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Feshbach resonances play a major role in translationally cold-molecule preparation. In this context, their laser
control is of crucial importance. This work is devoted to the depiction of some basic mechanisms of such a control
using intense, short laser pulses and referring to nonlinear multiphoton processes. Our goal is to adiabatically
transport a Feshbach resonance onto a zero-width resonance, the characteristics of which have already been
discussed in the literature. Three processes are then addressed: (i) during the rise of the pulse and its plateau, the
preparation of a so-called laser bound molecule (LBM) still stable, but structurally different from the standard
chemically bound molecule; (ii) during the pulse switching off, an adiabatic transport of this LBM on a very
few excited vibrational levels, and (iii) concomitantly, a filtration strategy to photodissociate all these levels
except one, giving thus rise to but a single field-free excited vibrational state. With or without an eventual
stimulated Raman adiabatic passage technique to bring all the population to the ground rovibrational state, this
opens an alternate for a full optical control of ultracold-molecule formation. The illustrative example, offering
the potentiality to be transposed to other diatomics, is H+

2 .

DOI: 10.1103/PhysRevA.101.063406

I. INTRODUCTION

Feshbach resonances (FR) are widely referred to when
preparing ultracold molecules [1]. The most common ap-
proach deals with FRs as scattering resonances resulting
from a bound state of the diatomic molecule embedded in
the collisional continuum describing the translational motion
between the pair of free atoms. Molecules can be produced
near a FR, and an adiabatic sweep of the electromagnetic
field driving the dynamics can be used as an efficient method
for converting ultracold (i.e., low translational energy) atoms
into ultracold molecules [2,3]. The efficiency of the method
is expected to be importantly increased if the FR lifetime
is controlled by some external fields. Moreover, it remains
that translationally cold molecules prepared by this method
are vibrationally excited. The overall story line for ultracold-
molecule preparation we are proposing can be sketched as a
laser control addressing three objectives: (i) During the rise of
the optical pulse, an initial scattering wave packet describing
the colliding pair of atoms has to be efficiently connected to a
long-range molecular FR. (ii) For an optimal trapping, during
the pulse plateau, this FR should be controlled to ensure
the best possible overlap with the collisional wave packet,
together with the longest possible lifetime, to avoid loss and
decay mechanisms. (iii) At the end of the pulse, the FR should
be connected with but a single field-free molecular vibrational
level v of its ground electronic state. Thermodynamically
speaking, in terms of Boltzmann distributions, even if this
v �= 0, the system is considered ultracold, as is explained later,
using an additional laser to bring it, when necessary, to its
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vibrationless state. This work is mainly devoted to the last
two objectives, the first one being based on considerations
already discussed in the literature. In particular, initial wave
packets describing either a condensate embedded in an optical
trap [4,5], or continuum states in a free condensate [6] have
been referred to in collisional deactivation mechanisms, with
experimental achievements on Na [2].

We have recently developed a robust laser coherent control
scheme (based on a destructive interference mechanism) to
substantially increase FR lifetimes by adiabatically driving
them into so-called zero-width resonances (ZWR). Up to
date, this has mainly been used to design a filtration strategy
aiming at molecular rovibrational cooling [7–9]. This work
is rather devoted to a laser optimal control scheme to energy
localize and increase sharpness, and consequently efficiency
of FRs that mediate the scattering dynamics itself. In the
ultracold-molecule context, two types of Feshbach resonances
have been referred to: (i) A single electronic state in field-free
conditions leading to a so-called light-assisted self-induced
Feshbach resonance [5]. The corresponding wave function is
peaked at short internuclear distances (close to the diatomic
equilibrium geometry) leading to a situation deviating from
universality and opening the way to ultracold chemistry. We
have recently studied such a resonance illustrated in the case
of RbSr, a polar paramagnetic heteronuclear diatomic with
a strong permanent dipole moment [10]. (ii) Two electronic
states which are field coupled by a transition dipole moment
μ leading to the standard definition. Such FRs pertain to
the so-called universal decay regime [11]. Motivated by this
context, this study is devoted to FRs of the second cate-
gory. With the restriction to a one-dimensional, two-state
model without permanent dipoles (in each electronic states)
that we are adopting, all considerations on the basic control
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mechanisms concerning laser-induced FRs and ZWRs are
directly applicable to any rotationless homonuclear diatomics.
H+

2 is but a simple illustrative example. The objective is to
produce and control a FR with eigenenergy close to (i.e.,
slightly below) the dissociation threshold, and consequently
with a wave function peaked at large interatomic distances.
The physical process in consideration is a laser-assisted low-
energy atomic collision close to the dissociation threshold
of the ground 1sσg state of H+

2 , taken as the origin of ener-
gies, a situation described in a field-dressed Floquet model
with a diabatic curve crossing at rather large internuclear
distances (close to the right turning point of the highest
excited vibrational levels v = 17, 18). The energy distribution
(bandwidth) of the collisional wave packet is assumed broad
enough to overlap with these ground-state excited vibrational
levels, but more importantly with the vibrational level v+ = 0
accommodated by the upper adiabatic potential V+(R) origi-
nating from 1sσg and the single-photon-dressed 2pσu excited
states. In other words, the closer the laser controlled v+ = 0
to the dissociation limit and sharper could be chosen the
energy distribution. This adiabatic vibrational level has to be
further considered as initiating the Feshbach resonance, with
an expected energy that could even exceed the one of the
highest v’s. As a consequence, large probability density is
deposited at rather large internuclear distances (here at about
R � 13 a.u. as compared to R � 2 a.u. for the equilibrium
geometry). When switching on the laser, this v+ = 0 state will
be considered as a Feshbach resonance, in relation with its
standard Fano-type definition of a discrete vibrational level
embedded in, and radiatively coupled to, the continuum of
the lower adiabatic potential V−(R), through a nonadiabatic
coupling. The diabatic coupling is written as μ

√
I , I being

the laser field intensity. Increasing the intensity will result
in two modifications: (i) the level will be shifted toward
higher energies bringing it in even better overlap with the
collisional wave packet; and (ii) as a resonance, it will acquire
a width � that could be controlled through the intensity. An
increase of intensity will produce a linear increase of �, as
expected in the weak-field regime. On the contrary, higher
intensities pertaining to the strong-field regime can lead to
a decrease of �, as they induce weaker nonadiabatic inter-
actions. This refers to the well-known vibrational trapping
mechanism [12–14]. The overall expected observation is that
the collisional wave packet be trapped in such a Feshbach
resonance with probability density at large internuclear dis-
tances. When the laser pulse is switched off, the population
returns back to field-free levels v = 17, 18 which have the
most favorable Franck-Condon (FC) overlaps. The interest
is that a rather narrow (long-lived) and energy-controllable
Feshbach resonance can trap, for a long enough duration, the
collisional wave packet at large internuclear distance, with
rather well-defined and limited spatial extension range, such
that at the end of the pulse, the FC overlap favors the right
turning point of a (hopefully) single vibrational level, v = 17
or 18, for instance.

Our aim is to produce, playing both with the laser wave-
length and intensity, a ZWR from the Feshbach resonance in
consideration. If we are successful in doing this, i.e., produc-
ing � = 0, or less ambitiously, by substantially decreasing �

(vibrational trapping mechanism), we will be in a situation

to control the single (or few) vibrational level(s) which is
(are) expected to be ultimately prepared. In other words, the
translational motion will be trapped in a long-lived FR at large
distance, ensuring its cooling. This FR (or hopefully ZWR)
with a short spatial extension (Gaussian-type wave function
for v+ = 0) will transfer the probability density to a single
vibrational level (v = 17 or 18). If actually we succeed this
single vibrational level population, the vibrational cooling is
already achieved. A stimulated rapid adiabatic passage (STI-
RAP) process [15] could then transfer the population to the
vibrationless ground state, as previously demonstrated with
Sr2 molecules [16,17]. In this work we show how to proceed
for specific choices of laser wavelengths and intensities to pro-
duce ZWRs, i.e., in principle, infinitely long-lived resonances.
Apart from their interest in molecular cooling, such exotic
states correspond to specific molecules exhibiting different
structural properties and which exist only during the laser ex-
citation process. We call them laser bound molecules (LBM)
as opposite to the usual field-free chemically bound molecules
(CBM). Although our model and conclusions are worked out
on the simplest, lightest, nonpolar H+

2 molecular system, we
claim their potentiality to be transposed to other systems. Ac-
tually, it is worth noting that the relative first sight simplicity
of H+

2 goes together with some numerical and model chal-
lenges in relation with the particular asymptotic form of its so-
called charge resonance enhanced transition dipole [18,19].
This necessitates to reconsider the semiclassical destructive
interference interpretation of the ZWR for generalizing it to
a multiphoton excitation scheme that should be properly de-
scribed. In turn, this brings additional confidence to the trans-
position argument opening the way to strong-field excitation.

The paper is organized as follows. Section II is devoted to
the Floquet model and exploratory calculations for the critical
determination of laser characteristics. The results for long-
range FRs at a laser wavelength λ = 25 μm are presented in
Sec. III, with special emphasis on the role of charge resonance
enhanced transition dipole, and multiphoton issues affecting
FRs. The interference mechanism in play for the ZWR and the
LBM versus CBM characterizations are discussed in Sec. IV,
before concluding in Sec. V.

II. MODEL CONSIDERATIONS AND CRITICAL
DETERMINATION OF LASER PARAMETERS

In this section, we examine the rather unexpected property
of long-range localized FR, candidate for describing a so-
called laser bound molecule (LBM) state, originating from a
bound state which, although strongly coupled to a dissociative
continuum, has the possibility to acquire an infinite (or quasi-
infinite) lifetime. Such exotic resonances have already been
discussed in the literature, first in the context of accidentally
narrow rotational lines in predissociation [20,21], then as
bound states in continuum (BIC) [22,23], and more recently
as zero-width resonances (ZWR) [24]. In the following, the
physical context is collisional molecular formation by pho-
toassociation, the illustrative example being H+

2 .

A. Floquet model and exploratory calculations

We briefly recall the model used to describe the strong-
field induced photodissociation dynamics of a rotationless
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laser-aligned H+
2 molecule, with only two electronic states

labeled |g〉 (for the ground 1sσg state) and |u〉 (for the ex-
cited 2pσu state) [25]. The time-dependent wave function is
expanded on this electronic basis:

|�(R, t )〉 = |φg(R, t )〉|g〉 + |φu(R, t )〉|u〉 (1)

with nuclear wave functions obtained from the time-
dependent Schrödinger equation written in (2 × 2) matrix
form:

ih̄
∂

∂t

[
φg(R, t )
φu(R, t )

]
=

(
TN +

[
Vg(R) 0

0 Vu(R)

]

− μ(R)E (t )

[
0 1
1 0

])[
φg(R, t )
φu(R, t )

]
. (2)

TN represents the nuclear kinetic energy operator. Vg(R) and
Vu(R) are the Born-Oppenheimer (BO) potentials. μ(R) is the
electronic transition dipole moment between states |g〉 and |u〉.
E (t ) is the linearly polarized electric field amplitude. For a
continuous wave laser,

E (t ) = E cos(ωt ) (3)

with an intensity (I ∝ E2), a frequency ω, and a wavelength
λ = 2πc/ω, c being the speed of light. The Floquet ansatz for
such a time-periodic Hamiltonian gives [25][

φg(R, t )
φu(R, t )

]
= e−iEvt/h̄

[
χg(R, t )
χu(R, t )

]
(4)

with time periodic χk (R, t ) (k = g, u) which can be Fourier
expanded:

χk (R, t ) =
∞∑

n=−∞
einωtϕn

k (R) (5)

with unknown components satisfying a set of coupled differ-
ential equations written in compact form, for any n:

[TN + Vg,u(R) + nh̄ω − Ev]ϕn
g,u(R)

−1/2Eμ(R)
[
ϕn−1

u,g (R) + ϕn+1
u,g (R)

] = 0. (6)

The weak-field, single-photon case is depicted by keep-
ing only the zero-frequency Fourier component (n = 0) of
χg,v (R, t ) and the Fourier component (n = −1) of χu,v (R, t ),
denoted ϕg,v (R) and ϕu,v (R), respectively, leading to field-
dressed diabatic (g, u) channels coupled equations:

[TN + Vg(R) − Ev]ϕg,v (R) − 1/2Eμ(R)ϕu,v (R) = 0,

[TN + Vu(R) − h̄ω − Ev]ϕu,v (R) − 1/2Eμ(R)ϕg,v (R) = 0.

(7)

v labels a specific solution of Eq. (7), involving both its
eigenenergy Ev and corresponding eigenvector through its
Fourier components ϕk,v (R). The validity of such an ap-
proximation, critically quantifying field intensities compati-
ble with a perturbative regime for the radiative interaction,
is discussed later. Note that, although BO electronic states
are considered, diabaticity refers here to channels prior to
the introduction of field-induced couplings. Resonances are
solutions with Siegert-type outgoing-wave boundary condi-
tions [26] and have complex quasienergies Ev of the form
Re(Ev ) − i�v/2, where �v is the resonance width related to

its decay rate. We refer to complex scaling of the coordinate R
as a computational method to deal with L2 square-integrable
resonance wave functions [27]. The potential energy curves
for the ground X (1sσg) and first excited A(2pσu) states of
H+

2 and their transition dipole are taken from Bunkin and
Tugov, presenting the advantage of being fitted by compact
analytical functions [28]. On spectroscopic grounds some
numerical discrepancies with more accurate potentials [29,30]
can be observed, especially with the highest vibrational levels,
and even for the total number of vibrational levels accom-
modated by the ground state (19 instead of 20). Moreover,
highly accurate calculations [29,31] even predict up to three
vibration-rotation levels for the first excited A state, which is
clearly not the case of Bunkin and Tugov’s analytical function,
namely, a sum of two purely decaying exponential. But, once
again we wish to emphasize that H+

2 is but an example of a
homonuclear diatomic, with the potentiality to be transposed
to other systems, and our conclusions are not affected by
a possible lack of spectroscopic accuracy. The propagation
of the multichannel wave function is carried by an efficient
algorithm based on the Fox-Goodwin method [32,33]. In the
following, the label v designates both the field-free vibrational
level and the laser-induced resonance originating from this
vibrational state. The dynamics can similarly be described on
field-dressed adiabatic V± channels. Their associated poten-
tials V±(R) are merely obtained by diagonalizing the 2 × 2
matrix of the single-photon-dressed potentials Vg(R), Vu(R) −
h̄ω, with off-diagonal couplings μ(R)

√
I . In the specific case

of H+
2 , the field-free BO potentials Vg,u(R) asymptotically

converge to a common dissociation limit, actually taken as the
zero of energies [28]. The single-photon dressing produces a
diabatic curve-crossing situation at internuclear distances Rc

depending on the laser frequency h̄ω (or wavelength λ); large
values of Rc are reached when increasing λ.

We are looking for a FR resulting from the radiative
interaction of the lowest discrete level v+ = 0 accommodated
by the upper adiabatic potential V+(R) and the dissociative
continuum of the lower adiabatic potential V−(R), in an energy
region close to zero and a wave function localized at large
internuclear distances. Two laser parameters take part in such
a determination, namely, the intensity I and the wavelength
λ. A first step is to fix the intensity to an almost negligible
value and search for large wavelengths such that V+(R) still
accommodates at least a single vibrational bound level v+ =
0. It should be noted that when we refer to “almost-zero-field
intensity” we are actually addressing a hypothetical situation
where the potential energy curves are field dressed (by the
corresponding number of absorbed or emitted photons) but
not radiatively coupled, as if the field intensity were zero. On
practical grounds, this could be compatible with arbitrarily
low (still not strictly zero) intensities (I = 10−8 W/cm2, to
fix the ideas) which lead to the calculation of adiabatic curves
V±(R), with an avoided crossing limited to a single point.
This study can be conducted by referring to a semiclassical
existence criterion of a discrete level to be accommodated
in the upper adiabatic potential. The corresponding phase
condition could be written as [34]

∫ R+

R−
dR′ 2m

h̄
[Ev+ − V+(R′)]1/2 =

(
v+ + 1

2

)
π, (8)
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FIG. 1. Semiclassical phase (rad) as a function of the dressing
laser wavelength (μm). The horizontal lines for (v+ + 1/2)π (v+ =
0 lowest red-dashed, 1 middle green-dashed, and 2 uppermost blue-
dashed line) indicate the semiclassical limits (dots) for the number of
discrete states that are expected to be accommodated.

where R± are, respectively, the right and left turning points
of the vibrational level v+, the existence of which is under
consideration. m is the system reduced mass. For v+ = 0,
if we look for an eigenenergy Ev+ � 0 (i.e., close to the
dissociation limit), reaching the value π/2 for the semiclas-
sical phase, may necessitate very large values for the right
turning point R+. Using the above-mentioned condition, we
could determine an acceptable compromise between a photon
dressing frequency (or corresponding wavelength λ) and a
right turning point R+, such as to have a vibrational level
v+ = 0 of the upper adiabatic potential at a slightly negative
energy. As an upper limit for the phase condition, we take
R+ = Rmax, where Rmax = 40 a.u. is the maximum extension
of our spatial grid. In Fig. 1, the semiclassical phase defined
by the left-hand side of Eq. (8) is plotted as a function of the
laser wavelength λ. The horizontal dotted lines correspond to
successive values of the right-hand side for v+ = 0, 1, 2. The
dots indicate the limiting values of λ for a number (v+ + 1)
of discrete states that could be accommodated by the upper
adiabatic potential V+(R). More explicitly, we observe that λ

exceeding 180 μm, the potential is too flat to accommodate
any vibrational level. For 22 μm < λ < 180 μm or 10 μm <

λ < 22 μm, respectively, the occurrence of only a single or
two vibrational levels is expected.

These values for wavelengths being taken as starting
guesses, we address quantum calculations [Eq. (6)] for the
accurate determination of FR energies. We are considering
seven-channel calculations with almost zero-intensity THz
laser fields. More precisely, these are the ones describing
the reference single-photon Floquet block (|g, n = 0〉, |u, n =
−1〉) together with two additional lower Floquet blocks for
the two- and three-photon absorption, and an upper closed
channel describing a single-photon emission process |u, n =
1〉. The variations of the FR positions as a function of
laser wavelengths (taken in the region where a single bound
level is still accommodated according to the semiclassical
criterion of Fig. 1) are indicated in Fig. 2. The grid is
taken large enough to account for the full spatial extension

FIG. 2. Quasibound Feshbach resonance energy (cm−1) as a
function of the dressing laser wavelength (μm), extracted from
a seven-channel adiabatic calculation, assuming almost zero-field
intensity.

of the near-dissociation-threshold Feshbach wave function.
For these full-quantum calculations, the parameters which
are retained are Rmin = 0.5 a.u. and Rmax = 100 a.u. The step
size h = 0.005 a.u. is small enough for a 20-points per arch
description of the v = 18 vibrational function. The wiggling
upper adiabatic potentials resulting from seven-channel calcu-
lations are illustrated for several wavelengths (and almost zero
intensity) in Fig. 3 (left panel). They are characterized by three
crossing points which are positioned according to the photon
frequency in a multiphoton-dressed picture. These correspond
to single-photon, two-photon, and three-photon absorptions,
leading to two potential wells separated by a barrier. The wave
functions of the v+ = 0 levels supported by these potentials
are displayed in Fig. 3 (right panel). It is important to notice
that the almost zero-intensity FR wave functions are well
displayed within internuclear distances not exceeding R =
40 a.u. and their maximum amplitudes are extending from
about R = 10 to 15 a.u., that is well beyond the right turning
point of the highest bound vibrational level v = 18. It is also
worth noticing that their short-distance decreasing part does
not much depend on the adiabatic potential wiggling structure,
at least for these wavelengths. This is a consequence of the
two-photon crossing barrier hard to penetrate.

Finally, Fig. 4 fully illustrates the specific case of λ =
118 μm taken as an upper limit for the laser wavelength in
this work. The figure displays in its main panel the long-range
part of the seven adiabatic curves (at almost zero intensity)
with the corresponding one-, two, three-photon crossings. The
initial channel is the one asymptotically reaching the zero-
energy dissociation threshold (as the ground diabatic state Vg).
The inset shows an enlargement of this adiabatic potential
which accommodates but a single vibrational level. Actu-
ally this is obtained for an eigenenergy Ev+=0 = −3.2 cm−1

(close to the dissociation threshold). The spatial grid exten-
sion is large enough to accurately describe the long tail of
the corresponding wave function. The maximum probability
density is at about R = 13 a.u. The next step is the ac-
tual calculation of variable intensity field-induced FR gener-
ated by this vibrational level, using a Floquet single-photon
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FIG. 3. Seven-channel adiabatic calculations with almost zero-field intensity. Left panel: wiggling adiabatic potentials (in cm−1) for
different THz laser wavelengths. Right panel: corresponding box-normalized quasibond Feshbach resonance wave functions as a function
of R (a.u.). The color code is the same for both panels (thick solid blue for λ = 37.9 μm; dashed turquoise for λ = 70.5 μm; dashed-dotted
orange for λ = 96.5 μm; and thin solid red for λ = 118 μm).

approximation. For this we need a precise determination of
the critical laser intensity below which we are in the single-
photon oasis (perturbation model). This could be done by
referring to a criterion involving the intensity limit for the
single versus multiphoton regimes, based on |Vint/h̄ω| 	 1
[35]. The radiative interaction Vint is nothing but Vint = μ

√
I .

The corresponding maximum energy splitting between the
two adiabatic curves, at the avoided crossing position Rc, is
given by

max
R=Rc

[2Vint (R)] = 2μ(Rc)
√

I. (9)

As for the energy difference �E = 2h̄ω between subsequent
Floquet blocks, it is given by

min
R=Rmax

[�E ] = 2
1

λ
. (10)

FIG. 4. Seven-channel adiabatic potentials (in cm−1 units) for
λ = 118 μm at large internuclear distances R (a.u.) for almost zero-
field intensity. The thick solid black curve is the one asymptoti-
cally going to zero (as the ground diabatic state). The inset shows
an enlargement of this potential which accommodates the FR at
energy Ev+=0 = −3.2 cm−1, together with its box-normalized wave
function.

The ratio q between these quantities is then q = 2μ(Rc)√
(I )λ/2. Its critical value q = 1 finally leads to a critical

intensity Ic,

Ic = 1

μ2(Rc)

1

λ2
, (11)

above which the laser field should be considered strong
enough to induce nonlinear multiphoton effects. Figure 5
gives the variations of Ic as a function of λ for μ(R) calculated
at two typical asymptotic internuclear distances R = 30 and
40 a.u. For a given λ, intensities less than the critical one (i.e.,
below the corresponding curve) have to be taken as leading
to a single-photon absorption accounted for, by using only
two potential curves Vg(R) and Vu(R) − h̄ω, without the need
of introducing additional channels to describe multiphoton
processes. It is also interesting to note how the residual
nonadiabatic couplings φ depend on the laser peak intensity
for the single-photon versus multiphoton cases [35,36]. In the
single-photon limit (I < Ic), where a diabatic representation is

FIG. 5. Critical intensities (GW/cm2) above which the single-
photon perturbation regime is no more valid, as a function of laser
wavelengths (μm) for two asymptotic internuclear distances R =
30 a.u. (upper solid red curve) and R = 40 a.u. (lower dashed black
curve).
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the most relevant, one has

φ = V ′
int (R)

h̄ω
=

√
I

h̄ω
μ′(R), (12)

which leads to an increasing behavior with intensity (primes
indicate R derivatives). On the contrary, in the multiphoton
regime (I > Ic), where an adiabatic representation is prefer-
entially referred to, the nonadiabatic coupling turns out to be

φ = h̄ω

4

1

μ
√

I

d

dR
ln Vint (R) (13)

a decreasing function of intensity. This is also why the
stronger is the field and better will be the adiabatic represen-
tation with less coupled channels.

B. Critical determination of laser characteristics

The challenge is to find resonances which do not pertain to
the class of short-range diabatic ones originating from the vi-
brational levels (v = 0 to 18) of the ground state with potential
Vg(R) and lying in the continuum of the field-dressed excited
state with potential Vu(R) − h̄ω. These could be named as
chemically bound molecular states (CBM) which are pertur-
batively modified by the external laser field. We emphasize
that our objective is to produce long-range FRs which have a
completely different interpretation. They are originating from
the discrete levels with quantum numbers v+ accommodated
by the upper adiabatic potential V+(R) and nonadiabatically
coupled to the continuum of the lower one V−(R). Especially
if the diabatic curve crossing Rc occurs at large internuclear
distances as compared with the field-free equilibrium dis-
tance, such resonances do not have their field-free counterpart
among the 19 vibrational levels of H+

2 . If, in addition, they
can be laser controlled as to produce ZWRs, we would be in a
position to provide a quasistable molecular system, where the
chemical binding has been replaced by a field binding [which
we name as laser bound molecule (LBM)]. When designing
the laser, and more specifically its wavelength, we have to
check the following points: (i) Due to charge-enhanced reso-
nance in H+

2 [19] the asymptotic transition dipole is a linearly
increasing function limR→∞ μ(R) ∝ R/2. The consequence
is an increasing radiative coupling with R. In particular,
within a single-photon, two-channel description, the resulting
adiabatic channels V±(R) will asymptotically diverge, result-
ing into large-distance FRs with positive energies above the
dissociation limit, even for very low laser intensities. Only
the introduction of other Floquet blocks (multiphoton effects)
could attenuate (or better, suppress) such undesired behaviors.
Actually, this turns out to be a major point for the choice of
the laser wavelength. (ii) In a multichannel description, we
have to check that the resulting adiabatic potential wiggling,
if neglected (as in Fig. 6), has no noticeable effect on the
accuracy. (iii) The validity of time-independent Floquet model
rests on a cw-like laser (periodic field). Considering few
cycles THz pulses, an approximate fulfillment of periodicity
would require a long enough pulse duration, but still limited to
avoid non-negligible rotational effects. (iv) A careful choice
of the integration parameters for the close-coupled equa-
tions in relation with the particular shape of the long-range,

10 20 30
R(a.u.)

-300

-200

-100

0

100

200

En
er

gy
 (c

m
  )

V (R)
V (R)
V (R)
    (R)
    (R)

E(cm  ) = -2.99 -i 0.23v=18

v=17

-1

-1

Ψ
Ψ

+
-
+
g
u

FIG. 6. Adiabatic V+(R) (thick, solid red curve) and diabatic Vg

(blue dashed-dotted), Vu (orange dashed lines) potential energies (in
cm−1) as a function of R (a.u.), for an intensity of 0.65 GW/cm2. The
Feshbach resonance energy originating from v = 18 is E (cm−1) =
−2.99 − i0.23 (horizontal thin red line). The real parts of adiabatic
channel components of its wave function (labeled ± in arbitrary
units) are indicated as a thin dashed red line on channel V+, and as a
black thin solid line on channel V−.

large-extension FR should be conducted. These parameters
could markedly differ from the standard diabatic resonance
calculations. (v) Although laser intensities could be viewed as
weak, on an absolute scale, they are expected to induce highly
nonlinear effects, from middle infrared to THz wavelength
regimes (as illustrated in Fig. 5). The convergence in terms
of multiphoton effects (total number of Floquet blocks in the
calculation) has to be carefully checked.

In summary, the choice of the laser wavelength results
from a subtle compromise. Clearly, a laser in the THz regime
(λ = 118 μm) as the one considered up to here for exploratory
calculations produces an avoided curve crossing in the field-
dressed adiabatic states at large internuclear distances (close
to R = 13 a.u.) and a resulting FR close to the dissociation
threshold, at very low intensities (see Fig. 4, where the result
is illustrated at almost zero-field intensity). However, it is im-
portant to note that for this almost zero-intensity regime, the
adiabatic representation of the resulting FR does not present
any physical interest due to remaining very large nonadiabatic
couplings [Eq. (13)]. Moreover, our ultimate goal is to laser
control this resonance to promote it into a ZWR, such as
to produce a LBM. At such large-distance avoided curve
crossings, even a very moderate increase of the field strength
will induce large radiative couplings due to the asymptotic
behavior of the charge-resonant transition dipole, resulting in
important multiphoton effects. A large number of additional
Floquet blocks should then be taken into account, both for the
proper description of the highly nonlinear behavior of the FR
(convergence of the close-coupled equations) and also for a
correct asymptotic representation of the dissociation channels.
Not only the numerical approach but also the interpretation
would then be severely impacted. Moreover, when attempting
the production of a ZWR, we of course are in a nonlin-
ear regime, but preferentially with a moderate multiphoton
process. An important number of Floquet blocks may offer
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FIG. 7. Real parts of the v = 18 Feshbach resonance wave func-
tion (in arbitrary units) as illustrated through its components on the
adiabatic channels (same as in Fig. 6, but with a different scale).
Red dashed line for the V+, black solid line for the V− channel
components.

additional decay channels, the control of which goes be-
yond our present models for the ZWR description. Following
several attempts to fulfill the requirements of the different
aspects of this compromise, and also to secure a semiclassical
energy arrangement which is a basic criterion for ZWR, we
finally fixed our choice, in the following part of this study,
to a 100-ps pulse duration middle infrared laser field, with
a wavelength of λ = 25 μm (frequency ω = 400 cm−1, i.e.,
12 THz) which actually produces a curve-crossing situation
close to Rc = 9.6 a.u. The peak intensity is chosen of the
order of I = 1 GW/cm2, which, according to Fig. 5, is already
strong enough to induce nonlinear responses and multiphoton
effects.

III. RESULTS FOR LONG-RANGE FESHBACH
RESONANCES AT λ = 25 μm

A. Role of charge resonance enhanced transition dipole

We first examine the role of the asymptotically increasing
charge resonance enhanced transition dipole in a two-channel
description, with an intensity of I = 0.65 GW/cm2, still mod-
erate but with the potentiality to induce nonlinear responses.
The corresponding diabatic and adiabatic potentials are illus-
trated in Fig. 6, together with the corresponding wave func-
tions. The increasing behavior of μ(R) plays a determinant
role, at internuclear distances typically of the order of R =
12 a.u., even for this relatively modest intensity. The potential
energies are severely modified by an important increase from
their expected asymptotic behaviors. As a consequence, even
for slightly stronger fields, this would result in undesired
FRs with positive energies, above the dissociation threshold.
Figure 7 illustrates, on an enlarged scale, the components
of the corresponding FR on the adiabatic channels V±. Its
complex eigenenergy is E (cm−1) = −2.99 − i0.23, close to,
and below the dissociation threshold (taken as the origin of
energies in this field-dressed potential representation). It is
worthwhile noting that for the intensity under consideration,

FIG. 8. Adiabatic potentials of a three-block, six-channel Flo-
quet model, for a laser wavelength λ = 25 μm and an intensity
I = 0.65 GW/cm2. Only the four innermost channels are illustrated.
The labeling is the one of the asymptotic diabatic limits. The solid
thick lines correspond to the upper V+ (red) and the lower V− (black)
potentials, as discussed in the two-channel model. The Feshbach
resonance is at E (cm−1) = −15.04 − i0.29.

the imaginary part of the resonance wave function can be
safely neglected. Its component on the lower adiabatic chan-
nel V− is oscillating in the inner region (R < 9.6 a.u.), still
borrowing (as a reminiscence) its nodal structure from the
vibrational state v = 18. For larger distances (R > 10 a.u.)
a regular oscillating pattern is observed in relation with the
continuum part of the corresponding channel potential. A
slight decrease of periodicity is also observed once again
due to the role of μ(R) which locally enhances the energy
decrease of V−(R). But, more interestingly, a high-amplitude,
well-peaked component is observed on the upper adiabatic
channel V+. With its maximum amplitude around R = 11 a.u.,
this wave function does obviously not pertain to the class
of diabatic resonances. Its tiny oscillations (for R > 15 a.u.)
are in phase opposition with those of the V− component, a
contamination effect between the components (nodes are for
the same position in all channels).

We now move to a six-channel description by introducing
two additional Floquet blocks to describe in a symmetrically
balanced way multiphoton absorption and emission processes,
with respect to the previous single-photon reference block.
At this stage, our purpose is rather to examine how to sup-
press (or at least slow down) the energy increase of the
two single-photon reference channels V± at large distances,
as resulting from the charge resonance enhanced transition
dipole. The role of additional Floquet blocks for multiphoton
effects (convergence issues) will be considered later. The
resulting adiabatic potentials are illustrated in Fig. 8. When
diagonalizing the 6 × 6 diabatic potentials matrix with the
corresponding off-diagonal radiative couplings, the extreme
eigenvalues will push the intermediate ones, thus avoiding
their divergence. It is interesting to note that this argument
works satisfactorily at least up to internuclear distances of
about R = 30 a.u.. We actually observe an almost zero-energy
asymptotic value for the upper adiabatic channel V+(R) of
the reference block accommodating the Feshbach resonance,
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FIG. 9. Energy of the Feshbach resonance (in cm−1 units) as
a function of intensity in (10 GW/cm2 units). The solid black
and red dashed lines are, respectively, for two- versus six-channel
calculations, with a laser wavelength of λ = 25 μm.

whereas V−(R) goes to � −400 cm−1, actually correspond-
ing to the 25-μm-photon energy dressing. The effect of the
charge resonance enhanced transition dipole is already ob-
servable for the two-photon absorption (|g,−2〉) or single-
photon emission (|u,+1〉) channels, which asymptotically
show values below or above their expected energy thresholds
(±800 cm−1, respectively). It is also interesting to note the
wiggling behavior (as already observed for other wavelengths,
in Fig. 3) resulting from the avoided crossing positions for
single- (R = 9.6 a.u.), double- (R = 8.1 a.u.), and triple-
(R = 6.9 a.u.) photon processes. For clarity, it should be
noted that only the single-photon avoided crossing is re-
lated to a direct radiative process |g, n = 0〉 → |u, n = −1〉,
all higher-photon processes involve sequential absorption,
e.g., |g, n = 0〉 → |u, n = −1〉 → |g, n = −2〉, that we name
double-photon process. The consequences on FR energies, as
evaluated for different laser intensities, are analyzed in Fig. 9.
When limiting to a two-channel model, intensities exceeding
0.75 GW/cm2, are already leading to a resonance position
above the dissociation threshold (with positive energy). It
is interesting to note that, when moving to a six-channel
description to accommodate resonances below the dissocia-
tion threshold, this range of intensity can be extended up to
2.55 GW/cm2.

B. Multiphoton issues affecting Feshbach resonances

We now return to the role of a multichannel description for
examining the nonlinear response resulting from multipho-
ton processes undergone by the molecule when subjected to
nonperturbative radiative interactions (strong-field effects). In
Fig. 10, we plot the FR rates as a function of laser intensities.
These are calculated solving close-coupled equations with
the inclusion of multiphoton dynamics, through additional
Floquet blocks describing both absorption and emission pro-
cesses, up to convergence.

The single-photon process is described by the reference
Floquet block involving but two diabatic channels, namely,
|g, 0〉 and |u,−1〉. This model is depicted in Fig. 10 by the

FIG. 10. Feshbach resonance rates (in cm−1 units) as a function
of the laser intensity (in 10 GW/cm2 units) for increasing number
of channels describing multiphoton processes at λ = 25 μm. NV
designates the total number of channels (absorption and emission),
NC the one of photon emission. Single-photon rates are given by the
solid black curve (NV = 2). An almost converged result is obtained
for NV = 16 and NC = 4, displayed as violet dots.

label NV = 2 (NV being the total number of channels). Up
to intensities of about 0.1 GW/cm2, the rate � is increasing
linearly with respect to the intensity. This is the so-called
perturbative regime, where the diabatic channels hold the fin-
gerprints of the molecule. The corresponding FRs are directly
related to field-free vibrational states of the ground electronic
potential Vg(R) which are radiatively and weakly coupled
to the dissociative continuum of the field-dressed excited
electronic potential Vu(R) − h̄ω. In particular, the FR we have
in mind is the one originating from v = 18. This describes
a situation we can name as a chemically bound quasistable
molecule (CBM), its lifetime being proportional to 1/�. The
subsequent nonlinear (nonperturbative) behavior of � shows
first a slower increase, with saturation at intensities of about
0.65 GW/cm2. For stronger field intensities, we observe a
regular decrease of �. This is a well-known basic mecha-
nism depicted as vibrational trapping [12–14]. Actually, the
fingerprints of the molecule move from the vibrational levels
of the diabatic potential Vg(R) to those of the upper adiabatic
potential V+(R) which are nonadiabatically coupled to the
continuum of V−(R). As has been previously shown, these
nonadiabatic couplings, contrary to the diabatic ones, are
decreasing with increasing intensities [Eq. (13)]. The stronger
the field, the better is the efficiency of the vibrational trapping
mechanism. Accordingly, the vibrational level v+ accommo-
dated by V+(R) is less coupled to its corresponding dissocia-
tive continuum V−(R), the resulting FR showing an increasing
lifetime. Although the model is based on diabatic channels
[the close-coupled equations (6) actually rest on a diabatic
representation], an adiabatic description is better suited for the
interpretation. The most important and unexpected behavior
is observed for a critical field intensity of 3.04 GW/cm2, for
which the rate is almost strictly zero. This very interesting pe-
culiarity which has been named zero-width resonance (ZWR)
is not a consequence of a regular decrease of the nonadiabatic
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coupling [as could be seen from a logarithmic scale repre-
sentation log �(I ) resulting in very sharp dips [8,37]]. It has
in particular been shown that the responsible mechanism is
a two-adiabatic-channel destructive interference that happens
for a critical choice of two laser parameters, wavelength λZWR

and intensity IZWR [38]. Once again, it is worthwhile noting
that the corresponding Feshbach-type ZWR resonance does
not pertain to the class of diabatic resonances originating
from one of the field-free vibrational levels, but has rather
an adiabatic interpretation as originating from a field-induced
vibrational level v+ accommodated by the upper adiabatic
channel potential V+(R). Even more importantly, for spe-
cific laser parameters, this FR merges into a ZWR, i.e., a
bound state with some peculiarities: wave function located
at large internuclear distances and energy positioning close
to the dissociation threshold. The quasistable highly stretched
molecule which is formed can only exist as long as the laser
is switched on with its characteristic parameters, but still in
a rather robust way. We are designating this as a laser bound
molecule (LBM) as opposite to a chemically bound molecule
(CBM). For the specific case of H+

2 , as already mentioned, it
should be noted that the occurrence of at least one vibrational
level A(v = 0) accommodated by the excited state potential,
due to long-range forces, has been predicted [39] and later
confirmed by nonrelativistic quantum calculations going be-
yond BO approximation [29–31]. This, of course, is by no
means the LBM we are referring to here, not only because
the potential function we are using does not accommodate
such a level, but the LBM wave function results from an
interference mechanism involving both the ground and excited
states, which obviously is not the case of A(v = 0).

As we have seen, highly nonlinear responses of the molec-
ular system to the external laser field can be observed even
without referring to multiphoton processes. Actually, the ba-
sic mechanisms at the origin of such nonlinearities, namely
bond softening or vibrational trapping, are in relation with
important modifications of the dressed adiabatic potential
energies already present in the reference Floquet block. Mul-
tiphoton effects should, however, be properly described in
order to get converged results. This is done by progressively
introducing additional Floquet blocks. The periodicity of the
Brillouin zone is based on an energy difference of �E = 2h̄ω

[Eq. (10)], such that the two channels making up a Floquet
block cannot be separately considered. In other words, if we
add channels describing absorption or emission, this should be
done through extra two-channel Floquet blocks symmetrically
disposed with respect to the reference single-photon block.
If NC denotes the number of closed emission channels (i.e.,
the ones above the dissociation limit in the field-dressed
molecule picture, namely, |u,+1〉, |g,+2〉, |u,+3〉, ...), we
must in principle fulfill the condition NV = 2(2NC + 1). The
results are displayed in Fig. 10. The cases where the Brillouin
periodicity is assumed (NV = 2, 6, 10), the rates � present
the expected smooth decrease, up to intensities close to IZWR.
For the others, nonphysical increasing values are obtained for
intensities stronger than 2 GW/cm2. From Fig. 10 we also ob-
serve that multiphoton effects start to play a role for intensities
above 0.2 GW/cm2 resulting into lower rates (more efficient
vibrational trapping). The convergence is almost reached with
a six-channel (NV = 6, NC = 1) description. Finally, the

FIG. 11. Feshbach resonance trajectories at λ = 25 μm in the
complex energy plane (imaginary versus real parts in cm−1) with the
field intensities referred to in the abscissa of Fig. 10. The single-
photon process (NV = 2) is illustrated by the solid black line. Same
notations as in Fig. 10, for the multiphoton processes (NV > 2).

critical intensity for the ZWR is only slightly removed for a
higher intensity 3.04 GW/cm2. To be complete, we have to
say that, mathematically speaking, the ZWR we are referring
to has a full interpretation solely in a two-channel description.
Additional absorption channels offer extra dissociation partial
rates which will simply add to the (zero) one of the reference
block [40]. Even though the multiphoton rate is not strictly
zero, one can see from Fig. 10 that for the intensity regime in
consideration it remains close to this value. FRs are also char-
acterized by their energy positioning. In Fig. 11 we examine
their trajectories in the complex energy plane with increas-
ing field intensities. The differences between single-photon
(NV = 2) and multiphoton processes (NV > 2) are even more
marked for these trajectories. The field-free situation corre-
sponds to the real energy of the 18th vibrational level of
Vg(R), Ev=18 = −20.23 cm−1, slightly below the dissociation
threshold taken as the origin of energies. In the single-photon
(NV = 2) model, the undesired positive energies, in relation
with the charge resonance enhanced transition dipole μ(R),
occur for intensities exceeding 2.55 GW/cm2 as already ob-
served in Fig. 9. This situation dramatically changes with
increasing number of channels. Almost all intensities up to
the ones close to the ZWR produce long-lifetime FRs (� less
than 10−3 cm−1) which are positioned below the dissociation
threshold, as expected. In this respect, the role of multiphoton
processes is even more important than for the rates, for which
a six-channel (NV = 6, NC = 1) description seems enough
converged for the intensity regime under consideration.

IV. ZWR AND LASER BOUND MOLECULE
CHARACTERIZATION

A. ZWR in terms of an interference mechanism.

We are hereafter generalizing Child’s semiclassical ap-
proach [20,21,38] to a multichannel description of the ZWR.
This is done by building two adiabatic potentials V sc

± (R) which
will accommodate two energy levels that we should bring
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FIG. 12. Potential energy curves (in cm−1 units) from a six-
channel (NV = 6, NC = 1) adiabatic model with a laser of wave-
length λ = 25 μm and intensity I = 0.2 GW/cm2. The channels are
labeled in terms of their asymptotic diabatic counterparts. The three
adiabatic potentials that play a part in the generalized semiclassical
model are depicted in thick lines (dotted dashed blue, dashed black
and solid red). It is important to note that two potential steps have
been introduced for the single (step 2, at R = 9.6 a.u.) and two-
photon (step 1, at R = 8.1 a.u.) avoided crossings (step 1 being the
novelty with respect to Child’s original model).

into coincidence through a laser control. It is precisely this
coincidence condition (also taking into account an additional
phase factor χ ) which is required by the semiclassical theory
of destructive flux interference among these adiabatic chan-
nels. The two potentials in consideration are built piecewise
from the adiabatic ones illustrated in Fig. 12 and labeled
in conformity with their asymptotic limits. More precisely,
the lower adiabatic potential V sc

− (R) follows, up to the two-
photon diabatic crossing point (R = 8.1 a.u.), the adiabatic
channel |g,−2〉. At R = 8.1 a.u., a step function (labeled
step 1 in Fig. 12) leads to the adiabatic potential of channel
|u,−1〉 which in turn is followed up to the single-photon
diabatic crossing point (R = 9.6 a.u.). The generalization for
the multiphoton process of Child’s original model is precisely
this additional step function (i.e., step 1). A second step
function (labeled step 2, in Fig. 12) then leads to the adiabatic
potential of channel |g, 0〉 which is followed up to the end
of the grid. As for the upper adiabatic potential V sc

+ (R), it is
nothing but the adiabatic potential of channel |u,−1〉 up to
R = 9.6 a.u., and then the one of |g, 0〉. Figure 13 shows the
wave function of the piecewise lower adiabatic potential with
its two local discontinuities in terms of the step functions of
about 240 cm−1 height. The smooth behavior and regularity of
the wave function with its 18 nodes shows that the algorithm
does not suffer from any numerical convergence issues. This
illustrates graphically the numerical validity of the multipho-
ton generalization which is attempted. In conformity with
Child’s original semiclassical model, this generalized version
also leads to a ZWR obtained through a destructive interfer-
ence mechanism controlled by specific laser wavelength and
intensity parameters, which are tuned in such a way that two
vibrational levels v and v+, with energies E sc

v and E sc
v+ , are

FIG. 13. The wave function (in arbitrary units) of the lower
piecewise built adiabatic potential V sc

− (R) including the two step
functions at R = 8.1 a.u. (two-photon absorption) and R = 9.6 a.u.
(single-photon absorption) depicted, respectively, as step 1 and step
2 in Fig. 12, but now for an intensity I = 3.6 GW/cm2, the semiclas-
sical estimate of IZWR.

brought in coincidence. More precisely, these energies are
defined by the two quantization conditions∫ Rr

Rl−
dR

2m

h̄

[
E sc

v − V sc
− (R, I )

]1/2 =
(

v + 1

2

)
π, (14)

∫ Rr

Rl+
dR

2m

h̄

[
E sc

v+ − V sc
+ (R, I )

]1/2 + χ (I ) =
(

v+ + 1

2

)
π

(15)

with v = 18 (at I = 0) and v+ = 0. Rl
± are the left turning

points on V sc
± and Rr the common right turning point, fixed in

such a way that the integrand be a real-valued function. The
phase χ is a function of the intensity-dependent Landau-Zener
transition probability at the avoided curve crossing. Its full
expression involves incomplete gamma functions [21,34]. It
is interesting to note that χ (I ) smoothly varies from −π/4
(−0.7854 rad) for zero-field intensity, up to −0.23 rad for
I = 4 GW/cm2, which is our upper intensity limit. Actually,
this variation of χ reveals to be crucial when matching E sc

v (I )
and E sc

v+ (I ), as displayed in Fig. 14. This demonstrates that,
although not obvious for such wavelengths as sketched in
introductory considerations, a theoretical support in terms of
a two-channel destructive interference mechanism is provided
for a ZWR produced through the couple of critical laser
parameters (λ = 25 μm, I = 3.6 GW/cm2). We emphasize
that these are actually rather good semiclassical estimates
for quantum mechanically obtained values (λZWR = 25 μm,
IZWR = 3.04 GW/cm2) validating thus, in a posteriori way,
the multichannel generalization of the model.

B. Laser bound molecule LBM characterization

In order to better characterize the laser bound quasistable
molecular system LBM (as opposite to the usual chemically
bound molecule, CBM), we now examine the peculiarities of
the long-range FR supporting it. More precisely, the termi-
nology LBM would apply for this state with a field intensity
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FIG. 14. Semiclassical coincidence condition for the energies (in
cm−1 units) of the double-step piecewise lower adiabatic v = 18
level E sc

v in solid black and the upper adiabatic v+ = 0 level, with
its phase correction E sc

v+ in dashed red, as a function of laser intensity
(in 10 GW/cm2 units). The two almost parallel curves intersect at
about 3.6 GW/cm2, which is the semiclassical estimate for IZWR =
3.04 GW/cm2 obtained from quantum calculations.

IZWR = 3.04 GW/cm2, producing the long-lived ZWR. Three
observables are analyzed:

(i) The LBM wave function �F (R). Figures 15 and 16
display all the six components of �F (R) on the channels
of the (NV = 6, NC = 1) model illustrated in Fig. 12, and
for the ZWR intensity. It is worthwhile noting that for this
particular intensity, the FR is actually a bound state with
strictly real-valued wave-function components. The strictly
bound character of the ZWR is clearly evidenced by the
square-integrable (box-normalized) wave functions, without
any long-range oscillation which could be interpreted as rem-
iniscences of the open (continuum) channels. In both repre-
sentations, but especially in the adiabatic one, one observes

FIG. 15. The six-channel box-normalized wave-function compo-
nents of �F (R) (in arbitrary units) for the ZWR intensity IZWR =
3.04 GW/cm2, in diabatic representation, with its proper labeling.
The almost zero imaginary parts of the wave-function components
on all channels are not displayed.

FIG. 16. Same as in Fig. 15, but for the adiabatic representation.

the main amplitude peak on the channel which asymptotically
corresponds to |g, 0〉 and accommodates the ZWR (as an
adiabatic condensation). Once again, it is important to note
that such wave functions sharply peaked at large internu-
clear distances have no counterparts in terms of field-free
vibrational wave functions. Only very attenuated signatures
of v = 18 bound state can be seen in appropriate channels at
short distances. It is in this respect that they markedly differ
from CBM and open the interpretation of LBM.

(ii) Average values of 〈R〉. Such averages can first be
evaluated for the class of states building up the CBM. These
are the field-free vibrational bound levels χgv (R) (v = 0 to 18)
of the ground-state potential Vg(R). We are using the following
definition:

Rv = |〈χgv|R|χgv〉|
||χgv||2 . (16)

The results are collected in Fig. 17. A smooth and rather
modest increase is observed from the equilibrium value of

FIG. 17. Average values of R (〈R〉 in a.u.) as a function of energy
(in cm−1) for the ground Vg state vibrational levels (v = 0 up to 18)
represented by black diamonds. LBM in red dot stands for the laser
bound molecule (v+ = 0). The continuous line is only for guiding
purpose.
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FIG. 18. Normalized main components (in arbitrary units) of the
adiabatic long-range FR wave functions for three laser intensities.
The one in dashed red corresponds to IZWR as denoted LBM in
Fig. 17. The two others are for I = 2 GW/cm2 (solid black) and
I = 4 GW/cm2 (dashed-dotted blue).

R0 = 2 a.u., up to v = 10 where R10 = 3.78 a.u. For levels
v > 15, due to important anharmonicity, the increase becomes
much larger with the molecule stretched up to an average
value R18 = 10.9 a.u. This is what we typically have in
mind when addressing to a chemical binding with the highest
possible vibrational excitation. To quantitatively point out
the difference with what could be obtained when addressing
quasistable molecules with laser-induced binding forces
(LBM), we calculate the average internuclear distance refer-
ring to the long-range FR:

RF (I ) =
∣∣〈�F

v+ (I, R)
∣∣R∣∣�F

v+ (I, R)
〉∣∣∣∣∣∣�F

v+ (I, R)
∣∣∣∣2 , (17)

where �F
v+ (I, R) is the main adiabatic component of the

FR as obtained from the six-channel calculation illustrated
in Fig. 18 for an intensity corresponding to the ZWR. For
other intensities, the Feshbach wave function is obviously no
more real. However, as its imaginary part is rather small, we
avoid the c-dot product [41] when calculating the integrals
building up RF (I ) [Eq. (17)], by only considering its real part.
Figure 18 collects �F

v+ (I, R) for three different intensities,
including IZWR. We observe together with a slight flattening
a shift toward larger internuclear distances of the maximum
amplitude. This of course is well interpreted when referring
to the intensity-dependent modifications of the main channel
adiabatic potential accommodating the FR, as illustrated in
Fig. 8. Finally, Fig. 19 displays, as a function of energy, the
average values of R for both the field-free vibrational levels
and for the laser-induced FRs at different field intensities. It
is interesting to note that molecular stretching up to RF =
13.8 a.u. is obtained for the strongest field in consideration
I = 4 GW/cm2. The ZWR leads to RF = 13.33 a.u. which is
notably larger than the highest value R18 = 10.9 a.u. obtained
for the field-free molecule. Here again the conclusion is that
the long-range FRs which are obtained actually show an aver-
age value for the stretching exceeding 30% as compared to the
maximum value obtained with the highest excited field-free

FIG. 19. Average values of R (〈R〉 in au) for upper (v > 15)
field-free vibrational states building up the CBM and for the long-
range FRs at various laser intensities. The one corresponding to IZWR

illustrates the LBM as already mentioned in Fig. 17.

molecule. In particular, for the laser parameters corresponding
to the ZWR, it shows that we have successfully achieved our
objective to produce a stable laser bound molecule (LBM)
with probability density at large internuclear distances.

(iii) The overlaps of �F (I, R) with the field-free vibra-
tional levels. We are now interested in the dynamical role the
ZWR may play during a collision process to temporarily trap
the incoming collisional wave packet. This could be done by
an adiabatic switching of the laser pulse (using for instance a
sine-square rising front from I = 0 to IZWR = 3.04 GW/cm2)
that allows the building up of the ZWR during the time where
the collisional wave packet reaches the long-range avoided
curve-crossing region. At this time and all over the pulse
duration, part of the collisional wave packet (trapped or not
by the ZWR) will have some components mainly on the
highest excited vibrational levels (say v = 16, 17, and 18),
which actually behave, in turn, as finite lifetime resonances
due to the ongoing laser excitation. The relatively short-range
wave function of such resonances being not too sensitive to
long-distance adiabatic potential energies [modifications due
to μ(R)], a simple two-channel calculation is assumed to be
enough for the evaluation of their widths, or their lifetimes.
For the specific intensity leading to the ZWR, much contrasted
lifetimes are obtained, namely, τ18 = 5105 ps, τ17 = 0.4 ps,
and τ16 = 78.3 ps. As a reminder, for this laser intensity the
ZWR has, in principle, an infinite lifetime. This means that
for a laser pulse with a plateau value at IZWR, a duration of
about 78 ps will be enough to dissociate the two neighboring
resonances v = 17 and 16. This is in relation with the filtration
strategy based on the ZWR that we have previously analyzed
in a different context [42]. Following the plateau value, the
laser pulse is adiabatically switched off (by a final sine-square
decrease, for instance). During this time, we examine how
the ZWR (or the collision wave packet which is trapped
by it) is projected on its neighboring field-free vibrational
states. At this end, we calculate the overlaps of the main
component �F

v+ (I, R) of the FR with the field-free vibrational
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TABLE I. Overlaps Sv (I ) of the box-normalized main adiabatic
component of the FR with the field-free vibrational levels (v =
16, 17, 18) for different field intensities. The last column indicates
the contrast defined as S18/S17.

I (GW/cm2) S18 S17 S16 Contrast

1.0 0.876 0.407 9.3 ×10−2 2.15
2.0 0.855 0.389 9.4 ×10−2 2.20
3.04 0.818 0.333 8.7 ×10−2 2.45
4.0 0.788 0.290 5.5 ×10−2 2.72

wave functions χgv (R):

Sv (I ) =
∣∣〈χgv

∣∣�F
vk (I, R)

〉∣∣
||χgv||

∣∣∣∣�F
v+ (I, R)

∣∣∣∣ . (18)

This calculation is conducted by extracting the real part of
the main adiabatic component of �F

v+ (I, R) from a six-channel
(NV = 6, NC = 1) model, as discussed previously, for some
intensities including the ZWR one. The results are gathered in
Table I.

Three observations are in order: (i) There are important
differences between v = 18, 17, and 16. In particular, the
overlaps with v = 16 are negligible. In a fortiori way, the
ones affecting v < 16 will be even less. We can thus focus
on v = 18 and 17 for the main projection components of
the long-range FR, with a large dominance on v = 18 (about
0.8 as compared to 0.3 on v = 17 for the ZWR intensity
of 3.04 GW/cm2). (ii) The contrasts defined as the ratios of
S18/S17, are regularly increasing with intensity. The passage
from the ZWR intensity does unfortunately not give rise to any
local enhancement that could be exploited in a filtrationlike
strategy. (iii) However, referring to a control strategy with
an adiabatically rising pulse, followed by a plateau at IZWR

with a duration of about 80 ps, resonances originating from
v = 17 and 16 will be completely washed out. Moreover,
even a plateau duration of 0.4 ps would be enough to deplete
the v = 17 resonance. The overlap with v = 16 (although
still present for such pulse duration) being negligible, the
population (probability density) trapped in the ZWR will
finally be adiabatically transported in, but a single excited
vibrational level (v = 18) of the ground-state potential, which
precisely is the objective of our control scheme.

V. CONCLUSION AND PERSPECTIVES

In summary, on a structural basis, we have clearly ev-
idenced the possibility to produce a quasistable molecular
system (LBM) for which the interatomic binding forces are
laser induced. In contrast with the standard field-free molecule
where the interatomic binding forces are of chemical origin
(CBM), the LBM system is described by long-range finite-
lifetime Feshbach resonances that could be controlled, up
to a ZWR formation. This leads to a stable molecule with
different controllable structural properties than the CBM.
From a dynamical viewpoint, we have also shown how this
LBM once formed by an adiabatic switching of a laser pulse,
will project preferentially on three of the most excited field-
free vibrational levels (v = 18, 17, 16). Moreover, a filtration

FIG. 20. ZWR loci in the laser parameter plane (wavelength
versus intensity) The solid black dots correspond to couples
(λZWR, IZWR) producing a given ZWR. The solid line corresponds to
an interpolation, and the red dots a plausible extrapolation, showing
the possibility to obtain ZWRs even for very low intensities, provided
that the wavelength is accurately chosen.

strategy is referred to for defining a pulse duration such as
to dissociate all population deposited on vibrational excited
states of the CBM, except v = 18. Generalizing ZWR to the
multiphoton context and using it as a basic ingredient for
two mechanisms, namely, trapping of the scattering wave
packet and filtration among excited vibrational levels, we have
worked out a full optical control strategy for a laser-assisted
collision process ultimately leading to a single electronic and
vibrational state of a stable molecule.

We emphasize that our study should be considered as a
principle of concept. We claim that, both the choice of the
molecular system itself and the laser characteristics present
the potentiality to be further adjusted, to fit the requirements
of a specific experimental situation. More precisely, concern-
ing the molecule, H+

2 is just an example of a homonuclear
diatomic system. The low-dimension assumption, in relation
with its field-induced alignment, could be removed by in-
troducing rotational dynamics. We have previously shown
that this would amount to additional channels in the Floquet
description, but still compatible with the interference mech-
anism leading to a ZWR [42]. As for the role of the charge
resonance enhanced transition dipole that has a major impact
on the asymptotic region, where precisely the long-range FRs
are localized, it has been analyzed in detail, uncovering thus
all cases presenting such a challenging difficulty. Concerning
the wavelength and intensity range of the laser parameters, we
have proceeded to a specific choice based on a comprehensive
argumentation. It is, however, important to note that other
couples of (λ, I) are also possible. In particular, the destruc-
tive interference leading to the ZWR can be obtained even
with much lower intensities, provided that the wavelength is
carefully adjusted for the coincidence condition [Eqs. (14) and
(15)] to be fulfilled. An example based on converged quantum
calculations is given in Fig. 20. We have already proven the
existence of such ZWRs occurring for low intensities (on an
absolute scale) still giving rise to high nonlinearity, as they are
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responsible of radiative couplings among energetically close
enough vibrational levels resulting from a specific photon
dressing [43]. In this work, we fix our choice on a more gen-
eral presentation with a thorough discussion of multiphoton
dynamics, more pedagogically illustrated with higher intensi-
ties and shorter wavelengths, while keeping some flexibility
in their choice.

The future of this work will be a complete dynamical
description of a laser-controlled collision process, based on
the mechanisms which have been so far discussed. This should
ultimately be conducted together with an optimization of the
issue of connecting the initial collisional wave packet to the
FR. As mentioned in the literature, this could be achieved
referring to two strategies: (i) modeling the scattering using
a Gaussian wave packet with a rather low group velocity, im-
posing an inward propagation to meet the FR with a favorable
overlap (choice of sharp enough energy distribution, velocity,
and initial spatial position); (ii) putting the whole system in
a harmonic trap with large spatial extension, describing the
relative motion between atoms, and using a laser field to

induce a dipole transition to associate the lowest trap level
to the FR. More precisely, a pulse shape with a time-adiabatic
coupling has to be worked out to connect the initial Gaussian
wave packet to the FR which actually has merged in a ZWR,
through a field intensity rising from I = 0 to IZWR. The adi-
abatic switching seems an advantage to progressively follow
the ZWR, as displayed in Fig. 20 without any population loss
and, more importantly, avoiding mathematical issues related
with the morphology, in terms of exceptional points, of the
non-Hermitian Hamiltonian [9]. The previously described fil-
tration strategy will then prepare a single excited level v = 18,
from which a standard STIRAP technique could bring the
population on v = 0. This is ultimately an alternative way to
prepare an ultracold molecule.
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