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An orthogonally polarized two-color (OTC) field of frequency ratio 1 : 2 is known to generate both odd and
even harmonic spectra in the mutually orthogonal directions of the fundamental and the second-harmonic fields,
respectively. Recollision angles of an ionized electron driven back to its parent ion by an OTC field are inferred
from the intensity ratio of odd and even harmonics, where the relative phase delays between the two-color fields
can be used in time-resolved measurements on a subcycle time scale. In this work, we present the ab initio,
many-electron calculation of time-resolved recollision angles of noble-gas atoms driven by an OTC field, based
on the time-dependent density-functional theory. Our results agree well with experimental data by Shafir et al.
in Nat. Phys. 5, 412 (2009) of helium atom and New J. Phys. 12, 073032 (2010) of neon atom.
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I. INTRODUCTION

Photoionization of atoms driven by a linearly polarized
laser field has been extensively studied in the past because it
induces a wealth of interesting phenomena such as high-order
harmonic generation (HHG) and above-threshold ionization.
In the past decade, a new type of driving laser field, namely,
an orthogonally polarized two-color (OTC) field, has success-
fully been applied to angle- and time-resolved measurement
of noble-gas atoms; e.g., tomographic imaging of atomic
orbitals [1], determination of ionization and recombination
times of photoionized electrons [2], or stroboscopic mea-
surements of photoelectron momentum distributions (PMDs)
[3–5]. In these measurements, a second-harmonic field which
is orthogonal to a fundamental field causes a transverse offset
to the electron motion. The resulting electron trajectory can
be a figure-8 shape or a boomerang shape, depending on the
timing of ionization, which can be controlled by the relative
phase delay between the two-color fields [6,7]. Just as in a
linearly polarized field, an ionized electron releases its excess
energy gained while being accelerated by an OTC field as
high-order harmonic radiation upon recolliding with its parent
ion. For the case of an OTC field whose frequency ratio
is 1 : 2, both odd and even harmonics are generated in the
mutually orthogonal directions of the fundamental and the
second-harmonic fields, respectively, whereas the frequency
ratio of 1 : 3 yields only odd harmonics which are elliptically
polarized [8]. Note that the production of even harmonics
from atoms driven by an OTC field is not due to broken
inversion symmetry of the system [9] but due to two-color
mixing [10]. Electron wave packets that are emitted in differ-
ent quarter-cycles of the fundamental field appear in different
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quadrants of a PMD when driven by an OTC laser, which
facilitates the analysis of their interference patterns [11,12].

Theoretically, the OTC field poses two unprecedented
problems compared to the linearly polarized field. First is
the loss of azimuthal symmetry, which leads to a fully three-
dimensional (3D) problem. Secondly, the presence of an
orthogonal field substantiates the need for a many-electron
theory for the following reason. When driven by a linearly
polarized laser field, the valence electrons in a p-shell ionize
mostly from the m = 0 orbital that is oriented in parallel with
the laser polarization axis, so that one can adopt the single
active electron (SAE) approximation [13]. When another field
is added perpendicular to the principal axis, however, p-shell
electrons from the other two degenerate orbitals (m = ±1)
can also ionize and contribute to high-order harmonic spectra,
which makes the SAE approximation questionable. A numer-
ically tractable approach in this case is to use time-dependent
density-functional theory (TDDFT), which is based on a set
of single-electron Kohn-Sham equations rather than a many-
electron Schrödinger equation to describe the system [14].
Examples of different approaches to the 3D strong-field cal-
culation include strong field approximation (SFA) [15], time-
dependent Schrödinger equation (TDSE) [16–20], analytical
R-matrix theory [21], quantum trajectory Monte Carlo method
(QTMC) [11], and the Coulomb-corrected SFA [22]. To the
best of our knowledge, however, many-electron calculation
with an OTC field beyond the SAE approximation has not
been reported. We have developed the numerical scheme to
solve the 3D-TDSE for the hydrogen (H) atom driven by
an OTC field based on the generalized pseudospectral (GPS)
method in Ref. [18]. The question we would like to address in
the present work is how to solve the 3D Kohn-Sham equations
using the GPS method for many-electron atoms driven by an
OTC field.

The paper is organized as follows. In Sec. II, we describe
the numerical scheme for our TDDFT calculation. Then,
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we present the high-order harmonic spectra of helium (He)
and neon (Ne) atoms in Sec. III and compare them with
experimental data in Refs. [1,23]. Our calculations are in good
agreement with their experiments, showing the power of the
TDDFT approach to HHG driven by an OTC field. Conclusion
is given in Sec. IV. Atomic units (e = me = h̄ = 1) are used
throughout, unless specified otherwise.

II. METHODS

A. Time-dependent Kohn-Sham equations

We solve the time-dependent Kohn-Sham equation in the
length gauge, given by

i
∂

∂t
ψiσ (r, t ) = H(r, t ) ψiσ (r, t ), (1)

where i = 1, 2, . . . , Nσ ranges over occupied atomic orbitals,
σ ∈ {↑,↓} specifies the z component of the electron spin sz =
±1/2, and

H(r, t ) = −1

2
∇2 − Z

r
+ vKS

σ [n↑, n↓](r, t ) + V (r, t ), (2)

in which Z is the atomic number of an atom, and V (r, t ) is
an external potential due to a driving laser field. The electron-
electron interaction is contained in the Kohn-Sham potential
vKS

σ [n↑, n↓], which is a functional of the spin electron density:

nσ (r, t ) =
Nσ∑
i=1

niσ (r, t ) =
Nσ∑
i=1

giσ |ψiσ (r, t )|2, (3)

where giσ is the occupation number of a state ψiσ , such that

∑
σ

Nσ∑
i=1

giσ = Z. (4)

In the limit of dipole approximation, the external laser
potential is

V (r, t ) = r · E(t ), (5)

where E(t ) is the OTC laser field, defined by [15,17]

E(t ) = E0(t )[cos(ω0t )ẑ + ε cos(2ω0t + β )x̂], (6)

in which β and ε are the phase delay and the field-strength ra-
tio, respectively, between the fundamental and the secondary
fields, and E0(t ) is an envelope function centered around
t = 0, given by

E0(t ) = √
I0 cos2

(
ω0t

2n

)
, (7)

with n being the number of cycles per pulse. Accordingly,
Eq. (5) becomes

V (r, t ) = E0(t ) r[cos θ cos(ω0t )

+ ε sin θ cos φ cos(2ω0t + β )]. (8)

The φ dependence in Eq. (8) breaks the azimuthal sym-
metry of the system, so the magnetic quantum number is
no longer a conserved quantity. This means that the wave
function ψiσ (r, t ) for each orbital becomes fully asymmetrical
and needs to be evolved as a 3D quantity when the OTC
field turns on. This is a particular challenge with orthogonally

polarized laser fields and also with an elliptically polarized
laser field [18]. For a linearly polarized laser field, whether
monochromatic or not, the azimuthal symmetry is conserved,
so that the problem is essentially two dimensional (2D) [13].

Our 2D-TDDFT calculations with noble-gas atoms in
Ref. [13] showed that, when driven by a linearly polarized,
near-infrared laser field, the valence electron in the p shell
ionizes mostly from the m = 0 orbital that is oriented in
parallel with the laser polarization axis, so that one could
adopt the single active electron (SAE) approximation. With
an OTC field, however, p-shell electrons from the other two
degenerate orbitals (m = ±1) can also contribute to high-
order harmonic spectra, so it is necessary to incorporate many
electrons into calculation. The numerical scheme to solve the
3D-TDSE for the H atom driven by an OTC field based on the
generalized pseudospectral method is described in Ref. [18].
The remaining question is therefore how to calculate the 3D
Kohn-Sham potential vKS

σ [n↑, n↓] in each time step for many-
electron atoms.

B. Time-dependent Hartree potential

In general, the KS potential in Eq. (2) consists of two parts,
namely,

vKS
σ [n↑, n↓](r, t ) = VH[n](r, t ) + vxc

σ [n↑, n↓](r, t ) , (9)

where VH is the Hartree potential

VH[n](r, t ) =
∫∫∫

n(r′, t )

|r − r′|d3r′, (10)

which is a functional of the total electron density

n(r, t ) =
∑

σ

nσ (r, t ). (11)

The second term vxc
σ [n↑, n↓] in Eq. (9) is the exchange-

correlation potential, which shall be discussed in the next
section.

To find the 3D time-dependent Hartree potential (10), we
use the Laplace expansion of an inverse distance, given by
[24]

1

|r − r′| =
∑

,m

4π

2
 + 1

(
r

<

r
+1
>

)
Y ∗


m(θ ′, φ′)Y
m(θ, φ), (12)

where r< (or r>) represents the lesser (or greater) of |r| and
|r′|, and Y
m(θ, φ) are the spherical harmonics. Moreover, we
expand the electron density with spherical harmonics, such
that

n(r, t ) =
∑

,m

n
m(r, t )Y
m(θ, φ), (13)

where

n
m(r, t ) =
∫∫

d� n(r, t )Y ∗

m(θ, φ). (14)

Then, Eq. (10) becomes

VH[n](r, t ) =
∑

,m

4π

2
 + 1

[
r
 p
m(r, t ) + q
m(r, t )

r
+1

]
Y
m(θ, φ),

(15)
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where

p
m(r, t ) =
∫ ∞

r

n
m(r′, t )

r′
+1
r′2dr′ (16)

and

q
m(r, t ) =
∫ r

0
r′
n
m(r′, t )r′2dr′. (17)

In this work, we let 
max = 31 (and |m| � 
max), which is
sufficient for the driving laser intensity we use (I0 = 1.8 ×
1014 W/cm2). The radial coordinate is discretized using 250
Legendre-Lobatto collocation points which are denser near
the origin, as described in Ref. [25].

C. Local spin-density approximation with a self-interaction
correction

At the heart of TDDFT is the assumption that there exists
a noninteracting system described by a set of Kohn-Sham
equations (1) that possesses the same electron density as the
interacting system described by the solution  of the many-
electron TDSE [26,27], i.e.,

n(r, t ) = N
∫∫∫

· · ·
∫∫∫

|(r, r2, · · · , rN )|2 d3r2 · · · d3rN .

(18)
Then, TDDFT is exact as long as the exchange-correlation
potential vσ

xc[n↑, n↓] in Eq. (9) is exact, but in practice one
needs to approximate it. In the present work, we employ the
local density approximation with a self-interaction correction
(LDA-SIC), given by [28]

vxc
σ [n↑, n↓](r, t ) 
 V LDA

σ [nσ ](r, t ) − V SIC
σ [niσ ](r, t ), (19)

where

V LDA
σ [nσ ](r, t ) = −

(
6

π
nσ (r, t )

)1/3

(20)

and

V SIC
σ [niσ ](r, t ) = V SI

σ (r, t ) + 1

nσ (r, t )

Nσ∑
i=1

′niσ (r, t )viσ (t ).

(21)
In the last expression, V SI

σ [niσ ](r, t ) is the self-interaction
potential given by

V SI
σ [niσ ](r, t ) = 1

nσ (r, t )

Nσ∑
i=1

niσ (r, t )wiσ (r, t ), (22)

with

wiσ (r, t ) = VH[niσ ](r, t ) − V LDA
σ [niσ ](r, t ). (23)

Moreover, viσ (t ) ≡ 〈V SIC
iσ (t )〉 − 〈wiσ (t )〉, where

〈
V SIC

iσ (t )
〉 =

∫∫∫
V SIC

σ [niσ ](r, t )niσ (r, t ) d3r, (24)

and

〈wiσ (t )〉 =
∫∫∫

wiσ (r, t )niσ (r, t ) d3r. (25)

The asymptotic condition, where V SIC
σ → 0 as r → ∞, re-

quires that viσ = 0 for the highest-occupied atomic orbitals

(HOAOs), and thus the primed summation
∑′ in Eq. (21)

denotes a summation over all orbitals except for the HOAOs
[29]. In practice, we calculate viσ (t ) noniteratively as [14]

viσ (t ) =
Nσ∑
j=1

′[A−1
σ (t )

]
i j

[〈
V SI

jσ (t )
〉 − 〈w jσ (t )〉], (26)

where

[Aσ (t )]i j = δi j −
∫∫∫

niσ (r, t )n jσ (r, t )

nσ (r, t )
d3r (27)

and 〈
V SI

jσ (t )
〉 =

∫∫∫
V SI

σ [niσ ](r, t )n jσ (r, t )d3r. (28)

Integrations involved in the calculation of a SIC term are
straightforward because they depend only on a single coor-
dinate r, unlike the Hartree potential (10) discussed in the
previous section.

The LDA-SIC approximation is free from spin-orbit cou-
pling, so that electrons with opposite spins do not interact.
For noble-gas atoms in particular, the number of linearly inde-
pendent Kohn-Sham equations to be solved is therefore Z/2.
The total density can then be found by multiplying the spin-
up (or -down) electron density by 2. We have validated our
implementation of the LDA-SIC approximation in Ref. [30]
where the LDA-SIC ground-state energies of atoms for Z �
18 are compared with other various approximations. The
LDA-SIC orbital energy of each Kohn-Sham wave function
for He and Ne atoms in particular is given in Ref. [13], whose
discrepancy from experimentally determined binding energy
is within 8%.

D. Time evolution scheme

In the GPS method for an atom, the single-electron wave
function is expanded by using spherical harmonics Y
m(θ, φ)
as [25]

ψiσ (r, t ) =
∑

,m

R
m
iσ (r, t )

r
Y
m(θ, φ), (29)

where 
 = 0, 1, 2, . . . , 
max and |m| � 
. For the time evolu-
tion of Kohn-Sham wave function ψiσ (r, t ), the Hamiltonian
operator (2) is split into H0


 (r) + U (r, t ), where H0

 (r) is the

stationary-state Hamiltonian given by [28]

H0

 (r) = −1

2

∂2

∂r2
+ 
(
 + 1)

2r2
− Z

r
+ vKS

σ [n̄iσ ](r), (30)

which is diagonal in each 
. The last term is the orbital-
averaged Kohn-Sham potential [13]

vKS
σ [n̄iσ ](r)=VH[n̄](r, ti ) + V LDA

σ [n̄σ ](r, ti) − V SIC
σ [n̄iσ ](r, ti ),

(31)
where n̄(r) = ∑

σ n̄σ (r) and n̄σ (r) = ∑Nσ

i=1 n̄iσ (r), with

n̄iσ (r) =
∣∣R(
imi )

iσ (r, ti )
∣∣2

4πr2
, (32)

and t = ti is the initial time before the laser field turns on.
Note that 
i and mi in Eq. (32) are not summation indices
but specific to each ith orbital, and thus it is enclosed in
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parentheses. On the other hand, the time-dependent part of
the Hamiltonian is fully 3D and given by [31]

U (r, t ) = vKS
σ [n↑, n↓](r, t ) − vKS

σ [n̄iσ ](r) + V (r, t ), (33)

where

vKS
σ [n↑, n↓](r, t ) = VH(r, t ) + V LDA

σ [nσ ](r, t )

−V SIC
σ [niσ ](r, t ). (34)

Then, the Kohn-Sham wave function is evolved as [18]

ψiσ (r, t + �t ) 
 e−iH0

 (r)�t/2S−1(
, m)e−iU (r,t+�/2)�t

×S (θ, φ)e−iH0 (
)�t/2ψiσ (r, t ), (35)

where S denotes the spherical harmonic transform [32], i.e.,

S
{
ϕm


 (r, t )
}
(θ, φ) = 1√

2π

∑

,m

eimφ

×
√

(2
 + 1)(
 − m)!

2(
 + m)!
Pm


 (cos θ ) ϕm

 (r, t )

= ϕ(r, θ, φ, t ), (36)

which provides the change in representation: (
, m) → (θ, φ)
for any function ϕ in the spherical coordinates. The TDDFT
calculation with nonspherical atomic orbitals is less stable
and requires smaller time steps than with spherical orbitals.
In this work, we let �t = 0.2 a.u. for a He atom and �t =
0.01 a.u. for a Ne atom to ensure the stability during their
time evolution for 20 optical cycles.

Moreover, to eliminate the reflection from the boundary
during the time evolution, we split the wave function at a given
time t as

ψ (r, t ) = f (r)ψ (r, t ) + [1 − f (r)]ψ (r, t )

= ψ(in)(r, t ) + ψ(out)(r, t ), (37)

where f (r) is an absorbing function that is 1 in the inner
region (0 � r � Rb) and smoothly decreases to zero in the
outer region (Rb < r < rmax). For the evaluation of high-order
harmonic spectra, only the inner wave function is neces-
sary. In this work, we let rmax = 5α0, where α0 = E0

2/ω0
2 =

22.1 a.u. is the classical oscillator radius of a driving laser
field, and Rb = 1.1273α0, which is known to minimize the
effect of long paths in high-order harmonic spectra [33].

E. Evaluation of dipole spectra

In order to obtain the dipole spectra, we need to find the
expectation values of the acceleration vector a = azẑ + axx̂ in
each time step. From Ehrenfest’s theorem, its components are
given by

〈az〉 = −
∑

σ

Nσ∑
i=1

〈ψiσ |∇Uext (r) · ẑ|ψiσ 〉 (38)

and

〈ax〉 = −
∑

σ

Nσ∑
i=1

〈ψiσ |∇Uext (r) · x̂|ψiσ 〉. (39)

The external potential is

Uext (r) = −Z

r
+ vKS

σ [n↑, n↓](r, t ). (40)

We do not need to include the laser potential V (r, t ) in the
above expression, because it only contributes to the funda-
mental harmonic yield and not to higher-order harmonics.

The zero-force theorem of TDDFT [34] states that the
Kohn-Sham potential vKS

σ [n↑, n↓](r, t ), which accounts for
the electron-electron interaction, does not contribute to the
dipole acceleration only if it is exact, i.e., if the spin electron
densities given by (3) sum up to the total electron density (18)
given by the many-electron TDSE. Although the exchange-
correlation potential we use is approximate, we shall assume
that the zero-force theorem holds when evaluating the dipole
acceleration. It then follows that (whose proof is given in the
Appendix)

〈az(t )〉 = −2Z
∑

σ

Nσ∑
i=1

∑

,m

×
∫

dr

(
cm



r2

)
Re

[
R∗
+1,m

iσ (r, t )R
m
iσ (r, t )

]
, (41)

where

cm

 =

√
(
 + m + 1)(
 − m + 1)

(2
 + 1)(2
 + 3)
(42)

and

〈ax(t )〉 = −Z
∑

σ

Nσ∑
i=1

∑

,m

∫
dr

(
1

r2

)

×Re
[
κm


 R∗
m
iσ (r, t )R
+1,m+1

iσ (r, t )

+ κ−m

 R∗
m

iσ (r, t )R
+1,m−1
iσ (r, t )

]
, (43)

where

κm

 =

√
(
 + m + 1)(
 + m + 2)

(2
 + 1)(2
 + 3)
. (44)

In our previous publication of Ref. [18], these expressions
for 〈az(t )〉 and 〈ax(t )〉 were missing an overall factor of 2.
The high-order harmonic spectra along the z or the x axis are
found by taking the Fourier transforms of 〈az(t )〉 or 〈ax(t )〉,
respectively. That is,

Dz,x (ω) = 1

t f − fi

1

ω2

∫ t f

ti

e−iωt 〈az,x (t )〉dt, (45)

where ti and t f are the beginning and the ending of the time
evolution. Then, their square moduli |Dz(ω)|2 and |Dx(ω)|2
give the intensity of odd and even high-order harmonic spec-
tra, respectively, in arbitrary units.

F. Recollision angles

Odd- and even-order harmonics generated by an OTC
field are polarized exclusively along the fundamental and
the secondary field vectors, respectively [15]. Therefore, the
recollision angles of ionized electrons with the parent ion can
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be inferred from harmonic spectra as [18]

|θrec(ω)| = arctan

( √
|Ix(ω)|
|Iz(ω)|

)
, (46)

where Iz,x(ω) = |Dz,x(ω)|2. Note that the adjacent harmonics
are interpolated to obtain continuous spectra separately for
even- and odd-order harmonics before taking their intensity
ratio. Moreover, we can calculate the time-resolved recollision
angles as

|θrec(ω, t )| = arctan

(√
|Gx(ω, t )|
|Gz(ω, t )|

)
, (47)

where Gz,x(t, ω) is the Gabor transform of dipole accelera-
tions, defined by [17]

Gz,x(t, ω) =
∣∣∣∣
∫

e−iωt ′ 〈az,x〉(t ′, β ) EG(t ′ − t ) dt ′
∣∣∣∣
2

, (48)

with

EG(t ) = exp
[−t2/2σo

2
]

√
2πσo

. (49)

The width of a sweeping function EG(t ) is set to be σo =
(3ω0)−1 [35].

III. RESULTS

For high-order harmonic spectra presented in this section,
the driving OTC laser (800+400 nm) has a duration of n = 20
optical cycles and a peak intensity of I0 = 1.8 × 1014 W/cm2

(i.e., ω0 = 0.056961 a.u. and
√

I0 = 0.071714 a.u.), to be
consistent to the experiment in Ref. [23]. The field-strength ra-
tio in Eq. (6) is set ε = 1/2, so that the intensity ratio between
the fundamental field (800 nm) and the second harmonic field
(400 nm) is 4:1, also consistent with Ref. [23].

In Fig. 1, we plot the ionization probability of Kohn-Sham
orbitals in the L shell of a Ne atom during the time evolution
driven by the OTC field for two two-color delays: β = 0
and π/2. They are evaluated as the electron density outside
the radius r = 10 a.u. This figure illustrates the fact that the
ionization probabilities of different orbitals are in the same
order of magnitude when driven by the OTC field we use in
this work, and therefore the SAE approximation may not be
appropriate.

Figure 2 shows high-order harmonic spectra of the He
atom, which are calculated with various phase delays β be-
tween the fundamental and the second harmonic fields of
the OTC laser. The harmonic cutoff predicted by the cutoff
law Ip + 3.17Up [36,37] is 38ω0, where Ip = 0.918 a.u. and
Up = E0

2/4ω0
2 = 0.396 a.u. are the ionization energy of the

He atom and the ponderomotive energy of a driving laser
field, respectively. The most important feature in these spectra
is that the intensity of odd harmonics (Dz) is much stronger
than the intensity of even harmonics (Dx) near and beyond
the cutoff energy. The same behavior was reported in the He
measurement of Ref. [1]. This is a characteristic of atoms
whose valence orbitals are spherically symmetric, such as H
and He [18,23]. According to Eq. (46), Dz � Dx indicates
small recollision angles for electron trajectory. Therefore,
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FIG. 1. Ionization probability of Kohn-Sham wave functions in
the L shell of a Ne atom, driven by 20-cycle, mutually orthogonal
two-color (800+400 nm) laser pulse of peak intensity I0 = 1.8 ×
1014 W/cm2, when the relative phase delay between the two-color
fields are (a) β = 0 and (b) β = π/2. Time is shown in one optical
cycle of 800 nm laser, which corresponds to 2π/ω0 = 2.67 fs. Also
shown in the background is the laser field strengths of two-color
fields in arbitrary units. The field strength of the fundamental field
is set to be two times stronger than the second-harmonic field, so that
their intensity ratio is 4 : 1 in accordance with Refs. [1,23].

Fig. 2 suggests that spherically symmetric atoms in an OTC
field prefer small collision angles in order to attain higher
frequency.

Another interesting observation in Fig. 2 is that harmonics
in the plateau region are extremely well resolved when the rel-
ative delay between the two-color fields is β = π/2. This is a
well-known effect in HHG driven by an OTC field [15]. When
we study HHG driven by a linearly polarized laser field in
the single-atom level (i.e., without macroscopic propagation
effect), the plateau harmonics tend to appear noisy with no
regularly spaced peaks because of the quantum interference
between the two degenerate electron paths, often referred
to as short and long quantum trajectories [37]. In HHG
experiments, long-path harmonics, which are more divergent
than the short, can be eliminated by adjusting the position of
the noble-gas jet relative to the laser focus, which produces
cleaner plateau harmonics similar to those in Fig. 2(c). The
selection of electron trajectory in HHG calculations with a
linearly polarized laser field is not possible unless we take
the propagation effect of high-order harmonic fields through
generating medium into consideration [38]. This makes the
comparison between the experiment and the single-atom cal-
culation with a linearly polarized laser somewhat difficult.
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FIG. 2. High harmonic spectra of a He atom, driven by 20-cycle,
orthogonally polarized two-color laser pulse with relative phase
delays of (a) β = 0, (b) β = π/4, (c) β = π/2, and (d) β = 3π/4.
The fundamental field (800 nm) along the z axis has a peak intensity
of I0 = 1.8 × 1014 W/cm2, which is four times larger than the peak
intensity of the second harmonic field (400 nm) along the x axis.
Harmonic spectra in the plateau region (15–38ω0) does not show
regularly spaced peaks in Figs. 2(a) and 2(b), due to the quantum
interference between the two degenerate electron paths (long and
short). On the other hand, regularly spaced peaks in the plateau
harmonics of Fig. 3(c) is an evidence of nondegenerate electron
paths.

For HHG driven by an OTC field, on the other hand, we can
limit the relative strength of the long-path contribution in a
single-atom level by simply changing the relative phase β

between the two-color fields, regardless of the source atoms.
Figure 3 shows the high-order harmonic spectra of a Ne

atom driven by the same OTC field as in Fig. 2. The cutoff
order predicted by the cutoff law is 36ω0 (Ip = 0.808 a.u.

based on the LDA-SIC approximation). We find that the even
harmonics (Dx) in Fig. 3 remain comparably strong with odd
harmonics (Dz) near the cutoff, contrary to the trend we saw
in Fig. 2. In fact, the intensity of even harmonics is much
stronger than odd harmonics in the lower plateau region when
β = π/4 in Fig. 3(b). Experimental data of Ne atoms in

10-20

10-18

10-16

10-14

10-12

10-10

10-8

0  10  20  30  40  50  60

(d)

In
te

ns
ity

 (
ar

b.
un

its
)

Harmonic Order

10-20

10-18

10-16

10-14

10-12

10-10

10-8

(c)

In
te

ns
ity

 (
ar

b.
un

its
)

10-20

10-18

10-16

10-14

10-12

10-10

10-8

(b)

In
te

ns
ity

 (
ar

b.
un

its
)

10-20

10-18

10-16

10-14

10-12

10-10

10-8

(a)

In
te

ns
ity

 (
ar

b.
un

its
)

Dz

Dx

FIG. 3. Same as Fig. 2 but of a Ne atom. Unlike in Fig. 2, the
even harmonics (Dx) have comparably strong intensity as the odd
harmonics (Dz) near the cutoff (36ω0), indicating larger collision
angles for upper-plateau harmonics generated from Ne than He.

Refs. [1,23] also exhibit the same behavior, i.e., their even
harmonics are equally strong with odd harmonics in the cutoff
region (29–35ω0), and they dominate over odd harmonics
at low frequency. Authors then argued that these strikingly
different trends between He and Ne reflect the symmetry of
valence orbitals of parent ions seen by the free electron as
they collide and produce high-order harmonic spectra. That
is, electrons emitted from the 2p orbitals of Ne atoms tend
to have larger recollision angles than those emitted from the
1s orbital of He atoms. This is reasonable because electron
density of the p orbitals is sparse in between the three degen-
erate lobes (m = 0,±1), through which the returning electron
may preferentially find its passage to avoid electron-electron
repulsion.

To study this effect further, we plot the recollision angles
as a function of two-color delays β, derived from Eq. (46)
in Figs. 4 and 5 for He and Ne atoms, respectively. In
Refs. [1,23], recollision angles were evaluated from the ex-
perimental harmonic intensities for He and Ne atoms. Note
that measurements in Refs. [1,23] only covered the range of
phase delays between β = 0 and π/2 (which corresponds to
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FIG. 4. Recollision angles of an ionized electron from the He
atom, driven by 20-cycle, two-color (800 nm and 400 nm) mu-
tually orthogonal laser pulse (of peak intensities I1 = 1.8 × 1014

and I2 = 0.45 × 1014 W/cm2, respectively) as a function of relative
phase delays β between the two-color fields, derived from Eq. (46).
Recollision angles of lower plateau harmonics (20–30ω0) are 30

◦
–

40◦, whereas the upper plateau harmonics (30–40ω0) have smaller
collision angles (below 20◦), which is in agreement with Ref. [1].

the quarter of an optical cycle or 0.667 fs), whereas our phase
delays in Figs. 4 and 5 cover all the possible range (0 � β <

π ). The recollision angles in Figs. 4 and 5 agree with the
results in Refs. [1,23] very well, showing the relevance of
our TDDFT approach to the calculation of HHG driven by an
OTC field. Specifically, for He, the recollision angles of lower
plateau harmonics (20–30ω0) for experimentally measured
range (0 < β < π/2) are 30◦–40◦, whereas the upper plateau
harmonics (30–40ω0) have smaller recollision angles (below
20◦), in agreement with Ref. [1]. On the other hand, the
recollision angles of Ne for 0 < β < π/2 are above 40◦ for
all plateau harmonics (25–35ω0) except around 15ω0, also in
agreement with Ref. [23].

We have previously studied the time-resolved recollision
angles for the H atom using Gabor transforms in Ref. [18]
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FIG. 5. Same as Fig. 4 but for the Ne atom. Recollision angles in
the plateau region (15–36ω0) are relatively large (>30◦) compared to
the results with He in Fig. 4, which is in agreement with Ref. [23].

FIG. 6. Time-resolved recollision angle of an electron from the
He atom, obtained by Gabor transforming the dipole acceleration for
which the relative delay between the two-color laser fields is β =
π/2. Also shown with dots is the return energy of a free electron
moving in a linearly polarized laser field as a function of collision
time, according to Newton’s equation of motion.

and found that the recollision angles of short-path harmon-
ics are 20◦–40◦ with respect to the fundamental laser axis.
Assessment of recollision angles based on Gabor transforms
allows better understanding of electron dynamics at subcycle
time scale, particularly if it is combined with a proper choice
of two-color phase delay β. In Figs. 6 and 7, we plot the time-
resolved recollision angles of He and Ne atoms derived using
Eq. (47) specifically from those dipole accelerations obtained
with β = π/2, in order to select the short paths that dominate
in experimental data. Also shown with dots in these figures
is the return energy of a free electron moving in a linearly
polarized laser field as a function of collision time, according
to Newton’s equation of motion: z̈ = −E0(t ) cos(ω0t ) [18].
They follow a curved pattern which repeats every half of
an optical cycle. Short-path solutions correspond to a set of
points whose return energy is on the rising side of the curve.

FIG. 7. Same as Fig. 6 but of the Ne atom. Agreement with the
experimental data in Ref. [23] is even better than in Fig. 5 because
of the two-color delay β = π/2 we use in the calculation of Fig. 6,
which selects only the short-path recollisions which dominate in
experiments.
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We see that Gabor transforms appear exclusively along the
short-path solutions of Newton’s equation, confirming the
successful path control by the two-color delay. From these
figures, it is clear that electron motion, characterized by its
recollision angles in this case, is periodic in every half of an
optical cycle. For a heteronuclear diatomic molecule in an
OTC field, this period would be a full optical cycle due to the
broken inversion symmetry [39]. Focusing on the recollision
angles in each half-cycle period in Figs. 6 and 7, one should
notice that the agreement with Refs. [1,23] is even better
than in Figs. 4 and 5; this is because we chose β = π/2
to select short-path trajectories while generating these plots,
which made the results more consistent with the experiments.

IV. CONCLUSION

In this work, we presented the many-electron calculation of
high-order harmonic generation (HHG) of helium and neon
atoms driven by an orthogonally polarized two-color (OTC)
field of frequency ratio 1 : 2. The intensity ratio between the
odd and even high-order harmonics are used to determine the
recollision angles of ionized electron with its parent ion. In
order to avoid the quantum interference of degenerate electron
paths in our calculation, we used the relative phase delay
β = π/2 between the two-color fields to select short paths.
Resulting dipole acceleration is then analyzed using Garbor
transforms, which gives the time-resolved recollision angles
measured in experiments in Refs. [1,23]. Our results are in
excellent agreement with their data, validating the TDDFT
approach to the HHG driven by an OTC laser. It should be
emphasized that an OTC field not only breaks the azimuthal
symmetry of the system but also demands many-electron
theory beyond the single active electron approximation, in
cases where the second-harmonic field perpendicular to the
fundamental field makes the ionization rate of m = ±1 or-
bitals in the p-shell comparable to the m = 0 orbital. We
found that this is indeed true even though the peak intensity
of the second-harmonic field is relatively weak compared
to the fundamental field (4 : 1 in our calculation). We be-
lieve further studies with an OTC field could in principle
reveal many-electron effects in high-order harmonic spectra or
photoelectron momentum distributions of nonspherical atoms
such as neon and argon, which would help finding the correct
exchange-correlation potential in the Kohn-Sham equations
and drive further development of TDDFT in the strong-field
physics.
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APPENDIX

Derivation of acceleration components

To derive Eqs. (41) and (43), we start with the z-component
operator âz = −∂zÛext, by writing it in spherical harmonics
representation using the ket-bra notation:

âz = −
∑

m

(
∂V

∂z

)(
m)

|
m〉〈
m|.

Here, V (r) := −Z/r is the spherically symmetric potential
of the nucleus, and |
m〉 are spherical harmonics Y
m(θ, φ),
defined as usual:

Y
m(θ, φ) :=
√

(2
 + 1)

4π

(
 − m)!

(
 + m)!
Pm


 (μ) eimφ,

where μ := cos θ and Pm

 (μ) are associated Legendre polyno-

mials. Using the chain rule for the derivative, the acceleration
operator becomes

âz = −
∑

m

∂V

∂r

(
∂r

∂z

)(
m)

|
m〉〈
m| = −∂V

∂r

∑

m

μ |
m〉〈
m|.

To get rid of μ in the sum, we can expand |
m〉 using the
definition of spherical harmonics and apply a recurrence iden-
tity for the associated Legendre polynomials to the product
μPm


 (μ):

âz = − ∂V

∂r

∑

m

μY
m
∗(θ, φ)Y
m(θ, φ)

= − ∂V

∂r

∑

m

μPm

 (μ)e−imφ Pm


 (μ)eimφ (2
 + 1)

4π

(
 − m)!

(
 + m)!

= − ∂V

∂r

∑

m

[
μ Pm


 (μ)
]
Pm


 (μ)
(2
 + 1)

4π

(
 − m)!

(
 + m)!

= − ∂V

∂r

∑

m

[
(
 − m + 1)Pm


+1(μ) + (
 + m)Pm

−1(μ)

2
 + 1

]

× Pm

 (μ)

(2
 + 1)

4π

(
 − m)!

(
 + m)!
.

Now we can go back to the ket-bra notation by replacing

Pm

+1Pm


 → 1

2
|
 + 1, m〉〈
m| + 1

2
|
m〉〈
 + 1, m|,

Pm

−1Pm


 → 1

2
|
 − 1, m〉〈
m| + 1

2
|
m〉〈
 − 1, m|.

That is,

Pm

+1Pm




(
 − m + 1)

2
 + 1

(2
 + 1)

4π

(
 − m)!

(
 + m)!

= 1

2
(|
 + 1, m〉〈
m| + |
m〉〈
 + 1, m|)

×
√

(
 + 1 − m)(
 + 1 + m)

(2
 + 1)(2
 + 3)
,
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Pm

−1Pm




(
 + m)

2
 + 1

(2
 + 1)

4π

(
 − m)!

(
 + m)!

= 1

2
(|
 − 1, m〉〈
m| + |
m〉〈
 − 1, m|)

×
√

(
 − m)(
 + m)

(2
 − 1)(2
 + 1)
.

The expression for âz becomes

âz = − ∂V

∂r

∑

m

[
cm

−1

2
|
 − 1, m〉〈
m| + cm




2
|
 + 1, m〉〈
m|

+ cm

−1

2
|
m〉〈
 − 1, m| + cm




2
|
m〉〈
 + 1, m|

]
, (A1)

where

cm

 :=

√
(
 + m + 1)(
 − m + 1)

(2
 + 1)(2
 + 3)
.

This can be further simplified if we collect similar terms
after relabeling 
 − 1 → 
 in the first and the third terms:

âz = −∂V

∂r

∑

m

cm

 (|
 + 1, m〉〈
m| + |
m〉〈
 + 1, m|).

(A2)

With this expression, a wave function |ψ〉 =
1/r

∑
R
m(r)|
m〉 produces the expectation value

〈ψ |âz|ψ〉 = −2
∫ (

∂V

∂r

) ∑

m

cm

 Re

[
R∗


+1,m(r)R
m(r)
]
dr,

(A3)

which after applying discretization produces Eq. (41).
To calculate the expectation value of âx we resort to the no-

tion of reduced matrix elements 〈
′ ‖ a ‖ 
〉, following Landau
and Lifshitz [[40], Chap. 29]. z component of a polar vector
such as a has nonzero matrix elements only for transitions
which both conserve magnetic quantum number m and change
total momentum quantum number 
 by one. The general form
of such matrix elements in terms of reduced matrix elements is

〈
 − 1, m | âz | 
m〉 =
√


2 − m2


(2
 − 1)(2
 + 1)
〈
 − 1 ‖ a ‖ 
〉.

(A4)

Comparing this to (A2), we can read out the reduced matrix
element of the acceleration:

〈
 ‖ a ‖ 
 − 1〉 = 〈
 − 1 ‖ a ‖ 
〉 = ∂V

∂r

√

. (A5)

Matrix elements of the x component of a polar vector are
nonzero only for those transitions in which both quantum
numbers m and 
 change by 1:

〈
, m − 1 | âx | 
 − 1, m〉 = 〈
 − 1, m | âx | 
, m − 1〉

= 1

2

√
(
 − m + 1)(
 − m)


 (2
 − 1)(2
 + 1)
〈
 ‖ a ‖ 
 − 1〉,

〈
 − 1, m − 1 | âx | 
, m〉 = 〈
, m | âx | 
 − 1, m − 1〉

= 1

2

√
(
 + m − 1)(
 + m)


 (2
 − 1)(2
 + 1)
〈
 − 1 ‖ a ‖ 
〉.

Substituting here the expression for the reduced matrix ele-
ments (A5), one obtains

〈
, m − 1 | âx | 
 − 1, m〉 = 〈
 − 1, m | âx | 
, m − 1〉

= κ−m

−1

1

2

(
∂V

∂r

)
,

〈
 − 1, m − 1 | âx | 
, m〉 = 〈
, m | âx | 
 − 1, m − 1〉

= κm−1

−1

1

2

(
∂V

∂r

)
,

where

κm

 :=

√
(
 + m + 1)(
 + m + 2)

(2
 + 1)(2
 + 3)
.

The final expression for the expectation value of the x
component is

〈ψ |âx|ψ〉 = −
∫

dr

(
∂V

∂r

)

×
∞∑


=0


∑
m=−


Re
[
κm


 R∗

+1,m+1(r)R
m(r)

+ κ−m

 R∗


+1,m−1(r)R
m(r)
]
. (A6)
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