rydberg
excitations. This de-excitation is in stark contrast to dynamical
creation of excitations by adiabatically sweeping the detuning
from negative to large positive values [105–107].

The final population in the adiabatic and diabatic states as
a function of v, and V0 for the initial state |2〉 is shown in
Fig. 9. In contrast to the case of initial state |1〉, here P3(t f ) ∼
Pgg depends on V0 [see Fig. 9(c)]. Another feature is that for
large V0, the population P3(t f ) depends nonmonotonously on
v. At small v, P3(t f ) increases with v, due to the smallness of
�EV0/2. Whereas at large values of v, across the first avoided
crossing the transition amplitude increases with v, leading to a
decrease in P3(t f ). The nontrivial patterns in P1(t f ) and P2(t f )
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FIG. 9. The final population in (a) |1〉 ∼ |rr〉, (b) |2〉 ∼ |s〉, and
(c) |3〉 ∼ |gg〉, after the linear quench, as a function of v and V0 for the
initial state |ψ (ti )〉 = |2〉, �(ti )=−10�, and �(t f )=30� + 10v/�.

are due to the interference of LZTs at the different avoided
crossings [see Figs. 9(a) and 9(b)].

3. |ψ(ti )〉 = |3〉
For the initial state |3〉 and V0 � �, the first avoided cross-

ing is irrelevant in the dynamics. In this case, the transition
first takes place at around t2 to |2〉 [see Figs. 10(a) and 10(b)].
Then, across the third avoided crossing, there is a transition
from |2〉 to |1〉. Thus, for sufficiently large values of V0 and v,
we have P3(t f ) ∼ 0 [see Figs. 10(a) and 10(b)]. Regarding the
diabatic states, the initial population is solely in |rr〉. In this
case, for V0 � �, only the third avoided crossing is relevant,
and the population can only transfer to |s〉 at around t3 [see
Figs. 10(c) and 10(d)]. Also, larger magnitudes of v correlate
to weaker transitions between |rr〉 and |s〉. For V0 � � and
large v, we have the results for the final population using the
noninteracting LZ model: Prr ∼ P2

LZ , Ps ∼ 2PLZ (1 − PLZ ), and
Pgg ∼ (1 − PLZ )2. After incorporating the effect of a finite V0,
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 0 4  8 12 16 -0.5 0  0.5  1  1.5  2  2.5  3
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FIG. 10. The dynamics of population in the adiabatic [(a), (b)]
and diabatic [(c), (d)] states for the initial state |ψ (ti )〉 = |3〉 ∼ |rr〉
with different values of v and V0 = 10�. The thin arrows show the
times around which the second (t2) and the third (t3) LZTs occur.
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FIG. 11. The final population in (a) |1〉 ∼ |rr〉, (b) |2〉 ∼ |s〉,
and (c) |3〉 ∼ |gg〉, after the linear quench, as a function of v and
V0 for the initial state |ψ (ti )〉 = |2〉, �(ti ) = −10�, and �(t f ) =
30� + 10v/�.

we have P3(t f → ∞) = Pgg ∼ (1 − RLZ )2, P2(t f → ∞) =
Ps ∼ 1 − P2

LZ − (1 − RLZ )2, and P1(t f → ∞) = Prr ∼ P2
LZ .

The final population in the adiabatic and diabatic states as
a function of v and V0 for the initial state |3〉 is shown in
Fig. 11, and by comparing it with Figs. 6 and 9, we see that the
patterns of final population in the v − V0 plane are repeating.
The identical patterns are (i) P3(t f ) with initial state |1〉 and
P1(t f ) with initial state |3〉, (ii)P2(t f ) with initial state |1〉 and
P1(t f ) with initial state |2〉, and (iii) P3(t f ) with initial state |2〉
and P2(t f ) with initial state |3〉. This implies that RRIs do not
break the symmetry completely while swapping the states in
the LZ model.

4. Beats

Depending on the geometric size of the triangle formed by
the three avoided crossings [see Fig. 4(b)], the triangular LZ
model known to exhibit beat and step patterns in the popu-
lation dynamics of the diabatic states [10,82]. These patterns
arise due to the quantum interference of distinct LZTs. We
only briefly comment on the beat pattern in our setup. The
beat pattern is observed only in the population of the Ps(t ) as
shown in Fig. 12(a) for different initial states. Based on the
calculations in Ref. [10], we would expect a beat pattern in
Ps(t ) if �2/4v � 1 and V 2

0 /4v < 1. The envelope frequency
is found to be V0/2, and the fast oscillation frequency changes
over time as approximately vt/4.

5. AIA

Now, we employ AIA for analyzing the dynamics in the
three-level LZ model in Eq. (17). To separate adiabatic and
nonadiabatic regimes, we require V0 � � [see Figs. 4(b) and
12(b)]. Further, we assume that only two adiabatic states are
involved in each avoided crossings which helps us to use
the results from the two-level LZ model discussed in Sec. I.
The validity of AIA requires that the LZT time (τLZ ) to
be shorter than the duration (Ta = V0/2v) in which the sys-
tem evolves adiabatically between two LZTs. Since �E0 =
�EV0 > �EV0/2 for V0 	= 0, the upper limit for τLZ is set by
τLZ ≈ (1/2

√
v)max(1,�2/2v). Therefore, for v > �2/2, we

require V 2
0 > v and for v < �2/2, we require v < 16V 2

0 /�4

for AIA to be valid. The adiabatic evolution matrix is given by

Ûk =

⎛
⎜⎜⎝

e−iζ {k}
3 0 0

0 e−iζ {k}
2 0

0 0 e−iζ {k}
1

⎞
⎟⎟⎠,

En
er

gy

0

0.6

-5 50 10 15

(a)

(b)

0.3

FIG. 12. (a) The beats in the dynamics of Ps(t ) for V0 = 2�, v =
5�2, and different initial states. (b) The instantaneous energy eigen-
spectrum for �(t ) = vt for large V0. The adiabatic and nonadiabatic
regimes are marked by the operators Û1,2,3,4 and {Ĝ1LZ , Ĝ2LZ , Ĝ3LZ}.

where ζ
{1}
j = ∫ t1

ti
dtE j , ζ

{2}
j = ∫ t2

t1
dtE j , ζ

{3}
j = ∫ t3

t2
dtE j , and

ζ
{4}
j = ∫ t f

t3
dtE j are the phases acquired between the avoided

crossings. We define the nonadiabatic transition matrix Ĝ1LZ

at the impulse point t1 in the basis {|3〉, |2〉, |1〉} as

Ĝ1LZ =

⎛
⎜⎝

1 0 0

0
√

1 − P′
LZe−iφ̃′

s −√
P′

LZ

0
√

P′
LZ

√
1 − P′

LZeiφ̃′
s

⎞
⎟⎠, (22)

where P′
LZ = exp(−2π�′2/4v), and

φ̃′
s = π/4 + arg(�(1 − iγ ′)) + γ ′(ln γ ′ − 1) (23)

with γ ′ = �′2/4v and �′ = �E0 ∼ √
2�. Similarly, the tran-

sition matrix at t2 is

Ĝ2LZ =

⎛
⎜⎜⎝

√
1 − P′′

LZe−iφ̃′′
s −√

P′′
LZ 0√

P′′
LZ

√
1 − P′′

LZ eiφ̃′′
s 0

0 0 1

⎞
⎟⎟⎠ (24)

with P′′
LZ = exp(−2π�′′2/8v) and

φ̃′′
s = π/4 + arg[�(1 − iγ ′′)] + γ ′′(ln γ ′′ − 1) (25)

with γ ′′ = �′′2/8v and �′′ = �EV0/2. We have Ĝ1LZ =
Ĝ3LZ since at t3, the LZT involves |1〉 and |2〉. The
complete evolution matrix in AIA is given by F̂L =
Û4Ĝ3LZÛ3Ĝ2LZÛ2Ĝ1LZÛ1. The results from AIA are com-
pared to the exact results in Fig. 13, for different initial
conditions, and as a function of both v and V0. They exhibit
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FIG. 13. The final population in the adiabatic and diabatic states
as a function of both V0 and v for the initial state |1〉 [(a), (b)], |2〉
[(c), (d)], and |3〉 [(e), (f)]. For the first column, v = 2�2 and for the
second column, V0 = 2�. The solid lines show exact results, and the
filled squares, circles, and triangles are from AIA.

good agreement even beyond the criteria discussed above.
One reason could be that τLZ only sets the upper limit for the
transition time, and the actual transition period can be much
shorter than that.

As shown in Figs. 13(a) and 13(c), for a fixed v, the
final population in states |s〉 and |rr〉 exhibit oscillations as
a function of V0, indicating the role of quantum interference
between the distinct LZTs. On the other hand, for a fixed V0,
and varying v, we do not observe any oscillations. It indicates
that the Stokes phases (φ̃′

s and φ̃′′
s ) become irrelevant in the

final populations if the initial state is one of the instantaneous
eigenstates. We have verified this by setting φ̃′

s = φ̃′′
s = 0

in the matrices Ĝ1LZ and Ĝ2LZ , and the results are hardly
affected by it. If the initial state is not the instantaneous
eigenstate, the Stokes phases become important. In that case,
we will be able to observe oscillations in the final populations
as a function of v keeping V0 fixed. Ultimately, AIA reveals
the different phases involved in the dynamics.

C. Periodic modulation of detuning

Now, we consider the detuning is varying periodically in
time as �(t ) = �0 + δ sin(ωt ). We take V0 � � and �0 <<

0. The first condition assures that the three avoided level
crossings are well separated, and we can implement AIA, as
discussed in Sec. III B 5. The second condition guarantees
that the adiabatic states converge to the diabatic ones at the
initial time, ti = 0. The initial offset in detuning (�0) also
plays an important role in the dynamics. In the following,
we analyze the dynamics for different initial states as a
function of δ and ω0. The first avoided crossing (involv-
ing states |1〉 and |2〉) occurs when �(t ) = 0, i.e., at times
τ

(1)
2n = [2nπ + sin−1 (−�0/δ)]/ω and τ

(1)
2n+1 = [(2n + 1)π −

sin−1 (−�0/δ)]/ω where n = 0, 1, 2, .... Now, lineariz-
ing around τ (1)

m , i.e., �(τ (1)
m + t ) = �0 + δ sin ω(τ (1)

m + t ) ≈
δωt cos ωτ (1)

m = (−1)mω
√

δ2 − �2
0t , we obtain the quench

rate across the first avoided crossing as v1 = ±ω
√

δ2 − �2
0.

Similarly, the second avoided crossing (involving states
|2〉 and |3〉) occurs when �(t ) = V0/2 or at τ

(2)
2n =

{2nπ + sin−1 [(V0/2 − �0)/δ]}/ω and τ
(2)
2n+1 = {(2n + 1)π −

sin−1 [(V0/2 − �0)/δ]}/ω, and the third avoided crossing
(again involving states |1〉 and |2〉) occurs when �(t ) = V0 or
at τ

(3)
2n = {2nπ + sin−1 [(V0 − �0)/δ]}/ω and τ

(3)
2n+1 = {(2n +

1)π − sin−1 [(V0 − �0)/δ]}/ω. The corresponding quench
rates are obtained as v2 = ±ω

√
δ2 − (�0 − V0/2)2 and v3 =

±ω
√

δ2 − (�0 − V0)2, respectively. Appropriately replac-
ing v by v1, v2, and v3, we can use the LZT matri-
ces Ĝ1LZ , Ĝ2LZ , and Ĝ3LZ to analyze the dynamics via
AIA. Using the quench rates, we estimate the upper limit
for the LZT time across the avoided crossings at τ (1)

m
and τ (3)

m as τLZ1 = 1/
√|v1| max (1,�′2/4|v1|) and τLZ3 =

1/
√|v3| max (1,�′′′2/4|v3|), respectively. The LZT time for

the one at τ (2)
m becomes extremely small (almost instant, as

evident from the results shown in Sec. III B) for large V0.
Note that the periodic driving results in resonant tran-

sitions between different states [65]. For instance, in the
high-frequency limit (ω � �) or the fast-passage limit
(ω

√
δ2 − �2

0 � �), a resonant transition between |gg〉 and
|s〉 takes place when nω = �0 with n = 0,±1,±2.... The
latter results in coherent Rabi oscillations between the two
states. Similarly, for nω = 2�0 − V0 and nω = �0 − V0, we
have resonant transition between |gg〉 and |rr〉, and |s〉 and
|rr〉, respectively. To resolve different resonances, we require
sufficiently large RRIs. Based on the value of δ, below we
consider three cases: (i) δ = V0/4 − �0, (ii) δ = 3V0/4 − �0,
and (iii) δ � V0 − �0.

1. δ = V0/4 − �0

In this case, the detuning varies periodically across the
first avoided crossing, and the maximum of �(t ) is such that
it is in midway between the first and the second avoided
crossings. In this case, the state |3〉 is not part of the LZTs and
the evolution matrix for one complete cycle can be written
as F̂ = Û3Ĝ1T

LZÛ2Ĝ1LZÛ1 (see Fig. 14), and there are three
different timescales involved. One is the LZT time τLZ1 and
the two others: Ta = τ

(1)
1 − τ

(1)
0 = [π − 2 arcsin(−�0/δ)]/ω

and T ′
a = τ

(1)
2 − τ

(1)
1 = [π + 2 arcsin(−�0/δ)]/ω are the adi-

abatic durations between the two LZTs. We have T ′
a > Ta for

�0 < 0, and the validity of AIA requires τLZ1 � Ta. Keeping
δ, �0, and V0 fixed, and for sufficiently large values of ω, the
ratio τLZ1/Ta ∝ √

ω indicates that AIA might breaks down at
large ω.

The final populations in the adiabatic state |1〉 after 10 and
100 cycles as a function of ω are shown in Fig. 15, for the
initial state |ψ (t = 0)〉 = |1〉 ∼ |gg〉, �0 = −15�, V0 = 40�,
and δ = 25�. The interference between the LZTs at differ-
ent times leads to nontrivial oscillations in the populations.
Larger numbers of cycles correlate to more nontrivial patterns.
For shorter periods, the results from AIA are in excellent
agreement with the exact ones, whereas at longer periods they
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0

(a)

Energy(b)

FIG. 14. (a) The periodic time dependence of the detuning for
δ = V0/4 − �0. The expected durations for adiabatic evolution are
Ta and T ′

a . Panel (b) shows the corresponding instantaneous energy
eigenvalues. The instants (τ (1)

0 , τ
(1)
1 , τ

(1)
2 ) at which the LZTs occur

between states |1〉 and |2〉 are shown by shaded stripes. The operators
Ûj and Ĝ1LZ indicate the adiabatic regimes and the impulse points,
respectively. Between the origin and the dashed vertical line, we have
one complete cycle.

0.0

0.5

1.0

0.0

0.5

1.0
(b)

(a) 10 cycles

100 cycles

AIA
Num

2.5 10 14 186
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FIG. 15. The numerical results (solid lines) and that of AIA
(dashed lines) for P1 after (a) 10 and (b) 100 cycles, as a function
of ω for the initial state |1〉 ∼ |gg〉, �0 = −15�, V0 = 40�, and
δ = 25�. Panel (b) shows that at longer times, AIA deviates from
exact dynamics especially, at high ω.
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0.45
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FIG. 16. (a) The exact results (solid lines) for P̄1,2, and the same
from the AIA (dashed lines) over a period of 100 cycles, as a function
of ω for the initial state |1〉 ∼ |gg〉, �0 = −15�, V0 = 40�, and
δ = 25�. The dips (peaks) in P̄1 (P̄2) indicate the resonances at nω =
|�0|. The six resonances seen at ω/� = 15, 7.5, 5, 3.75, 3, 2.5 cor-
respond to n = 1, 2, 3, 4, 5, 6, respectively. Panel (b) shows the
coherent oscillation between |gg〉 and |s〉 at the resonance ω/� = 7.5
and panel (c) shows the same between |1〉 and |2〉 states.

start to deviate, which is evident in Fig. 15(b). The major dip
in Fig. 15(a) is related to the resonance ω = |�0|. At longer
times, there will be significant population in |3〉 or |rr〉 but,
the matrix Ĝ1LZ does not include the transitions to |3〉. The
latter implies that AIA breaks down in the long time limit.

Figure 16(a) shows the time-average populations, P̄j =
(1/T )

∫ T
0 Pj (t )dt , as a function of ω over a period of 100

cycles with the initial state |1〉, and other parameters are
same as in Fig. 15. The resonances at nω = |�0| are seen as
dips (peaks) in P̄1 (P̄2). At the resonances, the system exhibit
coherent Rabi oscillations between |gg〉 and |s〉 or between |1〉
and |2〉 [see Figs. 16(b) and 16(c)]. This dynamics is identical
to that of two Rydberg atoms under Rydberg blockade with no
periodic forcing. Following a procedure similar to that given
in Sec. II A for the single-atom case, we obtain the transition

2.5 10 14 186
0.45

0.6

0.75

AIA
Num

FIG. 17. (a) The exact results (solid lines) and that from AIA
(dashed lines) of P̄2 over 100 cycles, as a function of ω for the
initial state |2〉 ∼ |s〉. The dips indicate the resonances, and the
five (broader) of them at ω/� = 15, 7.5, 5, 3.75, 3 correspond to
nω = |�0| with n = 1, 2, 3, 4, 5, respectively. The narrow ones at
ω/� = 18.33, 13.75, 11 correspond to nω = |�0 − V0| with n =
3, 4, 5, respectively, which are not captured by AIA.
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0

(a)

Energy(b)

FIG. 18. (a) The periodic time dependence of the detuning for
δ = 3V0/4 − �0. The adiabatic durations are marked by Ta1, Ta2,
and T ′

a1. Panel (b) shows the instantaneous energy eigenvalues. The
instants (τ (1)

0 , τ
(2)
0 , τ

(2)
1 , τ

(1)
1 , τ

(1)
2 , τ

(2)
2 ) at which the LZTs occur

are shown by shaded stripes. The Û and Ĝ operators indicate the
adiabatic regimes and the impulse points, respectively. Between the
origin and the dashed vertical line, we have one complete cycle.

probability to the state |2〉 after k cycles is

Pk
2 = 4(1 − P′

LZ )P′
LZ sin2 φs

sin2 kα

sin α
, (26)

where P′
LZ = exp(−2π�′2/4v1) with �′ = �E0, and

cos α = Re[(1 − P′
LZ )e−iη0 + P′

LZe−iη1 ] and φs = ∫ τ
(1)
1

τ
(1)
0

(E2 −
E1)dt/2 + φ̃′

s. The phases η0 and η1 are a function of
dynamical phases acquired during the adiabatic evolution,
and φ̃′

s is given by Eq. (23) but replacing v by v1. Note that
Eq. (26) is identical to Eq. (10) for the single-atom case, and
hence, all the discussions in Secs. II A and II B are valid here.

For the initial state, |ψ (t = 0)〉 = |2〉 ∼ |s〉 and 10 cycles,
the most prominent resonances appear in P̄1,2 are nω = |�0|
(results are not shown). This is similar to that for the initial
state |1〉 except that the role of |1〉 and |2〉 are interchanged.
For 100 cycles, the resonances, nω = �0 − V0, which are
much narrower than those at nω = |�0|, also emerge in the
exact dynamics (see Fig. 17). These narrow resonances at
nω = �0 − V0 are not captured by AIA. For the initial state
|ψ (t = 0)〉 = |3〉 ∼ |rr〉, AIA completely fails, as the state |3〉
is not involved in the LZT. The important message from this is
that in a multistate periodically driven system, AIA may not
necessarily capture the exact dynamics unless all states are

(b)

0.0

0.35

0.7

(c)

0.0

0.4

0.8

AIA

(a)

2.5 10 14 186
0.05

0.35

0.65

2.5 10 14 186

2.5 10 14 186

FIG. 19. The exact results (solid lines) for the time-averaged
populations (P̄1,2,3) and the same from the AIA (dashed lines) for a
period of 100 cycles, as a function of ω for �0 = −15�, V0 = 40�,
and δ = 45� with the initial state (a) |1〉 ∼ |gg〉, (b) |2〉 ∼ |s〉, and
(c) |3〉 ∼ |rr〉. In panel (c), AIA completely failed to capture any
resonances.

incorporated in the transitions. In other words, considerable
modifications in AIA might be required.

2. δ = 3V0/4 − �0

Now, we periodically drive across the first two avoided
crossings, and the maximum of �(t ) comes in between the
second and the third avoided crossings [see Figs. 12(b) and
18]. In contrast to the previous case, here, all three adiabatic
states are involved in the LZTs but the diabatic state |rr〉 is
excluded. There are two LZT times τLZ1 and τLZ2 for the
transitions at �(t ) = 0 and �(t ) = V0/2, respectively. The
LZTs at τ

(1)
2n and τ

(2)
2n are characterized by the transition

matrices Ĝ1LZ and Ĝ2LZ with v being replaced by v1 and v2,
respectively. There are four different adiabatic intervals (see
Fig. 18), and as far as the validity of AIA is concerned, only
the shortest among them matters. Once we fix δ = 3V0/4 −
�0, the shortest adiabatic duration is given by Ta = τ

(2)
0 −

τ
(1)
0 = {sin−1(−[�0 − V0/2]/δ) − sin−1(−�0/δ)}ω, and the
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Energy(b)

(a)

0

FIG. 20. (a) The periodic time dependence of the detuning for
δ = 5V0/4 − �0 and (b) the instantaneous energy eigenvalues. The
adiabatic durations are marked by Ta1, Ta2, Ta3, and T ′

a1. The instants
(τ (1)

0 , τ (2)
0 , τ (3)

0 , τ (3)
1 , τ (2)

1 , τ (1)
1 , τ (1)

2 , τ (2)
2 , τ (3)

2 ) at which the LZTs occur
between different adiabatic states are shown by shaded stripes. The Û
and Ĝ operators represent the adiabatic regions and impulse points,
respectively. Between the origin and the dashed vertical line, we have
one complete cycle.

validity of AIA requires Ta � τLZ1, τLZ2. Again, the lat-
ter implies that for large values ω, the AIA might breaks
down. With two avoided crossings, the evolution ma-
trix for one complete cycle [see Fig. 18(b)] becomes
F̂ = Û5Ĝ1

T
LZÛ4Ĝ2

T
LZÛ3Ĝ2LZÛ2Ĝ1LZÛ1 and for k cycles it

is F̂ k .
Figure 19 shows the time-average populations in the adia-

batic states as a function of ω over a period of 100 cycles for
�0 = −15�, V0 = 40�, and δ = 45�, and different initial
states. The solid lines show the exact results and the dashed
ones are from AIA. For the initial state |ψ (t = 0)〉 = |1〉 ∼
|gg〉 [see Fig. 19(a)], we see the resonances nω = |�0| and
nω = |2�0 − V0|. Note that the latter resonances (for, e.g.,
ω/� = 17.5), which correspond to the resonant transition
between |gg〉 and |rr〉 (antiblockades) via |s〉 is not captured
by AIA since |rr〉 is not included. Figures 19(b) and 19(c)
show the average populations for the initial states |ψ (t =
0)〉 = |2〉 ∼ |s〉 and |ψ (t = 0)〉 = |3〉 ∼ |rr〉, respectively. We
see more resonances in these cases. For the initial state |s〉,
the resonances correspond to the transition between |s〉 and
|gg〉 (nω = |�0|), and |s〉 and |rr〉 (nω = |�0 − V0|) can be

(a)

2.5 10 14 186
(b)

2.5 10 14 186

0.1

0.35

0.6
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0.4

0.8

(c)

2.5 10 14 186
0.1
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0.7
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FIG. 21. The numerical results (solid lines) for the time-averaged
populations (P̄1,2,3) in the adiabatic states, and the same from the
AIA (dashed lines) over a period of 100 cycles, as a function of ω

for the initial state (a) |1〉, (b) |2〉, and (c) |3〉. Other parameters are
�0 = −15�, V0 = 40�, and δ = 65�. In panel (a), the major peaks
correspond to the resonances nω = |�0| (between |gg〉 and |s〉 states)
and smaller ones indicate the resonances at nω = |�0 − V0| (between
|rr〉 and |s〉 states). In panel (b), the peaks and dips indicate the
resonances at nω = |�0| and nω = |�0 − V0|, with no traces on the
resonances at nω = |2�0 − V0|. In panel (c), except the resonances
at nω = |�0|, other two types are seen. AIA results are in excellent
agreement with the numerics in all three cases.

seen. On the other hand, with the initial state |rr〉, we have
the resonances associated with |rr〉 ↔ |s〉 and |rr〉 ↔ |gg〉
transitions. In all these cases, AIA failed to captured any
resonances which involves |rr〉, and therefore no resonant
features are observed for the initial state |rr〉 as seen in
Fig. 19(c).

3. δ = 5V0/4 − �0

For the last case, the modulation amplitude is such that
the system is periodically driven across all three avoided
crossings. Therefore, all three adiabatic and diabatic states
are involved in LZTs and hence, in AIA. There are three
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LZT times involved in the dynamics, τLZ1, τLZ2, and τLZ3

for the transitions at �(t ) = 0, �(t ) = V0/2 and �(t ) =
V0, respectively, and we have τLZ2 � τLZ1, τLZ3. As far
as the validity of AIA is concerned, the shortest du-
ration of adiabatic evolution [Ta1 in Fig. 20(a)] should
be larger than both τLZ1 and τLZ3. The evolution ma-
trix for one complete cycle in AIA (see Fig. 20) is F̂ =
Û7Ĝ1

T
LZÛ6Ĝ2

T
LZÛ5Ĝ3

T
LZÛ4Ĝ3LZÛ3Ĝ2LZÛ2Ĝ1LZÛ1 and for k

cycles, it is F̂ k . The operators, Û s are the adiabatic evolution
matrices, and the LZT matrices Ĝ1LZ and Ĝ2LZ are provided
by Eqs. (22) and (24), with v being replaced by v1 and v2,
respectively. The third LZT matrix is

Ĝ3LZ =

⎛
⎜⎝

1 0 0

0
√

1 − P′′′
LZ e−iφ̃s3 −√

P′′′
LZ

0
√

P′′′
LZ

√
1 − P′′′

LZeiφ̃s3

⎞
⎟⎠,

where P′′′
LZ = exp(−2π�′′′2/4v3) with �′′′ = �EV0 , φ̃s3 =

π
4 + arg[�(1 − iγ ′′′)] + γ ′′′(ln γ ′′′ − 1) with γ ′′′ = �′′′2/4v3

and v3 = ω
√

δ2 − (�0 − V0)2.
In Fig. 21, we show the time-average populations in the

adiabatic states as a function of ω over a period of 100
cycles, �0 = −15�, V0 = 40�, δ = 65�, and for all three
initial states. In Fig. 20(a), for the initial state |ψ (t = 0)〉 =
|1〉 ∼ |gg〉, we observe major peaks corresponding to the reso-
nances nω = |�0|, and minor ones for the resonances at nω =
|2�0 − V0|. For the initial state |ψ (t = 0)〉 = |2〉 ∼ |s〉 [see
Fig. 21(b)], we observe resonances at nω = |�0| and nω =
|�0 − V0|. Finally, for the initial state |ψ (t = 0)〉 = |3〉 ∼
|rr〉, except the resonances at nω = |�0|, other two types are
captured. In contrast to the previous two cases, here AIA is
able to capture all possible resonant transitions. Thus, from the
above examples, we conclude that for AIA to be successful in
a periodically driven multilevel system especially, at longer
times, it is necessary to incorporate the transition matrices
across all avoided crossings. Once successful, AIA reveals to
us the web of phases involved in the dynamics which can find
applications in developing quantum technologies.

IV. SUMMARY AND OUTLOOK

In summary, we analyzed the LZ dynamics in a setup of
two Rydberg atoms with a time-dependent detuning, both
linear and periodic. As we have shown, the Rydberg-atom
setup realizes different LZ models, for instance, the bow-
tie model and the triangular LZ model. Since state-of-the-
art Rydberg setups deal with strong RRIs, the triangular
LZ model can be tested in these systems through chirping
the frequency of laser field, which couples the ground to
the Rydberg state [5,78,79,81,108]. The periodically driven
Rydberg setup, for instance, can be realized by frequency
modulation [44]. We identified a striking similarity with the
excitation probability in a single periodically driven two-level
atom to the intensity distribution from a narrow antenna array.
For two atoms (which can be easily realizable using optical
tweezers or microscopic optical traps [89]), the LZ dynamics
showed a nontrivial dependence on the initial state, the quench
rate, and the interaction strength. We discussed in detail the
validity of AIA in describing the dynamics for both linear
and periodic variation of detuning. Interestingly, AIA reveals
detailed information about the phases developed during the
dynamics, which can be very useful for applications such as
coherent control of quantum states, implementing quantum
(phase) gates [66,67], and atom-interferometry [31].

While implementing AIA, we rely on large RRIs for which
the LZTs across each avoided crossing involve only two adia-
batic states. For small interactions, it is required to develop a
multilevel AIA in which the LZTs take place among multiple
levels at the same time. Our study can be extended to three
two-level atoms, for which it will not be so straightforward
to assume AIA would work at large interactions due to the
complexity in the level structure.
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