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Smooth bang-bang shortcuts to adiabaticity for atomic transport in a moving harmonic trap
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Bang-bang control is often used to implement a minimal-time shortcut to adiabaticity for efficient transport
of atoms in a moving harmonic trap. However, drastic changes of the on-off controller, leading to high
transport-mode excitation and energy consumption, become infeasible under realistic experimental conditions.
To circumvent these problems, we propose smooth bang-bang protocols with near-minimal time, by setting the
physical constraints on the relative displacement, speed, and acceleration between the mass center of the atom
and the trap center. We adopt Pontryagin’s maximum principle to obtain the analytical solutions of smooth
bang-bang protocol for near-time-minimal control. More importantly, it is found that the energy excitation and
sloshing amplitude are significantly reduced at the expense of operation time. We also present a multiple shooting
method for the self-consistent numerical analysis. Finally, this method is applied to other tasks, e.g., energy
minimization, where obtaining smooth analytical form is complicated.
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I. INTRODUCTION

Precise control and manipulation of ultracold atomic sys-
tems without excitation or loss are challenging and impor-
tant for the practical applications in atom interferometry,
quantum-limited metrology, and quantum information pro-
cessing [1–8]. For example, protocols with existing adiabatic
methods have been well developed to transport cold atoms by
various traps [9–17]. However, the operation time required for
approximating adiabatic processes is much longer than deco-
herence time, which may ruin the desired results in practice.
To remedy it, several approaches, including but not limited to
Fourier method [18,19], optimal control theory [20–22], and
machine learning [23,24], have been attempted to reduce the
timescales beyond the adiabatic limits.

Over the last decade, the concept of “shortcuts to adiabatic-
ity” (STA) [25] provides an alternative approach for speed-
ing up adiabatic processes without residual energy excitation
in various quantum systems (see review articles [26,27]).
The most common methods include fast-forwarding scaling
[28,29], counterdiabatic driving [30,31], and invariant-based
inverse engineering [32–36], in which the adiabatic transport
is accelerated by modifying the trap trajectory or introducing
auxiliary interaction to compensate the inertial force. Among
them, inverse engineering, combined with perturbation theory
or/and optimal control, is capable of designing the opti-
mal shortcuts with transport time [37,38], energy excitation
[39], anharmonic effect [40–42], fluctuating trap frequency,
and position [43–45]. As expected from Pontryagin’s maxi-
mum principle, bang-bang control is indeed the time-optimal
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solution of atomic transport with harmonic traps [37,38].
However, it has been observed that the abrupt change of the
control function at the switching points has severe conse-
quences for practical implications. For instance, as seen in
Ref. [46], this leads to the excitation of dynamical modes
around the switching points which violates the fundamental
assumption of STA methods of constraining the system in a
particular mode during the evolution. In addition, the onset
of step function entails sudden control over position, velocity,
and acceleration of the trap by a spatial light modulator, which
makes the experiment complicated. Therefore an effective
and continuous control of the physical constraints of trap
velocity [47] or acceleration is essential to suppress the energy
excitation by protracting the process as a tradeoff.

In this paper, we present a study on near-minimal-time
transport of cold atoms with a moving trap by combin-
ing inverse engineering and optimal control theory. Previ-
ous research [37] suggests that the bounded controller for
time-optimal transport should be of bang-bang type, which
maximizes the control Hamiltonian following Pontryagin’s
maximum principle. Here we focus on the smooth bang-bang
trajectories by setting up more constraints that bound the first-
and second-order derivatives of the control input, describing
the relative velocity and acceleration. We verify that the
energy excitation and sloshing amplitude can be significantly
reduced by smooth bang-bang protocols, while the minimal
timescale is slightly increased. Since the analytical expres-
sions of trap trajectories become more complicated when the
higher-order derivatives of the controller are bounded, we
introduce a multiple shooting method [48], as a numerical
approach, to confirm the analytical results. Additionally, this
numerical method can be further exploited to minimize other
target functionals, e.g., time-averaged potential energy, where
finding an analytical solution might pose difficulties. Finally,
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FIG. 1. Schematic diagram of STA transport of a 87Rb atom in
a moving harmonic trap, in which the relative displacement between
trap center and mass center of the cold atom is changed from negative
and positive values, for instance, in bang-bang control. The controller
is bounded by δ, transporting the atom for a distance of d within
minimal time t f .

we emphasize that our results can be extended to other scenar-
ios [49–53] without loss of generality.

II. HAMILTONIAN AND MODEL

For simplicity, we consider the time-dependent Hamilto-
nian that describes the transport of a single atom trapped in
a rigid harmonic trap (see Fig. 1), with center q0(t ) ≡ q0 and
trap frequency ω0, which reads as

H (t ) = p̂2

2m
+ 1

2
mω2

0[q̂ − q0(t )]2, (1)

where p̂ and q̂ are momentum and position operators. Equa-
tion (1) provides a good approximation for optical dipole
interaction in low temperatures as one could easily neglect
the effect of the anharmonic terms [41,46]. This single-
particle Hamiltonian possesses a quadratic-in-momentum
Lewis-Riesenfield invariant [32,54–56],

I (t ) = 1

2m
( p̂ − mq̇c)2 + 1

2
mω2

0[q̂ − qc(t )]2, (2)

where the parameter qc(t ) ≡ qc satisfies the auxiliary equation

q̈c + ω2
0(qc − q0) = 0, (3)

to guarantee self-consistency because of the invariant condi-
tion

dI (t )

dt
≡ ∂I (t )

∂t
+ 1

ih̄
[I (t ), H (t )] = 0. (4)

Coincidentally, Eq. (3) has the same structure of Newton’s
equation that governs the dynamics of a classical harmonic
oscillator. Transport modes are described as

ψn(q, t ) = ei mq̇cq
h̄ φn(q − qc), (5)

where φn are the eigenstates of a static harmonic oscillator.
The solution of the time-dependent Schrödinger equation,
ih̄∂t�(q, t ) = H (t )�(q, t ), is constructed as the superposition
of transport modes, �(q, t ) = ∑

n cn exp(iαn)ψn(q, t ), where
cn are the time-independent coefficients, and ψn(q, t ) are the
eigenstates of dynamical invariant I (t ). Here the eigenval-
ues λn, satisfying I (t )ψn(t ) = λnψn(t ), are constants and the
Lewis-Riesenfield phase αn is calculated as

αn(t ) = −1

h̄

∫ t

0

[(
n + 1

2

)
h̄ω0 + 1

2
mq̇2

c

]
dt ′. (6)

It is noted that all transport modes are orthogonal to each other
at any time, being centered at qc(t ).

For a transport mode, the instantaneous average energy,
E (t ) = 〈�(t )|H (t )|�(t )〉, is calculated as [37]

E (t ) = h̄ω0

(
n + 1

2

)
+ m

2
q̇2

c + m

2
ω2

0(qc − q0)2, (7)

where the instantaneous average potential energy reads

V (t ) = h̄ω0

(
n + 1

2

)
+ Ep. (8)

The first term refers to constant “internal” contribution. The
second term Ep = mω2

0(qc − q0)2/2 shares the form of a
potential energy for a classical particle. Intuitively, high po-
tential energy results in easy escape of a cold atom from
the anharmonic trap in practice, reducing the effectiveness of
STA [41]. In order to characterize the energy excitation for
the whole process, we finally write down the time-averaged
potential energy,

Ēp ≡ 1

t f

∫ t f

0
Epdt = 1

t f

∫ t f

0

m

2
ω2

0(qc − q0)2dt, (9)

as a consequence.
In addition, we are also interested in sloshing amplitudeA,

A(t f ) =
∣∣∣∣
∫ t f

0
q̇0(t )e−iω0t ′

dt ′
∣∣∣∣, (10)

which is the Fourier component at the trap frequency of
the trap velocity trajectory. Nullifying the sloshing amplitude
provides the optimal trajectory in the anharmonic case, thus
improving the performance of STA in a realistic experiment
[46].

In order to design the optimal trajectory of the harmonic
trap by inverse engineering as usual, we suppose that the
harmonic trap moves from q0(0) = 0 to q0(t f ) = d at finite
shortened time t f . To avoid final energy excitation, boundary
conditions

qc(0) = 0; q̇c(0) = 0; q̈c(0) = 0, (11)

qc(t f ) = d; q̇c(t f ) = 0; q̈c(t f ) = 0 (12)

are imposed along with Eq. (3). In addition, the boundary
conditions

...
q c(0) = 0;

...
q c(t f ) = 0 (13)

are introduced to eliminate sloshing amplitude A(t f ) for
encapsulating the energy in transport modes. Here we give
an example of a simple polynomial Ansätz, interpolating the
center of transport modes,

qc(t ) = d[35s4 − 84s5 + 70s6 − 20s7], (14)

originally proposed by Ref. [46], with s = t/t f . Once qc(t )
and transport time t f are fixed, the optimal trajectory of
the harmonic trap can be given by Eq. (3). However, we
notice that this Ansätz is not optimized enough, which will
be analyzed by numerical results below.
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III. SMOOTH BANG-BANG CONTROL WITH
NEAR-MINIMAL TIME

In this section, we use Pontryagin’s maximum principle
[57] for solving the near-minimal-time transport problem,
leading to smooth bang-bang control. In general, the time-
dependent control function u(t ) for minimizing the cost func-
tional,

J (u) =
∫ t f

0
g[x(t ), u]dt, (15)

can be solved by constructing the following control Hamilto-
nian:

Hc[p(t ), x(t ), u] = p0g[x(t ), u] + pT · f[x(t ), u], (16)

where for the dynamical system ẋ = f[x(t ), u] the extremal
solutions satisfy the canonical equations

ẋ = ∂Hc

∂p
, ṗ = −∂Hc

∂x
. (17)

Here the corresponding adjoint state p formed by Lagrange
multipliers, where p0 < 0 can be chosen for convenience, and
all components are nonzero and continuous, is such that Hc

reaches its maximum at u ≡ u(t ) for almost all 0 � t � t f .
More specifically, to find the time-optimal problem, we define
the cost functional

JT =
∫ t f

0
1dt, (18)

and a control Hamiltonian,

Hc[p(t ), x(t ), u] = p0 + pT · f[x(t ), u], (19)

where the dynamical system ẋ = f[x(t ), u] is governed by
Eq. (3).

A. Bang-bang time-optimal control

Let us first review the time-optimal control with bounded
relative displacement to establish the background for analyz-
ing smooth bang-bang control. By introducing a new notation,

x1 = qc, x2 = q̇c, u(t ) = qc − q0, (20)

we reformulate Eq. (3) in the language of optimal control
theory as follows:

ẋ1 = x2, (21)

ẋ2 = −ω2
0u(t ), (22)

where x1,2 are the components of state vector x, and u(t ) is the
scalar control function. Due to the anharmonicity of traps [41],
relative displacement u(t ) should be bounded by |u(t )| � δ.
Hence, the time optimization problem essentially comes down
to the cost functional JT , [see Eq. (18)], under the constraint
|u(t )| � δ. With the boundary conditions, u(0) = u(t f ) = 0,
the transport process occurs between x1(0) = 0 and x1(t f ) =
d while x2(0) = x2(t f ) = 0. The control Hamiltonian (19) for
such choices can be written as

Hc(p, x, u) = p0 + p1x2 − p2ω
2
0u(t ), (23)

(a)

(b)

FIG. 2. (a) Bang-bang-type controller u(t ) (solid red) and
smooth bang-bang controller u(t ) (dashed blue) with a constrained
relative displacement δ and velocity ε. (b) Smooth trajectories of
the trap center q0(t ) (solid red) and the mass center qc(t ) of a cold
atom (dashed blue). Parameters: trap frequency ω0 = 2π × 20 Hz;
distance of transporting d = 0.01 m; m = 1.44269 × 10−25 kg, the
mass of 87Rb atoms; the constraint on the relative displacement
δ/d = 0.1; and velocity ε/(dω0) = 0.1. The corresponding near-
minimal time (39) is t f = 58.9 ms, slightly larger than the minimal
time tmin

f = 50.3 ms, given by Eq. (27).

translating canonical equations (17) into a set of costate
equations:

ṗ1 = 0, (24)

ṗ2 = −p1. (25)

Once we solve the costate functions mentioned above, the
time-optimal control function u(t ) of bang-bang type is ob-
tained as

u(t ) =

⎧⎪⎨
⎪⎩

0, t � 0
−δ, 0 < t < t1
δ, t1 < t < t f

0, t f � t

, (26)

where the minimal time is found to be

tmin
f = 2

ω0

√
d

δ
, (27)

with switching point t1 = t f /2. Figure 2(a) illustrates the
bang-bang controller u(t ), where the parameters are chosen
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to correspond to the transport experiment of cold atoms [18],
with trap frequency ω0 = 2π × 20 Hz, transport distance d =
1 × 10−2 m, and the mass of 87Rb atoms m = 1.44269 ×
10−25 kg. Here the constraint on relative displacement δ/d =
0.1 is fixed, therefore the minimal time tmin

f = 50.3 ms. How-
ever, there exist three sudden jumps in the control function
u(t ), leading to infinite relative speed of the trap at switching
points, which could be problematic in the experimental imple-
mentation.

B. Smooth bang-bang control with constrained relative velocity
and acceleration

Motivated by the problem arising from bang-bang control,
we introduce more constraints to cancel the sudden jumps,
ensuring feasibility in experiments as well. A new component
x3 is added into the state vector x, with the relations between
two nearby components being

x1 = qc, x2 = q̇c, x3 = −ω2
0u̇(t ), u(t ) = qc − q0. (28)

Thus, Eq. (3) can be rewritten into the form for solving the
time-optimal control problem as

ẋ1 = x2, (29)

ẋ2 = x3, (30)

ẋ3 = −ω2
0u̇(t ). (31)

The new control Hamiltonian Hc (19) can be updated with the
cost functional JT in Eq. (18),

Hc(p, x, u, u̇) = p0 + p1x2 + p2x3 − p3ω
2
0u̇(t ), (32)

giving new costate equations as

ṗ1 = 0, (33)

ṗ2 = −p1, (34)

ṗ3 = −p2, (35)

which can be solved easily as p1 = c1, p2 = −c1t + c2, and
p3 = −c1t2/2 + c2t + c3 with constants c1, c2, and c3. Based
on Pontryagin’s maximum principle [57], the time-optimal
controller u(t ) maximizes the control Hamiltonian (32) with
the new constraint on the relative velocity, |u̇(t )| � ε. In order
to smooth out the bang-bang control, u̇(t ) can be taken as

u̇(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ε, 0 � t < t1
0, t1 < t < t2
ε, t2 < t < t3
0, t3 < t < t4
−ε, t4 < t � t f

. (36)

After combining the previous constraint on the relative dis-
placement, |u(t )| � δ, the “sudden-jump-free” controller u(t )
becomes

u(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−εt + c1, 0 � t < t1
c2, t1 < t < t2
εt + c3, t2 < t < t3
c4, t3 < t < t4
−εt + c5, t4 < t � t f

, (37)

FIG. 3. Phase diagram of smooth bang-bang control of fast trans-
port with different relative velocity constraints, where the relative
displacement is bounded by δ/d = 0.1, keeping the constraint on
the relative velocity variable. The trajectories with ε/(dω0) = 0.05
(solid red) and ε/(dω0) = 0.1 (dotted black) become much smoother
with larger time t f = 68.7 and 58.9 ms, calculated by Eq. (39),
respectively, as compared to the case of bang-bang control (dashed
blue) t f = 50.3 ms in Fig. 2. Other parameters are the same as those
in Fig. 2.

where c2 = −c4 = −δ, c1 = 0, c3 = −(δ + εt2), and c5 =
εt f .

According to the boundary conditions, the symmetry, and
continuity conditions, one can find four switching points t1,
t2, t3, and t4 with the values of δ/ε, t f /2 − δ/ε, t f /2 + δ/ε,
and t f − δ/ε, respectively. Substituting u(t ) into Eq. (3), and
with boundary conditions [see Eqs. (11) and (12)], we find the
solution of qc(t ) in different time intervals as follows:

qc(t )=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
6ω2

0εt3

1
2ω2

0δ
(
t2 − δ

ε
t + 1

3
δ2

ε2

)
− 1

6ω2
0ε

(
t − t f

2

)3 + ω2
0δ

( t f

2 − δ
ε

)
t − 1

4ω2
0δt f

( t f

2 − δ
ε

)
− 1

2ω2
0δ

[
t2 − ( t f

2 − δ
ε

)
t − 1

3
δ2

ε2 + t2
f

2

]
d − 1

6ω2
0ε(t f − t )3

,

(38)

from which the trajectory of the trap center q0(t ) can be easily
obtained through Eq. (3). After straightforward calculation,
we obtain the near-minimal time as follows:

t f = δ

ε
+ 2

ω0

√
d

δ
+ ω2

0δ
2

4ε2
, (39)

which tends to the minimal time in Eq. (27), when relative ve-
locity is no longer limited, i.e., ε → ∞. Figure 2 demonstrates
the trajectories of trap center and mass center of the atom
with a smoother controller u(t ) at switching points, when
the relative velocity is bounded. Apparently, the constraint
in relative velocity prolongs the time-optimal transport, as
shown in a phase diagram (see Fig. 3), where the trajectory
becomes smoother. To be precise, the transport time increases
from t f = 58.9 to 68.7 ms, when the constraint on the relative
velocity decreases from ε/(dω0) = 0.1 to 0.05, with the same
bounded relative displacement, δ/d = 0.1.

063410-4



SMOOTH BANG-BANG SHORTCUTS TO ADIABATICITY … PHYSICAL REVIEW A 101, 063410 (2020)

Next, we find the near-minimal-time protocol with an
extra constraint condition on the relative acceleration, i.e.,
|ü(t )| � ζ , since the discontinuity of trap speed leads to
infinite acceleration in previous protocols. Therefore, the new
notation x4 = ẋ3 = −ω2

0ü(t ) is added to equations for defining
the control Hamiltonian as

Hc(p, x, u, u̇, ü) = p0 + p1x2 + p2x3 + p3x4 − p4ω
2
0ü, (40)

from which we use canonical equation (17) to obtain the
following costate functions:

ṗ1 = 0, (41)

ṗ2 = −p1, (42)

ṗ3 = −p2, (43)

ṗ4 = −p3. (44)

Accordingly, the optimal control that maximizes Hc in
Eq. (40) is determined by the sign of p4, when ü(t ) is bounded
by |ü(t )| � ζ . Here we apply three constraints simultaneously,
with the other two being |u(t )| � δ and |u̇(t )| � ε. The near-
minimal-time protocol meets the limitations of the relative
acceleration, velocity, and displacement simultaneously. As a
consequence, the second derivative of the controller, ü(t ), has
the following form of bang-bang type:

ü(t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ζ , 0 � t < t1
0, t1 < t < t2
ζ , t2 < t < t3
0, t3 < t < t4
ζ , t4 < t < t5
0, t5 < t < t6
−ζ , t6 < t < t7
0, t7 < t < t8
−ζ , t8 < t < t9
0, t9 < t < t10

ζ , t10 < t � t f

, (45)

With boundary conditions at switching points, after a simple
integration, u̇(t ) can be given by

u̇(t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ζ t, 0 � t < t1
−ε, t1 < t < t2
ζ (t − t2) − ε, t2 < t < t3
0, t3 < t < t4
ζ (t − t4), t4 < t < t5
ε, t5 < t < t6
−ζ (t − t6) + ε, t6 < t < t7
0, t7 < t < t8
−ζ (t − t8), t8 < t < t9
−ε, t9 < t < t10

ζ (t − t10) − ε, t10 < t � t f

, (46)

from which the switching points can be calculated as
t1 = ε/ζ , t2 = δ/ε, t3 = δ/ε + ε/ζ , t4,5 = 1

2 (t f − 2δ/ε ∓
ε/ζ ), t6,7 = 1

2 (t f + 2δ/ε ∓ ε/ζ ), t8 = t f − t3, t9 = t f − t2,
and t10 = t f − t1. With these switching points, the controller

[see Fig. 4(a)] can be finally expressed by

u(t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2ζ t2

−ε
(
t − ε

ζ

) − ε2

2ζ
1
2

(
ζ t2 − 2εt + ε2

ζ
− 2δζ t

ε
+ δ2ζ

ε2

)
−δ

−δ + [ε2+2δζ−ε(t f −2t )ζ ]2

8ε2ζ

ε
(
t − t f

2

)
1
8

[ − 4δ2ζ

ε2 − (ε+ζ (t f −2t ))2

ζ
+ 4δ(ε−ζ t f +2ζ t )

ε

]
δ

δ − (ε2+δζ+εζ (t−t f ))2

2ε2ζ
− ε[ε+2(t−t f )ζ ]

2ζ
1
2ζ (t f − t )2

. (47)

Trajectories of trap center q0(t ) and mass center of a cold
atom qc(t ) can be easily calculated through Eq. (3) [see
Figs. 4(b) and 4(c)]. Obviously, this shows a feasible way
to realize smooth transport, only taking a little more time
as cost than the previous cases. Thus, the final expression of
near-minimal time in this case is given by

t f = δ

ε
+ δε

ζ
+ 2

ω0

√
d

δ
+ ω2

0δ
2

4ε2
. (48)

The minimal time given here is just increased a little by
δε/ζ , which is the exact price for smooth bang-bang con-
trol by bounding relative acceleration. For instance, we
choose three different constraints in Fig. 4, where ε/(dω0) =
0.1, ζ/(dω2

0 ) = 0.5 (solid red), ε/(dω) = 0.2, ζ/(dω2
0 ) = 1

(dashed blue), ε/(dω0) = 0.5, ζ/(dω2
0 ) = 2 (dotted black),

and other parameters are the same as those in Fig. 2. It is
obvious that the larger the constraint the more similar the con-
trol. Experimental realization without energy excitation also
becomes harder for larger constraints despite near-minimal
times; here we emphasize that one can further smooth the
protocol by introducing more constraints on the higher-order
derivatives of the controller. However, it might be unnecessary
to do so, since numerical studies given below convince us.

Figure 5 clarifies how much price one should pay for
smoothing the bang-bang control out. In general, the influ-
ence of the constraint on the relative velocity, ε, is more
pronounced, as compared to the constraint on the relative
acceleration, ζ . Setting more constraints on its first and second
derivatives of the controller can smooth out bang-bang time-
optimal control more, with extra cost of transport time as a
tradeoff.

Moreover, we shed light on the energy excitation, char-
acterized by time-averaged potential energy (9), for smooth
bang-bang protocols and a polynomial trajectory (14) that is
used in the experiment [46]. In general, the energy excitation
can be suppressed by smooth bang-bang protocols (see Fig. 6),
since it is proportional to u2. In spite of the fact that the
excitation energy increases with the upper bounds of velocity
and acceleration, a fair comparison would be to calculate the
transport time of polynomial trajectory (14) corresponding to
each smooth bang-bang protocol with different upper limits.
Clearly, the polynomial trajectory produces larger energy
excitation than smooth bang-bang protocol. Also, one can cal-
culate the sloshing amplitudes, to quantify the performance of
STA. The ultimate sloshing can be suppressed from A(t f ) =
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(a)

(b)

(c)

FIG. 4. (a) Controller u(t ) with different constraints, where
ε/(dω0) = 0.1, ζ/(dω2

0 ) = 0.5 (solid red), ε/(dω) = 0.2,
ζ/(dω2

0 ) = 1 (dashed blue), ε/(dω0) = 0.5, ζ/(dω2
0 ) = 2 (dotted

black), and other parameters are the same as those in Fig. 2. In those
cases, the near-minimal times are t f = 60.5, 56.1, and 53.9 ms,
respectively, given by Eq. (48). (b, c) The corresponding trajectories
of mass center qc(t ) and trap center q0(t ) under different constraints.

4 × 10−3 to A(t f ) 	 10−12 by smooth bang-bang controls.
As mentioned above, the polynomial Ansätz (14) carried out
in the experiment [46] is not optimized enough with respect
to time or time-averaged potential energy, though the corre-
sponding sloshing isA(t f ) 	 10−16. In this case, the resulting
relative displacement during the process is continuous, but
exceeds the upper limit, |u| � δ, used in the time-optimal
solution. This might be problematic in practice when the

ζ

FIG. 5. Dependence of near-minimal time t f on differently
bounded relative velocities and accelerations: ζ/(dω2

0 ) = 0.8 (solid
red), ζ/(dω2

0 ) = 1.2 (dashed blue), and ζ/(dω2
0 ) = 1.6 (dotted

black), where other parameters are the same as those in Fig. 2.

anharmonic effect is taken into account in an optical Gaussian
trap [40–42].

IV. NUMERICAL MULTIPLE SHOOTING ALGORITHM

In this section, we present the numerical multiple shooting
method to solve such near-time-optimal control with twofold
reasons. On one hand, the analytical expressions become
too complicated to solve, when high-order derivatives of
controller are considered. Thus, the numerical algorithm is
required to calculate automatically the switching points and
minimal time with different constraints for double checking
and simplicity. On the other hand, a shooting method may en-
counter numerical difficulties for solving the optimal control,
since the shooting function is not smooth when the control is

FIG. 6. Time-averaged potential energy Ēp, which characterizes
energy excitation of the transport, rescaled by Ē 0

p (time-optimal
bang-bang control). We calculate t f for Eq. (14) with the same
constraints for a fair comparison, resulting in different controllers
and time-averaged potential energies. Our smooth bang-bang pro-
tocols excite much less than the higher-order polynomial Ansätze
(14) (faded lines). Near-minimal time t f and other parameters are
the same as those in Fig. 5.
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bang-bang [48]. Beyond that, the reason for applying multiple
shooting method, as a tool of our numerical studies, is that
it can be parallelized for certain problems, which can have a
non-negligible advantage in efficiency, comparing with other
algorithms. In what follows, we shall formulate the boundary-
value problem, and solve the smoothing procedure by using
multiple shooting method. The detailed steps of our algorithm
are as follows.

(i) We get the expression of qc(t ) with ten switching
points and the minimal transport time, which are unknown, by
solving the classical equation with boundary conditions and
continuous conditions.

(ii) Then we can write a column vector f =
(qc(t f ) − d, q̇c(t f ), u(t f ), u̇(t f ), u(t3) + δ, u(t7) − δ, u̇(t1) +
ε, u̇(t3), u̇(t5) − ε, u̇(t7), u̇(t9) + ε)T . Its norm, as the
objective function, should be optimized to zero when all
the switching points and minimal time are corrected.

(iii) A Jacobian matrix Ji j = ∂ fi/∂t j is defined to calculate
the modifications of switching points and minimal time.

(iv) We set another column vector g to be g =
(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t f )T . All the elements’ initial
values are our assumptions of switching points and minimal
transport time, which will be updated by the algorithm itera-
tively.

(v) Calculate the values of f and J with times given
by g. Gradient Del is defined as Del = J−1 f . In this way,
the modified g will be g = g − ρDel, where ρ is a constant
deciding the speed of convergence between zero and one.
After that, calculate the norm of the new f .

(vi) Repeat step (v) until the norm of f is smaller than an
acceptable fixed tolerance value.

To demonstrate the algorithm, we give an example of
smooth transport calculated with multiple shooting method
and plot the incorrect initial guess, middle (epoch=3), and
final trajectories (epoch=13), for showing how the protocol
converges to the near-time-optimal solution (see Fig. 7),
where the constraints on the relative displacement, velocity,
and acceleration—δ/d = 0.1, ε/(dω0) = 0.1, and ζ/(dω2

0 ) =
0.5, respectively—hold.

In addition to time-optimal control, the minimization of
energy excitation is dealt with using the same numerical
algorithm mentioned above. From Eq. (9), the cost functional
reads

JE =
∫ t f

0
Epdt =

∫ t f

0

1

2
mω2

0u2dt, (49)

where transport time t f is fixed. The control Hamiltonian can
be written as

Hc = −p0
1
2 mω2

0u2 + p1x2 − p2ω
2
0u, (50)

leading to new costate equations. Following Pontryagin’s
maximum principle, the unbounded control, i.e., without any
constraints on u, gives the lowest bound [37]

Ēmin
p = 6md2/ω2

0t4
f , (51)

with linear time-varying controller

u(t ) = 6d

ω2
0t2

f

(
2

t

t f
− 1

)
. (52)

FIG. 7. With updating rate ρ = 0.5, the incorrect initial guess
(upper faded lines) of switching points {5, 10, . . . , 55} (ms) con-
verges to a smooth bang-bang solution of near-time-optimal transport
quickly (middle faded lines, after three epochs), with the constraint
conditions δ/d = 0.1, ε/(dω0) = 0.1, and ζ/(dω2

0 ) = 0.5, by itera-
tion number of 13. The final correct trajectories of mass center qc(t )
and trap center q0(t ) are presented by red solid and dashed blue lines,
respectively. Other parameters are the same as those in Fig. 2.

Similarly, the controller u(t ) is not zero at t = 0 and t = t f ,
implying an infinite speed of the moving trap. The more com-
plicated case with bounded controller u(t ) can be calculated
as well in Ref. [37]. However, it is impossible to achieve
the analytical expression when higher-order derivatives of
controller u(t ) are bounded. For this task, we apply multiple
shooting method again to numerically design STA with arbi-
trary dimension of states and constraints. Transport interval
[0, t f ] is partitioned by N grid points, where the control func-
tion consists of N − 1 subintervals with length t f /(N − 1).
In order to find the solution of boundary-value problems, we

FIG. 8. Controller u(t ) that minimizes the time-averaged poten-
tial energy Ēp within a fixed time t f = 60 ms. Controller u(t ) is
bounded by δ/d = 0.1 (solid red); δ/d = 0.1 and ε/(dω0) = 0.1
(dashed blue); and δ/d = 0.1, ε/(dω0) = 0.1, and ζ/(dω2

0 ) = 0.5
(dotted black). The corresponding time-averaged potential energies
Ēp/Ēmin

p are 1.0002, 1.4918, and 1.6099, which are larger than the
lowest bound for the potential energy in unbounded control. N =
100, M = 10, and other parameters are the same as those in Fig. 2.
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FIG. 9. Phase diagram of smooth bang-bang control of fast trans-
port within fixed t f , minimizing the time-averaged potential energy
Ēp numerically. Constraint conditions and other parameters are the
same as those in Fig. 8.

define a D-dimensional state x and its derivative ẋ, initializing
it by guessing. We define a time step h = t f /(N − 1)(M − 1)
for applying fourth-order Runge-Kutta method as an ordinary
differential equation (ODE) solver. In each subinterval, we
calculate the following four terms,

k1 = ẋ j, (53)

k2 = ẋ j + h

2
k̇1, (54)

k3 = ẋ j + h

2
k̇2, (55)

k4 = ẋ j + hk̇3, (56)

for updating the state of the next time step by

x j+1 = x j + h

6
(k1 + 2k2 + 2k3 + k4), (57)

where j ∈ {1, 2, . . . , M − 1}. Thus, we obtain xi+1 for all
i ∈ {1, 2, . . . , N − 1} with a given xi. Combining it with an
optimizer, we can optimize any objective function, satisfy-
ing constraint conditions at the same time. In Fig. 8, we
use multiple shooting method for solving ODEs, minimizing
potential energies with MATLAB optimizer FMINCON under
different constraint conditions. Again, the linear time-varying
controller u(t ), initially with drastic changes at initial and
final times, becomes smoother at the cost of potential-energy
increase.

Moreover, we show the phase diagram of smooth transport
protocols in Fig. 9. We notice that when higher-order con-
straints are introduced the phase diagram becomes asymmet-
ric around t = t f /2, resulting in a local minimum of potential
energy. It is hard to obtain a global optimal solution because

the gradient algorithm depends on its initial input as trial
solution. However, with a reasonable range of guesses, this
numerical algorithm converges to suboptimal solutions, which
are friendly enough for experimental implementations.

V. CONCLUSION AND OUTLOOK

In summary, we present analytical and numerical methods
for smooth bang-bang shortcuts to adiabaticity for atomic
transport. Preceding researches provide the time-optimal so-
lution, as typical bang-bang control, which contains dras-
tic changes of controllers, resulting in high residual en-
ergy and difficulty in experimental implementation. Here we
propose smooth bang-bang controls, corresponding to the
near-minimal time, by bounding the first- and second-order
derivatives of the controller. Further comparison between our
smooth bang-bang and simple polynomial protocols shows
that both energy excitation and sloshing amplitude are sig-
nificantly suppressed with increasing slightly the transport
time as a tradeoff. To make our results more applicable, the
numerical multiple shooting algorithm is developed for time
or energy minimization, where an analytical solution might
not be feasible or solvable. Within this framework, different
Ansätze, including high-order polynomial and trigonometric
functions, can be compared, and they are suitable for ob-
taining suboptimal solutions [58] and enhanced STA [59] in
further work.

Finally, we emphasize that our analytical and numerical
methods, supplemented by machine learning [23,24,60], will
provide a versatile toolbox for quantum control since time-
optimal bang-bang solutions are ubiquitous with applications
including atom cooling [49–51], transport of trapped-ion
qubits [34,35,43–45], ground-state preparation [52,53], and
long-distance transport in an optical lattice [61–63]. These
results can be further extended to other problems, including
compact interferometers with spin-dependent force [64,65],
load manipulation by cranes in a classical system [66], and
Brownian motion in statistical physics [67].
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