
PHYSICAL REVIEW A 101, 063409 (2020)
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We perform ab initio calculations for the hydrogen atom initially in one of the six circular bound states with
the principal quantum numbers n = 2, 3, and 4, irradiated by a short circularly polarized laser pulse of 400 nm.
The field propagates in the direction parallel to the z component of the angular momentum of the atom. For
peak intensities in the range of ∼1011−1016 W/cm2, we investigate probabilities for the atom to ionize, or to
get on some bound (excited) state, or to remain in the initial state after the end of the laser pulse. In most
cases, we find pronounced differences in ionization probabilities for atoms in states having different signs of
magnetic quantum number. Usually electrons corotating (with respect to the laser field) ionize faster than their
counter-rotating equivalents. This is usually unlike in the tunneling domain, where counter-rotating electrons
always ionize faster. Adiabatic or nonadiabatic tunneling ionization is absent in our case. Near 1016 W/cm2

these differences in ionization probabilities drop away. We have found important differences in the behavior
of the excitation (as a function of the peak laser intensity) for initial states with n = 2 and n �= 2 (3 or 4). For
higher n the excitation is always weaker than the ionization and starts for higher intensities. For n = 2 the strong
excitation appears before strong ionization due to the large probability of one-photon absorption combined with
the population of many bound states having principal quantum numbers n from 3 up to several dozen. Quite
accurate analysis of the excitation process is presented.

DOI: 10.1103/PhysRevA.101.063409

I. INTRODUCTION

Circular states of an atom are Rydberg states with the
highest possible absolute value of the magnetic quantum
number m of the bound state described by three well-known
quantum numbers (n, l, m) (in a spherical coordinate system).
Customarily, n is the principal quantum number, and l is
the orbital quantum number. For a given n there are always
two circular states, namely, (n, l = n − 1, m = n − 1) and
(n, l = n − 1, m = −(n − 1)). For these two states an elec-
tron has the maximum absolute value of the z component of
angular momentum |m|h̄ = (n − 1)h̄. Such excited states of
the hydrogen atom can be created by adiabatic transfer of
a Rydberg state in crossed electric and magnetic fields or
by adiabatic passage in a rotating microwave field [1] (see
also references therein for a description of different methods).
Circular states can be produced also by utilizing adiabatic
switching of orthogonal electric and magnetic fields [2]. These
states have long radiative lifetimes because there is only one
channel to which they can decay, namely, the next lower
circular state. Circular states have been produced in most of
the alkali atoms and in the hydrogen atom [1]. When n � 1
behavior of the excited electron may be described approx-
imately by classical concepts, for example, when an atom
interacts with circularly polarized (CP) microwave radiation
[3]. However, the lower the principal quantum number n is,
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the stronger becomes the demand that the atom should be fully
described by quantum mechanics, namely, by the Schrödinger
equation.

In this work, we investigate a behavior of the hydrogen
atom, initially in a low-lying circular state (2 � n � 4), in-
teracting with the pulse of the CP electromagnetic radiation.
We use nonrelativistic theory and the dipole approximation to
describe the laser field. Our purpose is to solve numerically
(exactly) the time-dependent Schrödinger equation (TDSE)
within these approximations. The problem that we study is
limited to the situation when the quantization axis of the
hydrogen atom (the z axis) is parallel to the propagation
direction of the laser field. Both the electron (in any circular
state that we consider) and any incoming photon carry angular
momenta which are mutually parallel or antiparallel. In other
words, the laser field is polarized in the xy plane. The atom
may be ionized, excited, or may remain in its initial state
after termination of the radiation pulse. Typically, for most
atoms (if they are in a ground state) and visible radiation,
there are three adjacent regimes of the radiation intensity.
From the point of view of a dominant physical mechanism one
has to deal with (i) multiphoton ionization (MPI) (for weak
laser fields), (ii) tunneling ionization (TI) (for intermediate
laser fields), and finally (iii) barrier-suppression ionization
(BSI), called also over-the-barrier ionization (for strong and
superstrong laser fields) [4]. For sufficiently intense fields and
higher frequencies, one can also speak about above-threshold
ionization (ATI) of atoms [5]. In experiments made about
40 years ago [6–8] one observed additional peaks (separated
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by the photon energy) in the energy spectrum of outgoing pho-
toelectrons. In the present work, we use atomic units (a.u.):
h̄ = e = me = 1, explicitly substituting −1 for the electronic
charge.

However, for the laser frequency that we have chosen
(ω = 0.114 a.u.) and low-lying circular states of the hydro-
gen atom, there are only two regimes of radiation intensity,
namely, (i) MPI and (iii) BSI. The absence of (ii) TI is
connected with the fact that for n � 2 the binding energy
of the atom is very small; hence only very low-frequency
radiation (in the infrared domain) enables TI. In our paper [9],
which precedes the present one, the following criterion was
identified:

ω > ωlim ≡ FBSI√
2EB

= 1

Z

√
E3

B

25
= Z2

24n3
, (1)

where FBSI = E2
B/(4Z ) = Z3/(16n4) is the barrier-

suppression field strength (see, for example, [5,10,11]),
and EB = Z2/(2n2) is the binding energy of the atom (of
the nuclear charge Z; in this work Z = 1). When Eq. (1) is
satisfied, TI is negligible but there is even no nonadiabatic
tunneling regime [12,13]. TI was first described by Keldysh
[14,15], who identified the parameter (named after him)
γ = ω

√
2EB/F = Zω/(nF ) (F is an amplitude of the

laser field). Roughly up to γ < 1 (usually γ � 1) TI or
nonadiabatic tunneling (γ ∼ 1) is possible, but only if ω is
sufficiently low. This is not the case considered in this work,
where Eq. (1) is very well satisfied.

We will call the laser light “corotating with respect to
the initial state” of the hydrogen atom if the electron and
the CP photon angular momenta are parallel. When these
two angular momenta are antiparallel, we will call the laser
light “counter-rotating with respect to the initial state.” Of
course, these two physical situations are different and should
lead to different observable effects such as, for example,
ionization rates, ionization probabilities, or photoelectron en-
ergy spectra. Indeed, in the case of single-photon ionization,
corotating light more strongly ionizes the atom than counter-
rotating light [12,16]. The same concerns Rydberg electrons,
although in this case the mechanism (successive excitations
of Rydberg states) is different [3,12]. In the nonadiabatic
tunneling regime counter-rotating light more strongly ionizes
the atom than corotating light [12], so the situation is the
reverse. When Eq. (1) is satisfied and at least three photons
are needed to ionize the hydrogen atom this situation depends
on the laser intensity. For lower intensities (for example,
in the perturbative regime) corotating light more strongly
ionizes the atom, but for higher intensities the ionization
by counter-rotating light is stronger (cf. Fig. 5 in Ref. [9]).
In this work, we compare ionization probabilities (after ter-
mination of the laser pulse) for pairs of low-lying circular
states (2 � n � 4) having magnetic quantum numbers m =
−(n − 1) and m = (n − 1), respectively. We also study ex-
citation probabilities (as in Ref. [9]). Both excitation and
ionization probabilities are investigated as functions of the
peak laser intensity, starting from 1011 W/cm2 and ending
near 1016 W/cm2. The frequency used in the present work is
two times bigger than that used in Ref. [9] (ω = 0.057 a.u.).
Therefore, we are able to investigate the effect of higher

frequencies for the initial states (2,1,−1) and (2,1,1) and
the inequality (1) is better satisfied for low-lying circular
states.

Our paper is organized as follows. A short exposition of
the theory is given in Sec. II. In Sec. III we present and
discuss our numerical results, most extensively with respect
to the excitation of the atom. We broadly refer to some
earlier works utilizing possible physical interpretations of
the obtained results. The summary and main conclusions are
given in Sec. IV.

II. THEORY

In the present work we perform accurate ab initio calcula-
tions (see, for example, Ref. [17] for CP fields). The following
TDSE is solved numerically ( �p = −i �∇):

i
∂�(�r, t )

∂t
=

{
1

2

[
�p + 1

c
�A(t )

]2

− Z

r

}
�(�r, t ), (2)

with

�A(t ) = A0 f (t )[−x̂ sin(ωt ) + ŷ cos(ωt )], (3)

where A0 = F0/ω is the amplitude of the vector potential;
x̂ and ŷ are versors in the x and y directions, respectively;
and f (t ) is a slowly varying pulse envelope which has a
sine-squared form:

f (t ) = sin2

(
πt

td

)
, (4)

and the pulse time duration is td . Let us note that �A(0) =
�A(td ) = �0; hence our results are gauge invariant [18] (because
only �(�r, td ) is utilized for a calculation of various probabil-
ities). The method of solution of Eq. (2) is the same as in
Ref. [9] and very similar to the one described in Refs. [19,20].
There are benchmark results for the hydrogen atom in CP laser
fields in Refs. [19,20]. We use the velocity gauge (advantages
of which are well known [21]) and the dipole approximation,
as indicated by Eqs. (2) and (3). The vector potential �A(t ) from
Eq. (3) corresponds to σ+ polarization, if ω > 0. We use a
spectral method to solve the TDSE expanding the total wave
function as follows:

�(�r, t ) =
lmax∑
l=0

l∑
m=−l

l+1+N∑
n=l+1

anlm(t )
1

r
Sκ

n,l (r)Yl,m(θ, φ). (5)

In this expression, anlm(t ) is a time-dependent coefficient,
Sκ

n,l (r) is a Coulomb-Sturmian function of the electron dis-
tance to a nucleus r, and Yl,m(θ, φ) is the spherical harmonic
of the electron angular coordinates θ and φ. The functions
Sκ

n,l (r) [20] form a discrete and complete set (for any given
κ) in the space of the L2-integrable functions. N is a number
of Coulomb-Sturmian functions per (l, m) pair (N = 300 is
sufficient for all laser field parameters in this work, but smaller
N would be sufficient in the perturbative regime). In general, κ
is a real number such that 0 < κ < 1. The proper value of this
parameter (as used in this work) should be chosen as κ = 1/n
(the reciprocal of the principal quantum number of the initial
state; however, our final numerical results do not depend on
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FIG. 1. Probability of ionization (blue solid line with solid circles), excitation (red dashed line with solid squares), and remaining in the
initial state of the hydrogen atom (black dotted line with open circles) as a function of the peak laser intensity (at the end of the laser pulse).
One numerical solution to the TDSE corresponds to each peak intensity on the plot. We have calculated connecting lines with the help of
splines. Left panel: counter-rotating light. Right panel: corotating light.

κ in some neighborhood of κ = 1/n). We refer the reader for
more detail about this method (including its further develop-
ment) to Refs. [9,20,22]. The method has been generalized
to the case of helium in [23]. The ionization and excitation
probabilities are calculated by projecting onto bound and
continuum states of the hydrogen atom, after switching off
the laser pulse. We would like to stress that atomic and laser
field parameters are quite similar to those applied in Ref. [9].
As a result, we could utilize some experience gained by one

of us (J.H.B) and obtain fully convergent and exact numerical
results.

III. RESULTS AND DISCUSSION

A. Ionization, excitation, or remaining in the initial state

There are probabilities for ionization, excitation, and re-
maining in the initial state of the hydrogen atom as a function
of the peak laser intensity in Fig. 1. In Figs. 1(a)–1(f) we
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show these probabilities for the initial states (2,1,−1), (2,1,1),
(3,2,−2), (3,2,2), (4,3,−3), and (4,3,3), respectively. For the
states with m < 0 the laser light is counter-rotating with
respect to the initial state, while for the states with m > 0
the laser light is corotating. All the probabilities are calcu-
lated after switching off the laser pulse. The total duration
of the pulse (with a sine-squared envelope) is ten cycles
[τ = 10(2π/ω), with ω = 0.114 a.u.]. The laser wavelength
conforms with a second harmonics of the Ti: sapphire laser
(λ = 400 nm). We have checked that carrier envelope phase
effects are negligible for these pulse parameters. The con-
dition from Eq. (1) is satisfied in our case (the right-hand
side is equal to 0.0078 a.u. for n = 2 and even less for n = 3
and n = 4). In the lowest order of perturbation theory two
photons are needed to overcome the ionization threshold
at the binding energy |E2| = 0.125 a.u. for the initial states
(n = 2,1,±1). Only one photon is needed (in the lowest order
of perturbation theory) to overcome the ionization threshold
at |E3| = 0.055 56 a.u. for the initial states (n = 3,2,±2). The
same concerns the ionization threshold at |E4| = 0.031 25 a.u.

for the initial states (n = 4,3,±3). The excitation is calculated
here as a sum of populations over all bound states except
the initial one (populations of bound states with n lower than
initially are always much smaller than the total population of
bound states in our numerical calculations).

Figures 1(a) and 1(b) explicitly show that when the peak
intensity of the laser field grows (beginning from the per-
turbative regime) the excitation grows initially faster than
the ionization. This is very similar to what was observed
for two times lower laser frequency (ω = 0.057 a.u.) and
the same pulse in Ref. [9]. For ω = 0.114 a.u. substantial
ionization starts at the peak intensity close to the value of
IBSI = 2F 2

BSI = 1.1 × 1012 W/cm2, but the excitation starts at
the peak intensity about ten times smaller. Then both ioniza-
tion and excitation grow with intensity. For the state (2,1,−1)
the excitation peaks near 4 × 1013 W/cm2, and for the state
(2,1,1) near 8 × 1012 W/cm2. In both cases, at these peaks,
more than 70% of the atoms remain bound but excited after
the end of the laser pulse. The rest of the atoms are mainly
ionized; very few atoms remain in their initial state (the initial-
state population is roughly negligible for I > 1014 W/cm2).
When the intensity exceeds about 1015 W/cm2 the excitation
and the ionization are nearly constant with some 10%−20%
of the excitation. This is again quite similar to the case of
ω = 0.057 a.u. [9]. Figures 1(a) and 1(b) in the present work
qualitatively resemble Figs. 1 and 2 from Ref. [9]. Increasing
the laser frequency twice leads to increasing the intensity at
which the peak of excitation exists [about seven times for
the state (2,1,−1) and about four times for the state (2,1,1)].
However, an overall picture of the behavior of ionization and
excitation probabilities as a function of the peak laser intensity
remains the same for ω = 0.057 a.u. and ω = 0.114 a.u.

In Figs. 1(c) and 1(d) we show analogous probabilities for
the initial states (3,2,−2) and (3,2,2), and in Figs. 1(e) and 1(f)
for the initial states (4,3,−3) and (4,3,3), respectively. For the
states (3,2,±2) substantial ionization starts at intensities close
to analogous intensities for the states (2,1,±1), respectively,
but the excitation is much weaker for the states with n = 3
and n = 4 [see Figs. 1(c)–1(f)] and starts for much higher
intensities, usually well above 1015 W/cm2. The ionization

FIG. 2. Comparison of ionization probabilities for the six initial
states of the hydrogen atom as a function of the peak laser intensity
(these lines are identical with respective lines in Fig. 1. (2,1,−1):
red line with solid circles; (2,1,1): blue line with solid squares;
(3,2,−2): green line with solid triangles; (3,2,2): black line with solid
diamonds; (4,3,−3): magenta line with open circles; (4,3,3): cyan
line with open squares.

for the states with n = 4 starts for intensities higher than
the ionization for analogous states with n = 3 or n = 2. The
excitation does not exceed 30% for the states (3,2,±2) and
40% for the states (4,3,±3). Moreover, unlike for the states
with n = 2, the excitation appears after the ionization (when
increasing the intensity) for the states with n = 3 and n = 4
[cf. Figs. 1(c)–1(f)]. It appears that the value of the BSI
intensity is not relevant to the onset of ionization when n = 3
or n = 4. For the states (3,2,±2) and (4,3,±3) IBSI < 5 ×
1010 W/cm2. The highest intensity shown in Figs. 1(e) and
1(f) is 4 × 1016 W/cm2. It was not possible to achieve con-
vergent results for even more intense fields using our present
computational resources. However, let us note that the initial-
state probability is nearly zero already for I > 1016 W/cm2.
Perhaps we should not expect very much change in ionization
and excitation for I > 4 × 1016 W/cm2 [cf. Figs. 1(a)–1(d)]
and maybe we should rather expect that ionization prevails
over excitation for very strong fields.

In Fig. 2 we present ionization probabilities as a function
of the peak laser intensity for six different initial states of the
hydrogen atom. The states and the numerical data are exactly
the same as in Figs. 1(a)–1(f). The purpose of making this plot
is a comparison of initial states from the point of view of their
inclination to ionization with increasing the peak intensity.
From Fig. 2 one can conclude that for perturbative laser fields
the fastest ionization is for the states (3,2,2), (2,1,1), (2,1,−1),
and (3,2,−2), respectively. The slowest ionization, in the
perturbative regime, is for the states (4,3,−3) and (4,3,3),
respectively. The states with m > 0 (corotating light) ionize
faster than the analogous states with m < 0 (counter-rotating
light). This usually holds also for higher intensities. Above
1014 W/cm2 the state (3,2,−2) has a greater ionization rate
than the state (2,1,−1) but the two curves intersect again near
3 × 1015 W/cm2. Accordingly, the ratio of their ionization
rates must be higher or lower than 1, depending on the
intensity. Around 7 × 1014 W/cm2 the state (3,2,−2) has the
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FIG. 3. Comparison of initial-state probabilities for the six initial
states of the hydrogen atom as a function of the peak laser intensity
(these lines are identical with respective lines in Fig. 1). Markers of
the lines for the six initial states of the hydrogen atom are the same
as in Fig. 2.

highest (among the six states) ionization probability. When
the intensity achieves the greatest values in Fig. 2 ionization
probabilities for the states (n,l,m) and (n,l,−m) become
nearly identical.

In Fig. 3 we present initial-state probabilities as a function
of the peak laser intensity for six different initial states of the
hydrogen atom. The states and the numerical data are exactly
the same as in Figs. 1(a)–1(f). In this plot we compare initial
states from the point of view of their (usually) increasing
depletion with increasing the peak intensity. From Fig. 3 one
can conclude that the fastest depletion is for the states (2,1,1),
(2,1,−1), (3,2,2), and (3,2,−2), respectively. The slowest de-
pletion occurs for the states (4,3,−3) and (4,3,3), respectively.
Roughly for I > 1016 W/cm2 the initial-state probability after
the end of the pulse is very close to zero for each of the
six states. The states with m > 0 (corotating light) deplete
faster than the analogous states with m < 0 (counter-rotating
light). From the point of view of the order the six curves
in Fig. 3 [from left to right and from (2,1,1) to (4,3,−3)]
the principal quantum number n is the most important and
then the sign of the magnetic quantum number m decides the
order. This order is a little different from the similar order of
states in Fig. 2. Of course, this is the excitation that makes the
difference.

B. Remarks on theoretical models

To the best of our knowledge, currently there is no simple
analytical model that could explain the excitation and ioniza-
tion dependence on the laser intensity for all atomic and laser
field parameters considered in this work. Most of the intensity
range presented in Figs. 1–3 (roughly 1011−1016 W/cm2)
lies in the BSI regime. Both in Ref. [9] and in Ref. [24]
(which may be treated as a supplement to [9]) it was found
that the ionization mechanism is multiphoton absorption. In
Ref. [24] the ionization and excitation process was studied in
temporal, angular, and energy resolution. In the BSI regime
the ponderomotive energy UP = F 2/(2ω2) (the time-averaged
kinetic energy of a classical free charge oscillating in an

electromagnetic plane-wave field) of the ionized electron may
be greater than its binding energy. This depends both on the
laser field parameters and on the principal quantum number
n of the initial state. There is a dimensionless parameter
z1 = 2UP/EB, which measures the ratio of these two energies
[25] (this parameter is connected with the Keldysh parameter:
z1 = 2/γ 2 for CP fields). In principle, one expects that the
strong-field approximation (SFA) [14,25,26] (or the Keldysh-
Faisal-Reiss model) should work, if z1 > 1 (and better when
z1 � 1). However, when the SFA (in the velocity gauge)
is extended to treat excited bound states of the hydrogen
atom one obtains the same total ionization rates and energy
distributions of photoelectrons for the initial states (2,1,−1)
and (2,1,1). This theoretical result is, of course, unphysical
[27]. On the other hand, different ionization rates and energy
distributions for these states have been obtained in the length
gauge [27,28]. However, we have numerically verified that
ionization rates for the initial states (2,1,−1) and (2,1,1) in
the length gauge are too large [29] to explain any ionization
probabilities shown in Figs. 1(a) and 1(b) in the present work
and in Figs. 1 and 2 in Ref. [9]. Perhaps the main reason of
this drawback of the SFA is the neglect of the Coulomb field
in the final state of the outgoing electron. We are not aware of
the existence of any simple Coulomb correction to the SFA
for laser intensities and the laser frequency ω = 0.114 a.u.

considered here. For example, when I = 1014 W/cm2 one
obtains z1 = 0.9, 2.0, and 3.5 for n = 2 [Figs. 1(a) and 1(b)],
n = 3 [Figs. 1(c) and 1(d)], and n = 4 [Figs. 1(e) and 1(f)],
respectively. Thus, both UP and EB have comparable magni-
tudes, which makes theoretical description of the process of
ionization and excitation very difficult.

Coulomb corrections to the SFA were discussed in the
recent review of Karnakov et al. [30]. Much progress has
been achieved in recent years ([30,31], and references therein)
particularly for a linearly polarized laser field, but for ar-
bitrary elliptical polarization as well. The imaginary time
method (which is usually used in calculating probability of
the tunneling through a time-dependent barrier) gives results
which are considerably different from those based on the SFA
[30]. Maybe another factor should be taken into account to
explain ionization (and incidentally excitation) probabilities.
To properly compute ionization probabilities utilizing the
SFA, sometimes a modification of Fermi’s “golden rule” or
slowly varying population approximation [32,33] is required.
In the case of the linear polarization inhibition of ionization
by coherent population trapping can occur. One may speculate
about an analogous effect for the CP light. If the laser pulse
is not too short (at least a few cycles) and the peak laser
field not too strong, behavior of ionization probability may
be understood in terms of the so-called single-state Floquet
theory [34,35], which may give results very close to those
from numerical solution to the TDSE [20]. Low-lying circu-
lar states in the CP light were successfully described using
Floquet methods [34–37]. Such methods help to understand
the physical mechanisms that determine the photoelectron
spectra and the circular dichroism (see Sec. IV) in two-color
ionization of the helium ion by CP laser light [38].

Therefore, we will try to explain qualitatively which ex-
cited bound states of the hydrogen atom are mainly populated
after the end of the laser pulse. There are the following dipole
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selection rules for the initial circular state (n,l,m) when a
single photon (of a positive helicity) is absorbed: m = +1,
and l = ±1 (if m = −1 the same photon would be emitted
by the atom). As noted in Ref. [39] (cf. Fig. 1 therein) there are
two lowest-order pathways for ionization by counter-rotating
light and only one lowest-order pathway for corotating light.
Higher-order pathways are less probable. Absorbing a few
photons may lead to the following final excitations for the
initial state with n = 2:

(l, m) = (1, −1) → (0, 0) → (1, 1)

→ (2, 2) → (3, 3) → · · · , (6)

or

(l, m) = (1, −1) → (2, 0) → (3, 1)

→ (4, 2) → (5, 3) → · · · , (7)

for counter-rotating light and

(l, m) = (1, 1) → (2, 2) → (3, 3)

→ (4, 4) → (5, 5) → · · · , (8)

for corotating light. (The mixing of two paths, (6) and (7),
is also allowed [39].) Of course, when the laser field is on,
the photons may be absorbed or emitted time and again and
both quantum numbers (l, m) may decrease as well. For ex-
ample, the following process is possible: (l, m) = (1,−1) →
(2, 0) → (1, 1) → (2, 2) → (1, 1). This is the process of ab-
sorption of three photons and then emission of one photon (of
the same helicity). This process contributes to net absorption
of two photons [40]. Another process which is possible is
the following one: (l, m) = (1,−1) → (2, 0) → (1,−1) →
(2, 0) → (1, 1). This is the process of the absorption of one
photon, then the emission of one photon (of the same helicity)
and again two consecutive absorptions of one photon. This
process also contributes to the net absorption of two photons
[40]. Unlike in Ref. [24], we are interested only in net photon
absorption after the end of the pulse in this work (without
studying populations of bound and excited states when the
laser field is on).

C. Detailed analysis of excitations

In Fig. 1 we present, among others, the excitations as a
function of the peak laser intensity. We have looked more
closely at our numerical data, where populations (after the
end of the pulse) of many bound states (n,l,m) with n � 1
(if necessary) are given. One can draw several conclusions
from these data. In general, we have taken a good look to
at least three points at each of the six excitation curves from
Figs. 1(a)–1(f). One point is located in the maximum (or very
close to it), the second one in some perturbative (in relation to
excitation) intensity, and another one in some large intensity
near the right end of each curve. (We have also checked some
intermediate points for each curve but we have not found
any unexpected behavior.) Generally, in this work we will
call the process the “(k = k0) transition” if the atom goes

along from the state (n,l,m) to the state (n′,l ′,m′ = m + k0),
as a result of interaction with the laser pulse and after its
end. We exclude here the case when n′ = n, l ′ = l, m′ = m
simultaneously. Of course, if k0 > 0 (hence m′ > m), it means
that k0 photons were net absorbed by the initially excited
atom during the laser pulse. If k0 < 0 (hence m′ < m), it
means that |k0| photons were net emitted. If k0 = 0 (hence
m′ = m), it means that zero photons were net absorbed or
emitted (in this case n′ �= n or l ′ �= l). Usually n′ � n, but
n′ < n is not excluded, although unlikely. In Tables I–VI, for
the above-mentioned six initial states, we present excitation
probabilities (i.e., populations in all bound states except the
initial one). We also present which of the (k = k0) transition
channels dominate showing their percentage in the respective
excitation probability.

For the initial state (2,1,−1) (Table I) the (k = 1) transition
always dominates. The final states are usually (n,2,0) or
(n,0,0) for all intensities from Table I. This is in agreement
with the pathways (7) and (6), respectively. The range of prin-
cipal quantum numbers is quite broad, for example, 4, 5 �
n � 16 − 36 (here and in further text we mention any bound
state if its population is at least equal to 10−4). This is quite
anticipated because the difference between the binding energy
and the photon energy is small: EB − ω = 0.125−0.114 =
0.011 a.u. and the pulse has some spectral width. For the
most intense fields, such as I = 6.0 × 1015 W/cm2, the same
(k = 1) transition still dominates, but the final states of the
type (n,1,−1), (n,1,1), and (n,3,−1) also appear in a very
visible way. As a result, in a strong laser field we have (k = 0)
and (k = 2) transitions as well [and also much weaker (k = 3)
and (k = −1) transitions; cf. Table I].

For the initial state (2,1,1) (Table II) the situation regarding
the excitation is similar to that of the state (2,1,−1), namely,
(k = 1) transitions always dominate for four lower intensities
from Table II [leading to (n,2,2) final states with 4 � n �∼
30; this is in agreement with the pathway (8)]. However,
for the highest intensity in Table II, I = 6.0 × 1015 W/cm2

(k = 0) transitions are more probable than (k = 1) transi-
tions [it means that joint population of (n,1,1) (n �= 2) or
(n,3,1) states is greater than the population of (n,2,2) states].
There are also weaker (k = −1), (k = 2), and (k = −2)
transitions.

For the initial states with n = 3 or n = 4 (Tables III–VI) the
situation regarding the excitation is very different from that
of the n = 2 initial states. We note that if the laser intensity
increases one first observes a strong ionization and then the
excitation which achieves a local maximum at roughly the
same intensity I ≈ 1.0 × 1016 W/cm2 [cf. Figs. 1(c)–1(f)].
The highest excitations amount to 25%−40% [depending on
(n, l, m)], so they are visibly smaller than the excitations for
the initial states with n = 2. When the excitation reaches
the local maximum the ionization reaches a local minimum
(nearly for the same intensity). But, unlike for the states with
n = 2, the excitation never exceeds the ionization. For each
intensity (that we have checked) and each initial state with
n = 3 or n = 4, (k = 0) transitions dominate (cf. Tables III–
VI). These excitations are specific by the fact that both num-
bers (l, m) do not change, finally, and only n grows after
switching off the laser field. For instance, for the initial state
(4,3,−3) and I = 1.0 × 1016 W/cm2 (very close to maximum
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TABLE I. The dominant (k = k0 ) transition channels for the initial state (2,1,−1) for a few peak intensities (in the first column) of the laser
pulse. The total excitation probability (EP) is given in the last column (this is the population in all bound states except the initial one). There
are fractions of the total EP for a given intensity in consecutive columns. These fractions should sum up to 100% in a given line (or nearly
to 100%, because we discount very unlikely (k = k0 ) transitions; we put 0 if the respective fraction is less than 0.01%). For example, 1.2[12]
denotes that the peak intensity is I = 1.2 × 1012 W/cm2.

I (W/cm2) (k = −1) (k = 0) (k = 1) (k = 2) (k = 3) EP

1.2[12] 0 0 100% 0 0 0.0754
8.0[12] 0 0 100% 0 0 0.394
4.0[13] 0 0 100% 0 0 0.761
3.2[14] 0 0 99.99% 0 0 0.429
6.0[15] 0.03% 20.2% 73.4% 6.0% 0.35% 0.174

excitation for all states with n = 3 or n = 4) the population in
the states (n,3,−3), where 5 � n �∼ 40, achieves 0.415.

There is one more interesting feature of excitations of
circular states of the hydrogen atom [Figs. 1(a)–1(f)]. This
feature is common to three pairs of the initial states which
differ by the sign of the magnetic quantum number m. Namely,
atoms in the states with m < 0 usually absorb more photons
(of the positive helicity) than atoms in analogous states with
m > 0 (we have concluded this by looking at dominant fi-
nal values of m). This does not mean that the states with
m < 0 always have a bigger probability of excitation. The
latter probability depends on intensity for the given principal
quantum number n. Atoms initially in the states with m > 0
usually can emit photons (of the same positive helicity), while
atoms in states analogous with m < 0 cannot (at the level
of at least 10−4 of total population). For example, there are
almost no (k < 0) transitions for the state (2,1,−1), while
there are such (k < 0) transitions for the state (2,1,1) at
I = 6.0 × 1015 W/cm2 (cf. Tables I and II). There are almost
no (k < 0) transitions for the state (3,2,−2), while there are
such (k = −1) and (k = −2) transitions for the state (3,2,2)
(cf. Tables III and IV). There are no (k < 0) transitions for the
state (4,3,−3), while there are such (k = −1) and (k = −2)
transitions for the state (4,3,3) (cf. Tables V and VI).

Thus, the most probable excitation process, for the initial
states with n = 2, is usually the (k = 1) transition. For higher
intensities also (k = 0) and (k = 2) transitions appear, but in
the case of the state (2,1,1) also the (k = −1) transition is
possible. For the initial states with n = 3 and n = 4 usually the
(k = 0) transition takes place and less probable are (k = 1)
transitions. In the case of the states (3,2,2) and (4,3,3) also the
(k = −1) transition is possible.

We have also investigated analogically the excitation pro-
cess for the states (2,1,±1), but for two times lower fre-
quency ω = 0.057 a.u. [9] (cf. Figs. 1 and 2 therein; it is

interesting to compare those data with the present case of
ω = 0.114 a.u.). It appears that (k = 2) transitions almost
always dominate for the initial state (2,1,−1) [with final
(l, m) = (3, 1) or (1, 1)], and for the initial state (2,1,1) [with
final (l, m) = (3, 3)]. This is in agreement with the above-
mentioned pathways (7) or (6) and (8), respectively. Let us
note that 2 is the maximum number of energy quanta which
can be absorbed by the electron in the state (2,1,±1) with-
out transition to positive energy states [E2 + 2ω = −0.125 +
2(0.057) < 0; E2 + 3ω > 0]. However, for the state (2,1,1)
at I = 2.4 × 1015 W/cm2 (which is the highest intensity in
Fig. 2 of Ref. [9]) the (k = 1) transition with final (l, m) =
(2, 2) is even a little more probable [again in agreement
with the pathway (8)]. (k = 1) transitions are quite probable
for both initial states with n = 2. For higher intensities also
(k = 3) and (k = 4) transitions become probable for the
state (2,1,−1) [according to pathways (6) and (7)]. On the
other hand, for the state (2,1,1) at I = 2.4 × 1015 W/cm2,
the (k = 0), (k = −1), and (k = −2) transitions (with pop-
ulations of the order of 0.01) are possible.

D. Ionization and stabilization

The accompanying process of ionization outweighs the
excitation for sufficiently intense fields for n = 2 and always
for n = 3 or n = 4. Some insight in stabilization [35,37]
of circular Rydberg atoms in CP laser fields was achieved
owing to the classical trajectory Monte Carlo method and
looking at the quantum probability density of the atom in
the plane perpendicular to the propagation direction of the
field [41]. Although the authors of Ref. [41] did their analysis
for higher principal quantum numbers, namely, n = 5 and
n = 10, we find their conclusions also useful in our case of
low-lying circular states of the atom. In the circular state
of the hydrogen atom the radial probability density of the
electron has a single maximum located at rn = n2. There is

TABLE II. As for Table I, but for the initial state (2,1,1).

I (W/cm2) (k = −2) (k = −1) (k = 0) (k = 1) (k = 2) EP

3.0[11] 0 0 0 100% 0 0.0869
1.9[12] 0 0 0 100% 0 0.419
7.0[12] 0 0 0 100% 0 0.735
8.0[13] 0 0 0.55% 99.45% 0 0.339
6.0[15] 0.11% 10.9% 55.0% 32.0% 1.5% 0.172
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TABLE III. As for Table I, but for the initial state (3,2,−2).

I (W/cm2) (k = −1) (k = 0) (k = 1) (k = 2) EP

2.0[15] 0.023% 97.98% 1.87% 0.067% 0.0710
8.0[15] 0.014% 99.00% 0.92% 0.058% 0.299
1.2[16] 0.044% 98.71% 1.18% 0.062% 0.260

also a quantum-mechanical average of the electronic distance
to the nucleus 〈rnl〉 = [3n2 − l (l + 1)]/2, which is a little
bigger for circular states and is equal to n2 + n/2. The radial
probability density of the electron has a certain significant
width around the maximum. In Ref. [41] it was found that
a local maximum in the ionization probability occurs if α0 ≈
〈rnl〉, where α0 = F/ω2 is a quiver radius (of a free electron
in the laser field). Very briefly, the ionization is more efficient
when the bound electron is closer to the Coulomb center
(the nucleus) as a result of interaction with the laser field.
In the counter-rotating case (m < 0) the electron is dragged
outside the torus-shaped initial state of the atom (away from
the nucleus), while in corotating case (m > 0) the electron is
dragged inside the torus (we mean a sphere with the nucleus in
the origin), closer to the nucleus. This mechanism is more and
more efficient if the quiver radius α0 grows (with a growth
of the laser field) from zero to 〈rnl〉, approximately (cf. Fig.
4 in Ref. [41]). When α0 > 〈rnl〉 this mechanism becomes
less efficient, because the probablity density in the initial state
decreases for r > 〈rnl〉 > rn.

For n = 2, 3, and 4, one obtains I = 3.0 × 1014, 1.3 ×
1015, and 3.8 × 1015 W/cm2, respectively, from the equation
α0 = 〈rnl〉 (and using I = 2F 2 = 2α2

0ω
4). Indeed, in Figs. 1(c)

and 1(d) we find the local maxima at ionization curves near
I ≈ 1015 W/cm2 which is close to the above prediction for
n = 3. In Figs. 1(e) and 1(f) there are indistinct local maxima
at ionization curves near I ≈ 2 − 4 × 1015 W/cm2 which is
also close to this prediction for n = 4. However, the ionization
still grows for higher intensities reaching its greatest values
for I ≈ 3 − 4 × 1016 W/cm2 (where α0 ≈ 50 − 58 > 〈r43〉 =
18), so maybe some other mechanism works here. Simulta-
neously, the excitation decreases and we note that for n = 4,
I ≈ 3.0 × 1015 W/cm2 is the intensity at which initial-state
probability starts to fall rapidly to zero [cf. Figs. 1(e) and
1(f)]. Finally, for n = 2 and above I = 3.0 × 1014 W/cm2,
the ionization still increases and the excitation decreases. The
initial-state probability is already very close to zero above
I = 3.0 × 1014 W/cm2 (or even for lower intensities).

According to Gavrila [35], quasistationary (or adiabatic)
stabilization is connected with the fact that ionization rates
decrease with intensity, while dynamic stabilization expresses
the fact that ionization probabilities after the end of the laser

TABLE V. As for Table I, but for the initial state (4,3,−3).

I (W/cm2) (k = −1) (k = 0) (k = 1) (k = 2) EP

3.0[15] 0 99.79% 0.20% 0 0.0732
1.0[16] 0 99.93% 0.065% 0 0.415
4.0[16] 0 99.66% 0.34% 0 0.214

pulse (of fixed shape and duration) do not approach unity with
the growth of the peak intensity. In Figs. 1(a)–1(f) dynamic
stabilization is evident in the limited range of laser intensities.
According to Popov et al. [37], stabilization occurs, if the
total probability of ionization per pulse becomes a decreasing
function of the peak intensity. Of course, this is true for some
intervals of laser intensities in Figs. 1(a)–1(f). There are a
lot of papers studying different physical mechanisms of stabi-
lization [35,37] (and references therein) just like interference
stabilization of Rydberg atoms and Kramers-Henneberger sta-
bilization or high-frequency stabilization of neutral atoms and
negative ions. For example, in Ref. [42] Piraux and Potvliege
showed that the hydrogen atom, initially in the (5,4,4) state,
and ionized by a 620-nm 120-cycle linearly polarized laser
pulse, may be described with high accuracy by numerical
solution to the TDSE and by the above-mentioned (time-
independent) single-state Floquet theory. Calculations of final
ionization probabilities, made in two very different ways,
agree in at least three significant digits for peak intensities
from perturbative ones up to I = 2.0 × 1014 W/cm2 [42]. In
this case only one photon (ω = 0.073 a.u.) is needed to ionize
the excited hydrogen atom in the perturbative regime and
excitations to other bound states play no role. Thus, we may
suppose that whenever (in our present case of circular polar-
ization) the excitation is negligible, the single-state Floquet
method (or maybe its multistate generalization [35]) could be
useful. It is well known that an agreement between the Floquet
method and numerical solution to the TDSE also holds for
much shorter pulses. Another kind of stabilization is assumed
in the model of interference stabilization [43]. Namely, inter-
ference of different-order continuum-continuum and bound-
continuum transitions may lead to stabilization. In the paper
of Tikhonova et al. [43] circular states of the hydrogen atom
in a linearly polarized laser field were investigated for not
too strong fields (when α0 <∼ rn). The so-called stabilization
thresholds (in two particular cases) were calculated in the
framework of perturbation theory and good agreement with
earlier calculations (one of them was based on numerical
solution to the TDSE) was found. The stabilization was ex-
plained by interference of different-order transitions to and in
the continuum. In both papers [42,43] the condition ω > EB

was satisfied. It seems that both theoretical methods [42,43]

TABLE IV. As for Table I, but for the initial state (3,2,2).

I (W/cm2) (k = −3) (k = −2) (k = −1) (k = 0) (k = 1) (k = 2) EP

6.4[14] 0 0.04% 19.92% 67.94% 12.10% 0 0.0399
6.0[15] 0.074% 1.88% 10.22% 85.08% 2.74% 0 0.187
1.2[16] 0.046% 2.14% 8.32% 85.75% 3.74% 0 0.228
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TABLE VI. As for Table I, but for the initial state (4,3,3).

I (W/cm2) (k = −2) (k = −1) (k = 0) (k = 1) EP

4.0[15] 0.40% 1.78% 97.78% 0 0.0697
1.0[16] 0.07% 0.59% 99.33% 0 0.369
4.0[16] 0 0.48% 99.47% 0 0.217

could be applied in the present case of circular polarization
for the initial states with n = 3 or n = 4 when total excitation
is negligible.

IV. SUMMARY

A few years ago Herath et al. [44] observed experimentally
in argon atoms that the strong-field ionization rate in the
CP laser field depends on the sign of the magnetic quantum
number m. Later other experimental data [45–47] showed
that the ionization probability is dependent on the sign of the
magnetic quantum number. Altogether, the different response
of a bound system to right- and left-circularly polarized light
is called the circular dichroism. Theoretically such effects
were predicted much earlier [3,19,20] and quite recently, for
instance, in Refs. [9,12,13,24,27,28,38,39,41,48–54]. Most of
the above works are devoted to the circular dichroism in adi-
abatic or nonadiabatic tunneling regimes. Only a few works
explored the region that with increasing intensity switches
from MPI to BSI. This is also the case of the present paper.
In both tunneling regimes excitations of the initial state in the
laser field are negligible, while they are very important for
most intensities here (if n = 2) or at least for higher intensities
(if n = 3 or n = 4).

In conclusion, we have investigated ionization and excita-
tion of the low-lying circular states of the hydrogen atom by
the CP 400−nm ten-cycle laser pulse. The peak intensities of
the pulse have covered about five orders of magnitude, and
fixed and positive helicity of the laser light has been used in
our calculations. Thus, the (n,l,m) initial states have counter-
rotating electrons (with respect to the laser light) if m < 0, and
corotating electrons if m > 0. Our TDSE code has provided us
with exact numerical results in the nonrelativistic and dipole
approximations. The dominant physical mechanism, which
is valid not only in the perturbative regime of intensities,
is multiphoton ionization and excitation. We describe and
explain our results by showing pathways and final states of the
excitation. Almost for all laser field intensities and 400−nm
radiation the probability of ionization is greater for the state
with m > 0 than for the state with m < 0. Presumably, this is
connected with the fact that for ω = 0.114 a.u. the condition
given by Eq. (1) is very well satisfied (i.e., ω � ωlim) for
the initial states with n = 2, 3, and 4. If the ratio ω/ωlim is
smaller, as for ω = 0.057 a.u., it becomes possible that the
ionization probability for the state (2,1,−1) is visibly greater
than that for the state (2,1,1) (cf. Fig. 5 in Ref. [9]). In what
follows, we list the rest of our particular findings.

First, for the initial states (2,1,−1) and (2,1,1) the ioniza-
tion and the excitation by laser of frequencies ω = 0.114 a.u.

(400 nm) and ω = 0.057 a.u. (800 nm) are qualitatively sim-
ilar. With increasing the intensity the ionization starts near
the BSI intensity. The excitation starts for about ten times
smaller intensities and may achieve large values (> 50%),
larger than the ionization in some range of laser intensi-
ties. Eventually, for higher intensities, the ionization prevails.
Large excitations are possible mainly owing to (k = 2) tran-
sitions for ω = 0.057 a.u. and (k = 1) transitions for ω =
0.114 a.u. A common thing for these two cases of excitation
is the fact that there are a lot of final states which may be
populated in agreement with selection rules for absorption
of photons and the condition that the final energy should be
negative.

Second, for the initial states with n = 3 or n = 4 (and
400−nm radiation) the BSI intensity does not play a role
because the ionization starts at I � IBSI. The excitation is
much smaller than that for the initial states with n = 2 and
never exceeds the ionization. With increasing the intensity
the excitation starts after the ionization for n = 3 or n =
4. The main reason is the fact that net absorption of one
photon (during the pulse) for ω = 0.114 a.u. usually leads to
ionization, but not to excitation if n = 3 or n = 4. In this case
the excitation is dominated by (k = 0) transitions (i.e., initial
and final magnetic quantum numbers are the same).

Third, for any initial state considered here (k = k0) tran-
sitions with small |k0| dominate. The sign of En + kω (k �
0—the number of net photons absorbed) may be positive
or negative which usually leads to ionization or excitation,
respectively. Regarding only the excitation, based on all
particular cases (with almost no exceptions) considered in
this work, the following rule may be formulated. The most
probable excitation process is (k = k0) transition where k0

is the largest non-negative integer such that En + k0ω < 0.
If En + ω > 0 (so k0 = 0), (k = 0) transition is the most
probable channel (this is the above-mentioned case of n = 3
or n = 4 and ω = 0.114 a.u.). For perturbative laser fields, the
rule is strict. This rule usually also holds for stronger fields,
but with increasing the laser intensity some other channels
may appear with comparable probability.

Fourth, for the circular states with m > 0 (corotating elec-
trons) and more intense fields considered in this work it
becomes probable that atoms emit one or two photons net
(i.e., m′ = m − 1 or m′ = m − 2, where m′ is the magnetic
quantum number of the final bound state).

Fifth, for the initial circular states with n = 2 and inten-
sities I >∼ 1014 W/cm2, and for the initial circular states
with n = 3 or n = 4 and intensities I >∼ 1016 W/cm2, the
initial-state probability is very close to zero (for the laser pulse
considered here).
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