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Speed, retention loss, and motional heating of atoms in an optical conveyor belt
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The problem of high-speed transport for cold atoms with minimal heating has received considerable attention
in theory and experiment. Much theoretical work has focused on solutions of general problems, often assuming a
harmonic trapping potential or a one-dimensional geometry. However, in the case of optical conveyor belts, these
assumptions are not always valid. Here we present experimental and numerical studies of the effects of various
motional parameters on heating and retention of atoms transported in an optical conveyor. Our numerical model
is specialized to the geometry of a moving optical lattice and uses dephasing in the density-matrix formalism to
account for the effects of motion in the transverse plane. We verify the model by a comparison with experimental
measurements and use it to gain further insight into the relationship between the conveyor’s performance and the
various parameters of the system.
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I. INTRODUCTION

Transport of cold neutral atoms or Bose-Einstein conden-
sates with minimal heating is an important task in many
atomic physics experiments. Common technologies used for
this task include time-varying magnetic traps [1–5], moving
optical tweezers [6–10], and moving optical lattices or op-
tical conveyor belts [11–13]. The problem has also received
attention from theorists, who have explored optimal transport
protocols calculated by various means [14–17]. Analytical
and numerical calculations become more cumbersome as the
number of motional degrees of freedom is increased, however.
Additionally, the wide variety of anharmonic potentials found
in the various experiments cannot be accounted for exactly
in a general way. As a result, many theoretical investigations
obtain rigorous or analytical results only by assuming that the
confining potential is harmonic [18–21]. Others simplify to
a one-dimensional (1D) problem by considering motion only
along the direction of transport [22,23].

However, situations exist in which either one or both of
these approximations do not hold. This is the case for trapped
atoms when there is significant coupling between the trans-
verse and longitudinal motions [24]. Also some experiments
are performed in regimes in which trapping potentials are far
from harmonic, either because of the intrinsic shape of the
potential or because the typical energies of trapped atoms
are comparable to the depth of the trap [25–27]. In some
of these cases new models will need to be developed that
are specialized to the particular geometries. Here it will be
important for theoretical work to take place side by side with
experiment in order to validate the theoretical results.

Compared with other available transport technologies, op-
tical conveyors are excellent tools for the precise positioning
of atoms [11,12,28–32]. They also have the unique abil-
ity to impart very large accelerations for high-speed trans-
port [11,28] and to quickly sort atoms into ordered arrays
with well-defined spacings [33]. Many of the advantages of
optical conveyors come from the high degree of longitudinal

confinement provided by the lattice geometry. This can lead to
very large differences between radial and longitudinal oscilla-
tion frequencies, which sets them apart from other transport
system geometries. Atom lifetimes and noise sensitivities in
optical lattices have been explored theoretically in [34] and
more recently in [35], but heating rates in a moving lattice
resulting from the transport procedure itself have not yet been
carefully examined.

Particularly interesting would be an investigation of the
effect of differing velocity waveforms on the retention and
motional excitation of transported atoms. Motion in optical
conveyors is often accomplished by driving the lattice velocity
with a triangle-shaped waveform [28,30,36,37], even though
this waveform is known to cause additional motional heating
because of the discontinuities in the acceleration. Typically,
this source of heating is significant only when fast transport
is required, using acceleration values that are close to the
maximum allowed by the trap depth and the lattice geome-
try [28]. In some instances it suffices to simply transport the
atoms more slowly, but in applications for which fast transport
speeds are critical it would be beneficial to understand the per-
formance improvements that can be obtained using a smooth
velocity profile.

Here we present experimental and theoretical studies of
heating and atom loss due to motion in an optical conveyor
belt. In our experiments, atoms are loaded into an optical
conveyor and transported back and forth across a fixed dis-
tance and retention is measured using optical fluorescence
imaging. On the theoretical side we introduce a 1D quantum
numerical model for calculating the motional dynamics of
an optical conveyor. The model is specialized to the case in
which the frequencies of acousto-optic modulators (AOMs)
are controlled digitally by performing discrete updates at
a fixed rate, such as is commonly done with direct digital
synthesizers (DDSs). Laboratory measurements of retention
losses caused by parametric heating are used to calibrate the
parameters of the model. We then compare the performances
of triangle-shaped and smooth velocity waveforms by testing
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the retention as a function of transport speed, using both
experimental measurements and numerical simulations. After
verifying the accuracy of the model in this way, we use
it to briefly investigate the relationship of motional heating
and retention loss to the digitized update rates of the AOM
frequencies. Finally, we use the model to study ground-state
population dynamics in the moving trap.

The structure of the remainder of this article is as follows.
In Sec. II we review our experimental system and measure-
ment protocol. In Sec. III we describe our simulation proce-
dure, and simulation results are compared with experimental
data in Sec. IV. In Sec. V we use the simulations to further
analyze parametric heating and retention losses and in Sec. VI
we use them to predict the effects of conveyor motion on
atoms in the ground state of the lattice. We summarize in
Sec. VII.

II. EXPERIMENT

Our experimental system consists of a fiber Fabry-Pérot
cavity in an ultrahigh-vacuum chamber with a background
of 87Rb atoms at a pressure of roughly 5 × 10−8 Torr. The
high pressure is chosen to allow for a faster magneto-optical
trap (MOT) loading rate and a shorter experiment cycle time.
Atoms are cooled in a MOT at a distance of about 2 mm from
the cavity and transferred to a far-detuned optical lattice. The
MOT has a typical diameter of close to 80 μm, overlapping
with about 160 local minima of the lattice. The number of
atoms loaded per cycle is on the order of 1000, so the average
number of atoms trapped in each lattice site is about 10. This
leads to a typical atomic density in the lattice on the order of
1012 cm−3.

Light for the lattice is produced by a 1064 nm single-
frequency fiber laser (IPG Photonics model No. YLR-20-
1064-LP-SF). The laser output is split by a polarizing beam
splitter, after which each of the two beams passes through an
AOM. The AOMs are driven by two DDSs sharing a common
clock (Sinara 4410 Urukul). The lattice beams are focused
onto the center of the fiber cavity with waists of wx ≈ 30 μm
and wy ≈ 18 μm in the horizontal and vertical directions,
respectively, and with Rayleigh lengths of zR,x ≈ 2.7 mm and
zR,y ≈ 1.0 mm. The smaller value of wy allows the trap beams
to fit more easily between the cavity fibers. At the position of
the MOT the beam waist sizes in the two transverse directions
are both approximately equal to 40 μm. The trap depth at that
position is about 340 μK.

Before beginning an experiment, the temperature of atoms
in the dipole trap is measured using the time-of-flight tech-
nique. For the experiments shown here the temperature was
found to be T = 40 μK. Due to the geometry of our setup the
temperature is only measured in the directions orthogonal to
the conveyor axis. The initial longitudinal motional temper-
ature before transport is taken to be equal to the transverse
motional temperature measured in this way.

After atoms are loaded into the lattice, frequency ramps
are applied to the AOMs in order to produce a frequency dif-
ference � f ≡ f1 − f2 between the counterpropagating lattice
beams, where f1 and f2 are the AOM driving frequencies.
Starting from a common value of f1 = f2 = 80 MHz, one of
the frequencies is shifted up while the other is shifted down.

FIG. 1. Optics layout for the optical conveyor experiment.

The intensity maxima of the lattice then move with velocity
v = λ� f /2, enabling the lattice to carry the atoms into the
field mode of the fiber cavity [11,28]. This setup has been
designed for future experiments in quantum networking [38],
though for the present work we do not make use of the cavity.
The AOMs are used in a single-pass configuration to minimize
optical losses. Their crystal facets are imaged onto each other
by the focusing optics, and the modulators are oriented such
that the two counterpropagating beams remain overlapped
when a frequency ramp is applied. The setup of the conveyor
optics is illustrated in Fig. 1.

Direct digital synthesizers’ frequency ramps are imple-
mented in discrete steps, the size and frequency of which
can strongly affect the performance of the optical conveyor.
In order to reach a wider range of stepping frequencies, we
operate our DDSs in random access memory (RAM) mode. In
this mode a list of output frequencies, amplitudes, or phases
is stored in memory local to the DDS chip and can then be
played back at rates of up to 250 MHz. Magneto-optical trap
cooling light frequencies and intensities, magnetic fields, ex-
periment timings, and DDS amplitudes and frequency ramps
are controlled using hardware and software made available
through the ARTIQ project [39].

At the beginning of each measurement 87Rb atoms are
collected in a MOT for 350 ms. They are then loaded into
the optical lattice, while the detuning of the cooling light is
gradually increased over the course of 2.5 ms. The cooling
light is then switched off and the relevant motional experiment
is performed. Digital control of the AOM driving frequencies
allows us to apply almost any arbitrarily shaped velocity
profile to the conveyor. We perform experiments using both
triangle- and sine-shaped profiles, illustrated in Fig. 2. After
the experiment, retention is measured by turning on the MOT
cooling light and imaging the fluorescence using an EMCCD
camera (Andor Luca).

Whereas for this work we are concerned primarily with
the effects of the transport process, in fact the retention in
the optical lattice depends also on various other sources of
heating, including technical noise and beam pointing instabil-
ities [34,35]. In order to remove these effects from the data
each experiment is repeated twice: once with the lattice held
stationary for the entire measurement and a second time with
the conveyor moving according to the predetermined pattern.
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FIG. 2. Triangle and sine velocity profiles for the optical con-
veyor. The parameter �t indicates the total one-way travel time and
vmax is the maximum velocity during transport.

The retention for the second experiment is then normalized
against that of the first. Data acquired using this procedure are
presented in Sec. IV.

III. SIMULATION

Here we review the details of our quantum simulation for
modeling retention and heating in an optical conveyor. Our
goal is to develop a 1D model that correctly accounts for
effects of the 3D atomic motion. We begin with the full 3D
potential of our optical lattice

Ufull (x, y, z) = −Uf,0(z) cos2(kz)

× e−2[x2/w2
x (z)+y2/w2

y (z)], (1)

where k = 2π/λ is the wave number of the dipole trap laser
with λ = 1064 nm, z is the longitudinal coordinate, and x and
y are the transverse coordinates. The beam waists in the two
transverse directions wx(z) and wy(z) and the depth of the
lattice Uf,0(z) are in general functions of the longitudinal posi-
tion z. However, we assume here for simplicity that transport
distances are much smaller than the Rayleigh length of the
trapping fields, so these can all be approximated by constants.
For larger distances the variations as a function of z may need
to be taken into account.

Next we reduce the problem down to a single dimension.
However, it is not sufficient simply to neglect the transverse
degrees of freedom. Because of transverse motion the time-
averaged values of x2 and y2 are generally greater than zero.
This leads to a reduction in the effective depth of the potential
as seen by the longitudinal motion of the atoms, due to the
presence of the exponential in Eq. (1). The effective potential
depth that is obtained after taking this reduction into account
we call U0. We treat U0 as a free parameter of the model. Later
in Sec. IV we discuss how its value can be determined.

As an additional simplification we neglect all of the po-
tential wells of the periodic lattice except for one, in order to
make the model more amenable to numerical simulations. We
are left with the 1D potential

U (z) = −U0�(z) cos2(kz), (2)

with �(z) ≡ Hs(z + π/2k) − Hs(z − π/2k), where Hs de-
notes the Heaviside step function. Close to the ground state
this potential can be approximated by that of a harmonic

oscillator with angular frequency ω0 = k
√

2U0/m. Note that
the true lattice potential admits of an energy-level band struc-
ture, whereas the potential of Eq. (2) supports only a finite
number of discrete eigenstates. Simplifying the lattice to a
single site carries with it the risk of incurring errors due to the
neglect of the complex level structure within the bands [34].
Effects of the finite bandwidths can nevertheless be reintro-
duced phenomenologically by including a line broadening
mechanism such as dephasing, as will be done later in this
section.

The time-independent Schrödinger equation is then solved
to find the eigenstates and eigenenergies of an atom trapped
in the potential U (z). From the finite number N of bound
energy levels, the lowest Neff are chosen to be included in
the calculation. Here Neff is treated as a free parameter when
fitting to experimental data. An initial density matrix ρinit is
constructed in the basis of these eigenstates with

ρinit =
Neff∑
i=1

pi|ψi〉〈ψi|, (3)

where |ψi〉 is the ith eigenstate and the pi are the eigenstate
occupation probabilities determined by the initial thermal
state.

The time evolution of the system is calculated using prop-
agator matrices. The discrete velocity boosts resulting from
the digital implementation of the AOM frequency ramps are
simulated by repeatedly applying an operator Tb(δv) in a
series of steps, where the operator is a function of the size of
the velocity boost δv given to the trap during that step. These
operators are not trace preserving, which accounts for the fact
that each boost has some chance to eject the atom from the
trap.

The matrix elements of Tb(δv) are calculated with the inner
product

Tb(i, j)(δv) =
∫

ψ∗
i (z)ψ j (z)e−ımδv·z/h̄dz, (4)

where m is the mass of a 87Rb atom. The minus sign in
the exponent accounts for the fact that the reference frame
receives the boost by δv rather than the atom. In general, δv is
not constant over the course of an experiment, but calculating
Tb for every relevant value of δv in this case would be too
computationally intensive. Instead, we evaluate Eq. (4) for a
reasonably large number of values of δv, usually 60 of them,
and interpolate between the results. The differences between
operator matrix elements found in this way and those obtained
by direct calculation are typically of order 10−6 or less, which
is sufficiently precise for our purposes. For the time between
velocity boosts the dynamics is governed by the Hamiltonian
for a single atom in a stationary lattice site,

H =
Neff∑
i=1

Ei|ψi〉〈ψi|, (5)

where Ei is the energy of eigenstate i. The motion during
these periods is calculated by applying the propagator for free
evolution,

Tf(δt ) = eıHδt/h̄, (6)
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with δt = 1/ fDDS the time step between velocity boosts due
to DDS frequency updates and fDDS the DDS update rate. At
this point it is straightforward to write the density matrix ρi

after step i in terms of the density matrix ρi−1 at the end of the
previous step,

ρi = Tf(δt )Tb(δvi )ρi−1T †
b (δvi )T

†
f (δt ). (7)

Here δvi is the velocity boost given during step i. This rela-
tionship can be applied recursively to determine the density-
matrix evolution over the course of the full motion. However,
the model so far accounts only for the effects of 1D motion in
the longitudinal direction.

In order to accurately describe the motion of atoms in a
real 3D potential the treatment must be expanded. In general,
motion in a 3D anharmonic trap involves some degree of
mixing between the motional states for the three dimensions.
For a typical 1D optical lattice this effect is partly suppressed
by the large difference between the longitudinal and trans-
verse trap frequencies. In this case, motion in the transverse
directions has the effect of inducing a slow variation onto ω0

and onto the effective trap depth U0, which acts as a kind of
line broadening. We model this by applying dephasing when
calculating the evolution of the 1D motional density matrix.

Dephasing can also be used to account partly for the
effects of the finite bandwidths that appear in the energy-level
structure of a 1D lattice, as was discussed previously, though
in the case of our experiment we suspect that this effect is
smaller than that of the transverse motion. Collisions between
trapped atoms can be accounted for as well; however, given
the densities used in our experiment, the typical rate for these
collisions is on the order of a few hertz [40]. This is negligible
in comparison with the transverse motional effects.

Applying the dephasing in the simplest possible way, by
using an identical dephasing rate for all states, improves
greatly the agreement between the theoretical calculation and
experimental data. However, the best fits have been obtained
using a heuristic model in which the dephasing rate is taken
to be larger for states with larger departure from harmonicity.
The modeled dephasing rate γi for state |ψi〉 with energy Ei is
given by

γi =
{

2γ0
h̄ω0−Ei+Ei−1

max j [h̄ω0−Ej+Ej−1] , i > 1

2γ0
h̄ω0−2E1

max j [h̄ω0−Ej+Ej−1] , i = 1,
(8)

where max j[· · · ] represents the maximum over j and γ0 is
a free parameter representing roughly the average dephasing
rate over all states. A dephasing matrix Md is constructed with
elements

Md(i, j) =
{

e−(γi+γ j )δt/2, i �= j
1, i = j.

(9)

We apply the dephasing by performing element-by-element
multiplication of Md with the density matrix ρ after each time
step δt . This accounts for the exponential decay of coherence
that would be obtained from a typical master equation solution
with dephasing terms. With the inclusion of this effect the
relation for the evolution becomes

ρi = Tf(δt )Tb(δvi )ρi−1T †
b (δvi )T

†
f (δt ) × Md, (10)

where the multiplication sign indicates element-by-element
multiplication. As with the trap depth U0, we assume that
γ0 remains constant over the course of the motion. This may
not be valid when atoms are transported over distances much
larger than the Rayleigh length, in which case it might be
necessary to incorporate a time-dependent value for γ0.

In most cases the method described above is sufficient
to predict the retention of an atom in our optical conveyor.
However, some modification is required in the case of very
large accelerations for which the potential (2) is strongly
perturbed. The density matrix that we use is constructed
from the eigenstates of a stationary lattice site, and for a
strongly accelerated lattice these are no longer the correct
eigenstates. The dephasing must be applied in the eigenbasis
of the accelerated potential. Otherwise it has the undesirable
effect of mixing together the populations of the accelerated
eigenstates, adding a nonphysical source of heating.

To determine the correct basis we begin by writing the
effective potential for a single accelerating lattice site

Ua(z) = −U0�(z) cos2(kz) + maz, (11)

where a is the acceleration of the lattice. One effect of the
addition of the acceleration term in Eq. (11) is a shift of the
position of the trap minimum by an amount

�z(a) = − 1

2k
arcsin

(
ma

kU0

)
. (12)

Here �z is the final position of the potential minimum, since
the stationary lattice is defined so that its minimum occurs at
z = 0. To approximate the accelerated basis states we use the
eigenstates of the original stationary potential after displace-
ment by �z, ψ ′

i (a, z) ≡ ψi(z − �z(a)) for i ∈ {1, . . . , Neff},
with eigenfunctions of the accelerated Hamiltonian desig-
nated by a prime. We then calculate an operator Tx(a) to
transform between bases. Its matrix elements are determined
by

Tx(i, j)(a) =
∫

ψ ′∗
i (a, z)ψ j (z)dz. (13)

The acceleration a is proportional to δv, so in general it is not
constant over the course of an experiment. In order to make
efficient use of computational resources we calculate Tx(a)
for a modestly large number of values of a and interpolate
between the results, similar to what was done in the case of
Tb(δv).

The simulation begins by assuming an initial thermal dis-
tribution at a temperature of 40 μK and proceeds to step
through each of the discrete velocity boosts for the given
experiment. During each step the operations performed are as
follows. First, the lattice velocity boost transformation Tb(δv)
is applied, followed by the free evolution propagator for a time
of length δt , Tf(δt ). After this the basis is transformed into the
frame of the accelerating lattice. Then the dephasing matrix is
applied using element-by-element multiplication and finally
the frame is transformed back to the basis of the stationary
lattice. Including all terms, the relation for the evolution of
the density matrix can be written as

ρi = T †
x (ai ){[Tx(ai )Tf(δt )Tb(δvi )ρi−1

· T †
b (δvi )T

†
f (δt )T †

x (ai )] × Md}Tx(ai ). (14)
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Here ai = δvi/δt is the effective acceleration during step i. At
the end of the simulation the diagonal elements of the final
density matrix are stored for analysis.

IV. THEORY AND EXPERIMENT COMPARISON

For our experiments, an ensemble of atoms is loaded into
the optical conveyor and transported back and forth ten times
across a distance of �x = 0.2 mm. The short distance is used
in order to allow testing of a larger range of DDS update rates
fDDS, given the limited RAM storage space of our DDSs, and
also to ensure that �x � zR,x/y. The multiple trips serve to
increase the losses, particularly for the triangle wave velocity
profile which introduces additional heating with each change
in the direction of acceleration. This helps to make the loss
features easier to measure and to compare with theory.

To begin the experiment, a set of measurements is per-
formed to determine the retention for a fixed value of the
one-way trip time �t but variable fDDS. After this another set
of measurements is made with variable �t but a fixed number
of DDS update steps Nsteps. The fixed number of steps is used
in this case, rather than a fixed update frequency, for simplicity
because of the details of the experimental implementation.
The relationship between retention and �t is measured twice,
once with a triangle-shaped velocity profile and again with
a sine-shaped profile. Each experiment is repeated 125 times
and results are averaged to improve the signal-to-noise ratio.

A 1D lattice dipole trap such as ours can sustain a max-
imum acceleration of amax = U0k/m before the minima of
the trapping potential vanish [28]. For our experiment amax =
1.43 × 105 m/s, using the effective trap depth U0/kB =
254 μK obtained from the simulation parameters, with kB the
Boltzmann constant. For a sine-shaped velocity waveform the
acceleration amax is reached at a transport time of �tmin =
0.094 ms. When varying �t , values close to this number were
chosen in order to probe the conveyor’s performance near the
absolute limit of its speed.

After the measurements, our numerical model is tested
against the experiment. The model has three free parameters:
the effective trap depth U0, the number of included bound
states Neff , and the dephasing parameter γ0. In the following
we will briefly consider each of these parameters and offer
some guidelines for optimizing their values.

A typical procedure for measuring the effective depth U0 of
an optical trap involves the introduction of some parametric
excitation and subsequent measurement of trap retention for
a variety of excitation frequencies. In our case this is done
by varying the DDS update frequency fDDS. Typically the
trap frequency ftrap = ω0/2π is inferred by identifying the
fundamental and/or harmonic resonances by inspection and
the trap depth is calculated from ftrap. However, this procedure
produces only an approximate result, as it neglects the anhar-
monicity of the trap. In particular, for an optical lattice the
losses tend to occur for excitation frequencies fDDS somewhat
smaller than ftrap. This results from the fact that the energy
spacing between adjacent levels decreases with increasing
energy. When fDDS = ftrap the parametric excitation mixes
together the populations of the lower-lying states, but it has
little effect on the more energetic states because of the larger
detuning. It is only when fDDS < ftrap that significant losses

are observed, since atoms in higher-lying states are more
easily excited out of the lattice. This fact was noted as well
in [34].

A robust method for determining the value of U0 is to
infer it approximately by inspection of measured parametric
excitation data and then to refine the number more carefully
by comparing the data with simulation results. It should be
kept in mind though that the effective trap depth U0 obtained
by fitting our model to measured data will in general be
smaller than the full depth Uf,0 of the actual optical trap. This
results from the additional energy contained on average in the
transverse motional degrees of freedom, as was mentioned
in Sec. III. The size of the discrepancy will vary from one
experiment to another due to the differing trap geometries and
levels of transverse excitation. For our system, a comparison
with 3D Monte Carlo simulations indicates that Uf,0 is about
35% larger than our fitted value for U0.

When optimizing Neff , for our experiment the best agree-
ment is typically obtained using values close to Neff ≈ 0.85N .
The need to use Neff < N arises from the nonzero transverse
motion of atoms. As was mentioned in Sec. III, motion
in the transverse directions produces slow variations of the
effective trap frequency ω0 and depth U0. This leads to an
effective dephasing, as was discussed previously, but also to
a reduction in the effective number of bound states. Higher-
lying longitudinal bound states which exist when the atom is
close to the optical axis can disappear as it moves farther away.
Atoms excited into these states quickly escape from the trap,
so the simulation more accurately reproduces experimental
data by neglecting them. Quantum tunneling may also play
a role in the depletion of the populations of the more highly
excited states [34]. Because of the relatively short timescales
of our experiments though, and because a large number of
successive tunneling events would be required to remove an
atom from the lattice, we suspect that this contribution is
smaller in our case.

The dephasing parameter γ0 can be determined empiri-
cally, but it is helpful to first make an order-of-magnitude
estimate. To do this we start by looking at the phase rela-
tionships between energy eigenstates, with some simplifying
assumptions. Coherence between the lattice eigenstates is
maintained when the relative phases between adjacent states
obey the relationship

�φ(i,i−1) ≡ φi(t ) − φi−1(t ) = ω0t/h̄. (15)

We have assumed a harmonic potential here for simplicity.
Due to transverse motion the actual phases gradually wander
away from these values. To approximate the dephasing time
τ ≡ 1/γ0, we estimate the amount of time required for the ac-
tual relative phase and the ideal one of Eq. (15) to accumulate
a difference of about π , given our experimental conditions.
Instead of treating the full 2D transverse trajectory for this,
we consider only a single dimension of motion. This motion
will introduce oscillations onto ω0, which then becomes time
dependent. Suppose that these oscillations are approximately
sinusoidal, so that ω(t ) = ω0 + �ω(t ), with

�ω(t ) ≈ �ω0 sin(2ωrt ), (16)
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where ωr ≈ 2π × 1.6 kHz is the angular frequency for trans-
verse motion in our lattice. The amplitude �ω0 now needs to
be determined.

The transverse motional energy we take to be equal to kBT ,
with T = 40 μK the measured temperature of the atoms. The
transverse motion causes the effective longitudinal trap depth
to oscillate about its average value. The average we take to
be equal to U0, which is only approximately correct but is
good enough for an initial estimate. Then the minimum and
maximum values for the trap depth are U0,min ≈ U0 − kBT/2
and U0,max ≈ U0 + kBT/2. Subsequently, the trap frequency
ω(t ) oscillates between ωmax = k

√
2U0,max/m and ωmin =

k
√

2U0,min/m, so we can use �ω0 = ωmax − ωmin. Finally, we
approximate τ by integrating Eq. (16),

π ≈
∫ τ

0
|�ω(t )|dt, (17)

and then take γ0 ≈ 1/τ . The absolute value is used to ensure
that a solution always exists. For our experiment we obtain
γ0/2π ≈ 1.6 kHz, which is very close to the final fitted value
of 1.67 kHz. Given the number of approximations used, we
suspect that the very good agreement between these two
numbers is mostly accidental. In general, we expect them to
agree roughly to within a factor of 2.

After approximate values have been obtained for each
of the simulation parameters, fine adjustments are made by
comparing simulation results with the measured retention vs
fDDS data. Once the best parameter values have been found,
a second set of simulations are run using these predetermined
values. In this second set we calculate retention as a function
of the one-way travel time �t , for both sine-shaped and
triangle-shaped velocity waveforms.

Our experimental measurements and fitted simulation re-
sults are shown in Fig. 3. The simulation obtains quite good
quantitative agreement with experiment. This success it owes
largely to the parameter γ0, which compensates for transverse
motional effects. By contrast, simulations with γ0 = 0 pro-
duce very poor agreement; for example, no clear resonances
are observable in plots of retention vs fDDS.

The measurement and simulation results agree that the
retention of the sine velocity profile noticeably outperforms
the triangle profile. In our case, for a fixed retention of 90%
the sine profile allows transport to be performed about 25%
faster than the triangle. Simulations tested using a range of
other smooth velocity profiles showed at best very similar
performance to that of the sine. So, though the sine shape may
not be quite optimal, it seems that it will be sufficiently close
for most purposes.

V. DDS UPDATE RATE AND PARAMETRIC HEATING

In addition to the comparison of velocity profiles, our
experimental and theoretical studies can also be used to de-
termine the effect of the DDS update rate fDDS on parametric
heating. From Fig. 3 we see that in order to avoid retention
loss from parametric heating, the update frequency should be
chosen to avoid the fundamental trap resonance and any of
its subharmonics. Choosing fDDS � 1.5 ftrap seems generally
to be quite safe. Note that parametric resonance losses do
not occur for fDDS ≈ 2 ftrap, as would be expected for heating
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FIG. 3. Experiment and simulation results. The two agree very
well. (a) Retention vs DDS update frequency fDDS, using a sine-
shaped velocity waveform. The one-way trip time is held constant
at �t = 1 ms. The vertical dashed line marks the location of the
fitted trap frequency ftrap = 207 kHz. (b) Retention vs �t , with
the total number of DDS frequency steps held constant at Nsteps =
200. Note that the simulations shown in (b) are performed without
any adjustment of the free parameter values found from (a). The
parameter values used here are U0/kB = 254 μK, Neff = 28, and
γ0/2π = 1.67 kHz.

caused by oscillations of the trap depth [34]. This results
from the fact that the velocity boosts are directional, so
discretization effects from multiple boosts performed over the
course of one oscillation cycle tend to cancel. Also parametric
interactions with the transverse motional frequencies are ex-
pected to be negligible, since the trap velocity changes only in
the longitudinal direction.

For the case in which one is concerned primarily with
heating rates rather than retention losses, the situation can
be slightly different. Figure 4 illustrates the difference by
plotting the simulated final motional excitation along with the
simulated retention data from Fig. 3. In order to produce the
plot, the average motional energies are calculated from the
final density matrices and then converted into an effective
temperature. The motional temperature increases only on
the high-frequency side of each parametric resonance, while
cooling occurs on the low-frequency side. This results from
the anharmonicity of the trap and was used in [26] to cool
a cloud of trapped atoms by forced parametric excitation. If
the goal is to to avoid an increase of motional temperature,
either the DDS update frequency should be chosen such that
fDDS � 1.5 ftrap or it may be placed near the low-frequency
side of a parametric resonance in retention loss.

063411-6



SPEED, RETENTION LOSS, AND MOTIONAL HEATING … PHYSICAL REVIEW A 101, 063411 (2020)

0 100 200 300 400
0

50

100

150

0

0.2

0.4

0.6

0.8

1

FIG. 4. Retention and final motional temperature for the simula-
tion of Fig. 3(a). The temperature increase due to parametric heating
occurs only on the high-frequency side of a parametric resonance. On
the low-frequency side we observe cooling instead. The horizontal
dotted line indicates the initial motional temperature of the atoms.

Retention is an important figure of merit for transport
systems in general. However, in more recent experiments
it has become increasingly important to maintain a high
population fraction of atoms in the motional ground state of
a trap [41–45]. In some experiments it will be possible to
perform ground-state cooling after transport has been com-
pleted, so maintaining a high ground-state population during
transport will be unnecessary. However, this will not always
be the case. For instance, it may be that optical access to
the site of a particular experiment is limited or that other
atoms or quantum systems are present at the experiment site
that would be disturbed by the cooling process. Future work
for our experiment includes plans to implement ground-state
cooling, though at present our system does not have the ability
to probe motional ground-state populations. In the meantime
these studies can be done using our theoretical model.

VI. GROUND-STATE POPULATIONS

Having validated our model empirically, we now use it
to study ground-state populations of atoms transported in an
optical conveyor. The situation of interest to us is that of
an atom which is cooled to the motional ground state of an
optical lattice in one position and then transported to another
position for use in an experiment. For convenience we take
the transport distance to be equal to the one used in the
preceding section, �x = 0.2 mm. We repeat the simulations
shown in Fig. 3(b), but rather than using a thermal state as
the initial condition we assume that the atom begins in the
longitudinal motional ground state. Also, this time the atom
is moved in a single direction only once, rather than being
shuttled back and forth ten times, since this is the situation
relevant for experiment. For a performance metric we use the
final ground-state population after transport. The results of
simulations using triangle and sine velocity profiles are shown
in Fig. 5.

The ground-state population is exceptionally well pre-
served by the sine velocity profile, until the maximum accel-
eration amax is reached with �t = 0.094 ms. By comparison,
the triangle profile performs quite poorly. Discontinuities in
the acceleration perturb the state at three separate points in the
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FIG. 5. Simulated final ground-state populations after an atom
is initialized in the motional ground state and then moved over a
distance of �x = 0.2 mm. The simulation parameters are the same
as those used for Fig. 3(b).

transport procedure. Interference between these perturbations
introduces population oscillations between the ground and
first few excited states. These oscillations can lead to an in-
creased sensitivity to slight changes in optical trap parameters,
and even at an interference maximum the triangle waveform
is still outperformed by the sine.

The oscillations apparent in Fig. 5 do not appear in
Fig. 3(b) for two reasons. First, the anharmonicity of the
trap tends to prevent any coherent population oscillations
from being directly observed in retention data. Second, the
dephasing rates of the higher-energy motional states in our
model are much larger than those of the less highly excited
states. Dephasing of the higher-lying states tends further to
suppress the visibility of any population oscillations in the
retention.

Using data from the simulation of Fig. 5, we can also
compare the amount of atomic motional excitation acquired
by the two velocity profiles. The results are shown in Fig. 6.
The sine shape causes very minimal excitation, whereas the
triangle excites the atom by up to 100 μK, roughly equivalent
to 10 times the energy between adjacent trap states. For longer

0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

FIG. 6. Simulated final motional temperature after an atom is
initialized in the motional ground state and then moved by �x =
0.2 mm. The parameters are the same as those of Fig. 3(b). The
energy between adjacent trap eigenstates corresponds to about 10 μK
in this example.
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transport durations though the heating caused by either profile
becomes negligible. So if experimental circumstances allow
motion to be accomplished slowly enough, then a triangle-
shaped waveform may still be adequate.

VII. CONCLUSION

We have performed experimental and theoretical studies of
retention and heating in an optical conveyor belt. We have
compared the performances of triangle-shaped and smooth
velocity profiles and also briefly examined parametric losses
and heating caused by the DDS update rate. We found that a
smooth sine-shaped profile performs significantly better than
does a triangle shape. The sine profile noticeably increases
retention and decreases motional excitation for short transport
times, approaching the absolute limit imposed by the depth
and geometry of the trap. Using our theoretical model, we
showed that the performance advantage of the smooth sine
profile is even greater when transporting atoms in the motional

ground state. A range of other smooth velocity profiles was
studied as well, besides the sine shape, but these were not
included in this work since their performance was found to
be very similar to that of the sine. The degree of motional
excitation seems to have only a weak dependence on the
details of the velocity waveform used, as long as the changes
in acceleration occur smoothly from the perspective of the
atom.
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