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Hybrid Gaussian–discrete-variable representation for describing molecular double-ionization events
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A hybrid method that combines Gaussian basis functions typically used in bound-state molecular electronic
structure calculations with a grid-based discrete-variable representation with finite elements suitable for a
general electronic continuum representation is used to fully describe the double ionization of molecular H2 by a
single photoabsorption. This work expands the hybrid method, previously applied to single-ionization events, to
double photoionization. Constructing the full two-electron operator encoding the electron correlation necessary
to doubly ionize the target via the action of a single photon requires all classes of mixed integrals between
combinations of the different basis-function types. Comparison of the present results with benchmark theoretical
calculations and experimental results shows excellent agreement for both molecular H2 and its united-atom
limit, atomic helium; the triply differential cross sections that relate the angular distribution and energy sharing
of all of the particles in the frame of the molecule are compared. The two-electron results computed using this
hybrid basis hint at application of this general descriptive scheme beyond this simplest molecular target towards
describing double ionization in more complicated and experimentally relevant molecules.
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I. INTRODUCTION

The design and application of suitable and efficient repre-
sentations for continuum processes, especially for a general
molecular target, remain a continued goal for computational
studies of collisional phenomena. In particular, double pho-
toionization in which an atom or molecule yields two ejected
electrons via the absorption of a single photon provides a
direct pathway to observe the correlated electron dynamics
since the process is driven by electron correlation [1–8]. For
even the simplest molecular target, H2, a full description
of this process which can elucidate differential quantities
such as energy sharing probabilities and angular distribu-
tions relative to the molecular axis (i.e., body-frame obser-
vations) requires sophisticated and computationally intensive
treatments. This is due to the relatively small magnitude
of the double-ionization amplitudes compared to the single-
ionization channels that dominate at photon energies near the
double-ionization threshold, wherein these small-probability
events directly probe the electron correlation throughout the
process [9]. In a similar vein, detailed experimental measure-
ments that catch several ionized fragments in coincidence and
can reconstruct the body-frame information at the moment of
photoabsorption from the resulting momentum of the frag-
ments represent the state of the art in fully describing such
molecular processes where two electrons are ejected, followed
by a Coulomb explosion of the residual target.

The fundamental molecule to investigate the detailed pho-
toelectron angular distributions in the body frame from single-
photon double ionization that has the most complete ex-
perimental measurements is H2 (or D2) [10–17]. Numerous
ab initio theoretical calculations over the last few years have
helped elucidate and inform these coincidence experiments

[18–28]. Still, one of the challenges inherent in a theoretical
description is the ability to accurately represent the molecular
continuum states for even the simplest molecules like H2.
For example, pure grid-based calculations have dominated
due to their computational advantages in producing highly
structured multiprocessor representations of the operators and
wave functions in a Born-Oppenheimer picture of molecular
hydrogen that promotes the ground-state wave packet ver-
tically into the electronic double continuum. For diatomic
molecules such as H2, another computational advantage can
be gained by utilizing prolate-spheroidal coordinate systems
that preserve the cylindrical symmetry of diatomics and build
in the singularities at the foci and accurately represent cusps
in the electronic wave function at the nuclei [26–28].

We previously reported an approach that treats the elec-
tronic coordinates using a combined representation with an-
alytic Gaussian-type basis functions near the nuclei and
overlapping a finite-element discrete-variable representation
(FEM-DVR) grid-based approach that spans the radial coordi-
nate into long-range regions that become relevant in ionization
problems and must be able to efficiently represent the oscilla-
tory nature of the continuum electrons far from the nuclei. In
Refs. [29,30] (hereafter referred to as paper I and paper II, re-
spectively), we described this “hybrid Gaussian basis” and ap-
plied it to molecular single photoionization. Subsequently, we
also utilized this combined Gaussian-DVR representation to
compute molecular-frame photoelectron angular distributions
from heavier-nucleus diatomic molecules [31]. The underly-
ing combination of analytical basis functions which are well
suited and ubiquitous for computing exponentially decay-
ing bound states in standard quantum chemistry calculations
with grid-based FEM-DVR descriptions that provide efficient
and essentially complete radial descriptions of unbounded
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states seeks to join the natural advantages of these different
methods for describing molecular continuum processes, and
these previous works have illustrated the application of these
hybrid basis techniques to, so far, only single-photoionization
processes. We note that, conceptually, the partitioning of the
coordinate space into inner and outer regions has been utilized
extensively in R-matrix theory for collisional physics [32],
and the philosophical root with R-matrix theory that different
regions of space can be treated uniquely is common to both
approaches.

In this work, we extend the hybrid-basis methods to the
substantially more challenging problem of double photoion-
ization of two-electron targets. In particular, we describe and
compute all of the specific classes of mixed two-electron in-
tegrals (i.e., unique combinations of Gaussian-type and FEM-
DVR basis functions) and utilize all classes for the full two-
electron problem. We previously enumerated these classes in
paper II but have had occasion to utilize only certain classes
for computing one-electron closed-shell direct and exchange
operators in those previous molecular single-ionization stud-
ies [31]; here we shall need all of them. Additionally, we will
incorporate the single-ionization continuum states represented
in the hybrid Gaussian-DVR basis (which was primarily de-
scribed in paper I) in order to extract the double-ionization
amplitudes from all other energetically open processes using
a computationally efficient testing-function formalism that we
employed previously for similar double-ionization descrip-
tions [23,33], including time-dependent implementations for
representing few-photon absorptions [34]. The one-electron
continuum functions are meant to be constructed using the hy-
brid basis in a manner similar to the full two-electron solution
in order to extract the single-ionization continuum from the
double-ionization components via orthogonality since both
represent eigenstates of the same residual Hamiltonian.

In Sec. II, we overview the Gaussian-DVR method and
enumerate the six particular classes of two-electron integrals
that must be accurately represented in order to fully incor-
porate the electron-electron repulsion that drives the double-
photoionization process. In order to provide a simpler case
that is uncomplicated by the molecular geometry but still re-
quires the (otherwise similarly constructed) electron-electron
repulsion to be correctly represented, we first consider in
Sec. III application of the hybrid basis to describe double
ionization of atomic helium. This is followed by a brief
comparison of results calculated for H2 double ionization
with a few key theoretical [21] and experimental benchmarks
[13,16]. We conclude with brief remarks in Sec. IV.

II. THEORY

We begin with a brief summary of the key features of the
hybrid Gaussian-DVR description of the electronic coordi-
nates that will be employed in the double-ionization problems
considered below. Further details of the method, particularly
the construction of one-electron operators and application to
single-ionization problems, can be found in papers I and II
[29,30]. Atomic units are used throughout the following.

Figure 1 illustrates the main concepts of the hybrid
Gaussian-DVR representation. From the origin (either at the
nucleus of an atomic problem or at the midpoint of the
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FIG. 1. Top: schematic of the radial coordinate partitioning in
a hybrid Gaussian-DVR scheme. Inside of r0 lie the nuclei of a
molecular target, and Gaussian-type orbitals (GTOs) are used to
describe the electronic coordinates. Beyond this region lie real
FEM-DVR functions that overlap and connect with the Gaussian
functions that decay exponentially well before the exterior complex
scaling (ECS) rotation point. Only FEM-DVR functions exist in this
complex-scaled region, which imposes the boundary conditions to
produce outgoing-wave solutions. Bottom: The two leading compo-
nents [ks(1)kp(2) + kp(1)ks(2)] of the full-solution wave function
(real part) plotted in the radial (r1, r2) plane. The colors highlight the
partitioning of the radial space, with green indicating the portion of
the wave function expanded only in GTOs (where either r1 or r2 is
small, here within 1.0 bohr of each radial axis), while purple shows
the overlap region where the full solution is expanded in both GTOs
and FEM-DVR functions.

internuclear distance for H2) the radial coordinates of each
electron will be subdivided into regions as shown in the
top panel of Fig. 1. The innermost region constitutes the
part of physical space that is purely described by Gaussian-
type orbitals Gi(r). Any standard quantum chemistry package
that permits output of the relevant parameters (e.g., orbital
exponents, normalization coefficients, etc.) and matrix ele-
ments between the Gaussian orbitals will suffice. Beyond this
Gaussian region containing the nuclei of the target begins (at a
radial distance r0) a region described by both Gaussians Gi(r)
and FEM-DVR functions φ j (r) in the radial coordinate with
spherical harmonics encoding the angular coordinates,

χa
j (r) = r−1φ j (r)Yla,ma (r̂), (1)

which overlap with the exponentially decaying tails of the
Gaussian functions centered only within the region bound by
radius r0. It is in this second region that the two different
basis function formats overlap and connect to each other. In
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particular, the finite-element nature of the FEM-DVR permits
flexibility in guaranteeing that the two portions of the overall
basis are sufficiently connected while simultaneously seeking
to avoid linear dependence. Aside from joining with the inner
region via this overlap with the Gaussians, the FEM-DVR
functions extend this intermediate region substantially further
out towards a boundary where exterior complex scaling (ECS)
rotates the radial coordinates of the ejected electrons into
the complex plane and effectively allows the problem to be
treated on a finite grid by imposing outgoing wave boundary
conditions [33]. We note that this approach utilizes a single
FEM-DVR grid primarily to provide the long-range descrip-
tion of the electron dynamics and is philosophically different
from recent multicenter approaches that feature subgrids of
FEM-DVR functions at different atomic centers [35], here
instead using the Gaussian functions centered at each atom
within the inner region to connect to the overall FEM-DVR
grid.

The bottom panel of Fig. 1 shows the sum of the real
part of the wave function for the two most dominant partial-
wave terms within the full scattered solution [ks(1)kp(2) +
kp(1)ks(2)] of double photoionization of He plotted in the
r1, r2 plane to illustrate the division of radial space in the
hybrid method. The two colors differentiate where the inner
region (lying close to either radial axis) is expanded only in
Gaussian basis functions and where the FEM-DVR functions
begin (typically less than an atomic length unit a0 from
the nearest nuclei). In practice, the connection between the
different types of basis functions is limited to a few bohr
distances from either axis (i.e., where the large peaks occur
at small radial distances of either electron); this is also where
the contributions to the double-ionization wave function are
dominated by components at the total energy E = (k2

1 + k2
2 )/2

that are particularly sensitive to the single-ionization channels
open at the same total energy. This transition from primar-
ily Gaussian basis functions to FEM-DVR functions occurs
rather suddenly and obviates the need for diffuse Gaussian
functions in favor of the FEM-DVR functions that will encode
the smaller-amplitude double-ionization component, repre-
sented by the oscillatory fronts moving along the diagonal
directions where both r1 and r2 increase.

A. Two-electron integrals in the hybrid Gaussian-DVR basis

We turn our focus now to the possible permutations of
two-electron integrals that must be computed to fully describe
the electron repulsion term 1/r12 = 1/|r1 − r2| that drives the
single-photon double-ionization process in both atomic and
molecular targets. There are six distinct permutations requir-
ing a computational strategy that we enumerate as classes:

Class 1: 〈Gi(r1)Gj (r2)|Gk (r1)Gl (r2)〉,
Class 2: 〈Gi(r1)Gj (r2)|Gk (r1)χd

l (r2)〉,
Class 3: 〈Gi(r1)χb

j (r2)|Gk (r1)χd
l (r2)〉,

Class 4: 〈Gi(r1)Gj (r2)|χ c
k (r1)χd

l (r2)〉,
Class 5: 〈Gi(r1)χb

j (r2)|χ c
k (r1)χd

l (r2)〉,
Class 6: 〈χa

i (r1)χb
j (r2)|χ c

k (r1)χd
l (r2)〉.

We utilize the indices i, j, k, and l above to label three-
dimensional Gaussian-type orbitals and the radial FEM-DVR
functions χ (r) of the grid-based functions, while labels
a, b, c, and d index the angular coordinates of the latter [the

spherical harmonics in Eq. (1)]. Both class-1 and class-6
integrals involve only a single type of basis function: either
purely Gaussian or purely FEM-DVR functions. Class-1 in-
tegrals can be computed analytically by standard quantum
chemistry packages. We have also extensively reported on
class-6 integrals, computed by solving Poisson’s equation at
each discrete r1, r2 grid point and refer to Ref. [33] for the full
details. We note the class-6 formulation particularly informs
the computation of the mixed integrals in class 4 and class 5
below.

In what follows, we will frequently utilize a local represen-
tation of the charge density of the second electron’s repulsion
with the first as

Ik,l (r1) ≡
∫

Gk (r2)
1

r12
Gl (r2) dr2 . (2)

We begin our discussion of the mixed integrals with class 2,
which possesses a single FEM-DVR function and allows us to
make use of the local repulsion density in Eq. (2) to compute
this integral as

〈
GiGj

∣∣Gkχ
d
l

〉 =
∫ (∫

Gi(r1)
1

r12
Gk (r1) dr1

)

× Gj (r2)χd
l (r2) dr2

=
∫

Ii,k (r2)Gj (r2)
φl (r2)

r2
Y�d ,md (r̂2) dr2

= rl
√

wl

∫
Ii,k (rl ; r̂2)Gj (rl ; r̂2)Y�d ,md (r̂2) d r̂2,

(3)

where the last line represents an angular integration [36] along
a sphere at the radial distance of the FEM-DVR grid point rl ,
as given by the underlying Lobatto quadrature of the FEM-
DVR basis function definition [37].

The class-3 integrals are distinguished by having two
Gaussian functions of the two-electron integral, both repre-
senting the coordinates of the same electron,

〈
Giχ

b
j

∣∣Gkχ
d
l

〉 =
∫ (∫

Gi(r1)
1

r12
Gk (r1) dr1

)

× χb∗
j (r2)χd

l (r2) dr2

=
∫

Ii,k (r2)χb∗
j (r2)χd

l (r2) dr2, (4)

which becomes a diagonal matrix element in the radial
coordinate of electron 2 when integrated using the un-
derlying Lobatto quadrature of the FEM-DVR coordinates,
yielding

〈
Giχ

b
j

∣∣Gkχ
d
l

〉 =
∫

Ii,k (r2)
φ j (r2)

r2
Y ∗

�b,mb (r̂2)

× φl (r2)

r2
Y�d ,md (r̂2) dr2

= δ j,l

∫
Ii,k (r j ; r̂2)Y ∗

�b,mb (r̂2)Y�d ,md (r̂2) d r̂2.

(5)

The class-4 integrals are those that have a “mixed-
exchange” nature of a Gaussian and an FEM-DVR for each
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of the two electrons and cannot be accurately represented
simply by using Lobatto quadrature. Instead, we follow the re-
expansion of the density of these mixed integrals, paralleling
the computation of the pure FEM-DVR two-electron integrals
[33]. The strategy is to utilize a multipole expansion for the
electron repulsion,

1

|r1 − r2| =
∑
λ,μ

4π

2λ + 1
Yλ,μ(r̂1)

rλ
<

rλ+1
>

Y ∗
λ,μ(r̂2), (6)

along with a single-center expansion to represent the mixed
Gaussian-DVR density,

rGi(r)Yl ′,m′ (r̂) =
∑
l,m

Ri,l ′,m′
l,m (r)Yl,m(r̂), (7)

where the expansion coefficients are given by

Ri,l ′,m′
l,m (r) = r

∫
Gi(r̂; r)Yl ′,m′ (r̂)Y ∗

l,m(r̂) d r̂. (8)

With these expansions, the mixed Gaussian-DVR integrals
become

〈
GiGj

∣∣χ c
k χd

l

〉 =
∑
λ,μ

4π

2λ + 1

∫∫ ⎡
⎣∑

l1,m1

Ri,�c,mc

l1,m1
(r1)(−1)m1Y ∗

l1,−m1
(r̂1)

⎤
⎦φk (r1)Yλ,μ(r̂1)

rλ
<

rλ+1
>

Y ∗
λ,μ(r̂2)

×
⎡
⎣∑

l2,m2

R j,�d ,md

l2,m2
(r2)Yl2,m2 (r̂2)

⎤
⎦φl (r2) dr1 d r̂1 dr2 d r̂2, (9)

which can be simplified using the orthonormality of the spherical harmonics to yield

〈
GiGj

∣∣χ c
k χd

l

〉 =
∑
λ,μ

4π

2λ + 1

∑
l1,m1

∑
l2,m2

δl1,λδ−m1,μδl2,λδm2,μ

[
(−1)m1

∫
Ri,�c,mc

l1,m1
(r1)φk (r1)

rλ
<

rλ+1
>

R j,�d ,md

l2,m2
(r2)φl (r2) dr1 dr2

]

=
∑
λ,μ

4π (−1)μ

2λ + 1

∫
Ri,�c,mc

λ,−μ (r1)φk (r1)
rλ
<

rλ+1
>

R j,�d ,md

λ,μ (r2)φl (r2) dr1 dr2. (10)

To evaluate the remaining integrations, we will use the radial density formalism∫
Ri,�c,mc

l1,m1
(r1)φk (r1)

rλ
<

rλ+1
>

R j,�d ,md

l2,m2
(r2)φl (r2) dr1 dr2 =

〈
ρ1

∣∣∣∣ rλ
<

rλ+1
>

∣∣∣∣ρ2

〉
(11)

to recast the integral as a solution of Poisson’s equation that is reexpanded in the underlying radial basis. Using the mixed-basis
two-electron density with the boundary conditions of the FEM-DVR basis [r0, rmax] and specifying the surface terms yield the
final result

〈
ρ1

∣∣∣∣ rλ
<

rλ+1
>

∣∣∣∣ρ2

〉
= (2λ + 1)

⎡
⎣Ri,�c,mc

λ,−μ (rk )

rk

R j,�d ,md

λ,μ (rl )

rl

⎤
⎦[

T λ
k,l

]−1 +
(

r2λ+1
0 − r2λ+1

l

r2λ+1
0 − r2λ+1

max

)
Ri,�c,mc

λ,−μ (rk )R j,�d ,md

λ,μ (rl )
√

wkwl rλ
k

rλ+1
l

+
(

r2λ+1
l − r2λ+1

max

r2λ+1
0 − r2λ+1

max

)
Ri,�c,mc

λ,−μ (rk )R j,�d ,md

λ,μ (rl )
√

wkwl r
2λ+1
0

(rkrl )λ+1
, (12)

where [T λ
i,l ]

−1
is the inverse of the radial kinetic-energy matrix and wk and wl are the associated Lobatto quadrature weights

for FEM-DVR points rk and rl , respectively [37]. Although computationally demanding, these class-4 matrix elements between
mixed Gaussian and DVR functions (and those of the previous classes) need only be considered for finite elements possessing
the nonzero range of the Gaussian functions, which lacks rather diffuse functions since the FEM-DVR functions provide primary
coverage of the regions beyond the nuclei.

The class-5 integrals are those that have a single Gaussian-type function taken with three FEM-DVR basis functions. The
strategy for their computation mirrors the multipole expansion of the class-4 integrals but is simplified due to the diagonal nature
of the radial electronic coordinate for electron 2,

〈
Giχ

b
j

∣∣χ c
k χd

l

〉 =
∑
λ,μ

[
4π

2λ + 1

∫
Gi(r1)φk (r1)Y�c,mc (r̂1)Yλ,μ(r̂1)

( ∫
φ j (r2)φl (r2)

rλ
<

rλ+1
>

Y�d ,md (r̂2)Y ∗
�b,mb (r̂2)Y ∗

λ,μ(r̂2) dr2

)
d r̂1

]

=
∑
λ,μ

(
4π

2λ + 1

∫
Gi(rk; r̂1)Y�c,mc (r̂1)Yλ,μ(r̂1)C(�d md |�bmb, λμ)U λ

j,l (rk ) d r̂1

)
. (13)

063404-4



HYBRID GAUSSIAN–DISCRETE-VARIABLE … PHYSICAL REVIEW A 101, 063404 (2020)

The angular integration of the second electron reduces to a Gaunt coefficient C( jm| j′m′, λμ), expressible in terms of the perhaps
more familiar three- j symbol as [38]

C( jm| j′m′, λμ) =
∫

Yj,m(r̂) Y ∗
j′,m′ (r̂) Y ∗

λ,μ(r̂) d	 = (−1)m′+μ

√
(2 j + 1)(2 j′ + 1)(2λ + 1)

4π

(
j j′ λ

0 0 0

)(
j j′ λ

m −m′ −μ

)
,

(14)

leaving an integral along the shell of electron 1, where

U λ
j,l (rk ) =

∫
φ j (r2)φl (r2)

rλ
<

rλ+1
>

dr2 = δ j,l

[
(2λ + 1)

rkr j
√

wkw j

[
T λ

k, j

]−1 +
(

r2λ+1
0

r2λ+1
0 − r2λ+1

max

)(
rλ

k

rλ+1
j

+ rλ
j

rλ+1
k

− rλ
k rλ

j

r2λ+1
0

− r2λ+1
max

rλ+1
k rλ+1

j

)]
.

(15)

The final result restricts the sum to running over nonzero Gaunt coefficients and includes quadrature integrations of the Gaussian
basis function evaluated at the kth Lobatto point, as was done for class-2 and class-3 integrals:

〈
Giχ

b
j

∣∣χ c
k χd

l

〉 =
�b+�d∑

λ=|�b−�d |

4π

2λ + 1
U λ

j,l (rk )

⎡
⎣ λ∑

μ=−λ

C(�d md |�bmb, λμ)

(∫
Gi(rk; r̂1)Y�c,mc (r̂1)Yλ,μ(r̂1) d r̂1

)⎤
⎦. (16)

With the mixed integrals specified above, the full electron
repulsion operator can be constructed for all combinations that
are required in a product basis of each electron’s coordinates
represented by these hybrid Gaussian-DVR basis functions.
We note that where complex conjugations are required if bra
and ket labels are reversed, care must be taken to conjugate
only the angular functions if the radial coordinates have been
complex scaled. The Gaussian basis is defined to be purely
real and appreciably overlaps only the real portion of the
FEM-DVR radial profile (middle area in the top panel of
Fig. 1).

B. Ionization of two electrons by a single photon

The electronic Hamiltonian to describe two electrons in the
Born-Oppenheimer approximation is

H = T1 + Vnuc(r1) + T2 + Vnuc(r2) + 1

r12
, (17)

where T + Vnuc = h is the one-electron Hamiltonian includ-
ing the kinetic energy and nuclear attraction potential (either
Vnuc = −2/r in the case of atomic helium or Vnuc = −1/|r −
R/2| − 1/|r + R/2| for the case of H2 with a fixed internu-
clear distance R).

The double-ionization amplitudes can be computed from
the full scattering solution with outgoing-wave boundary con-
ditions that solves the first-order driven Schrödinger equation

[E0 + h̄ω − H]�+
sc (r1, r2) = �ε · ( �μ1 + �μ2)ϕ0(r1, r2), (18)

where E = E0 + h̄ω is the total excess energy above the
double-ionization potential E0 available to the system after
photoabsorption (in the dipole approximation) from the initial
state ϕ0(r1, r2). The amplitudes for double-ionization ejecting
electrons with momenta k1 and k2 can be evaluated as a
volume integral

f (k1, k2) =〈�(−)(k1, r1)�(−)(k2, r2)|
× E − h(r1) − h(r2)|�+

sc (r1, r2)〉, (19)

where �(−)(k, r) is the incoming continuum wave func-
tion related to the outgoing version by �(−)(k, r) =
[�(+)(−k, r)]∗ that satisfies

[
T + Vnuc − k2

2

]
�(+)(k, r) = 0. (20)

In the case of atomic helium, �(+)(k, r) is a Coulomb scatter-
ing solution constructed in a partial-wave expansion,

Φ (+)
c (k, r) =

(
2

π

)1/2 ∑
l,m

ileiηl (k)Y ∗
l,m(k̂)

φ
(c)
l,k (r)

kr
, (21)

using the hybrid Gaussian-DVR basis. For molecular H2,
�(−)(k, r) is a continuum state of the residual molecular
geometry, i.e., a scattering state of H2

+,

�(+)(k, r) = ξ (k, r) + g(r)Φ (+)
c (k, r), (22)

which we have partitioned as the same atomic Coulomb
wave in Eq. (21) plus a short-range correction, where g(r)
is an arbitrary smooth function that approaches unity at
large r and cuts off the Coulomb function for smaller r.
For both the atomic and molecular geometries, the radial
Coulomb waves φ

(c)
l,k (r) behave asymptotically as sin[kr +

(Z/k) ln 2kr − π l/2 + ηl (k)], with Z = 2 and possessing
Coulomb phase shift ηl (k) = arg �(l + 1 + iZ/k).

The short-range distortion ξ (k, r) due to the nonsperhical
molecular geometry in Eq. (22) is also to be expanded in the
hybrid Gaussian-DVR basis for each incoming partial-wave
channel l0

ξ (r)l0,m

r
=

∑
�

cl0,m
� G� (r) +

∑
i,l

cl0,m
il

φi(r)

r
Yl,m(r̂), (23)

where the index � labels the Gaussian basis functions coupled
to l0 and the cylindrical symmetry of either He or H2 renders
m a good quantum number. This partial-wave decomposition
leads to a set of driven equations for each incoming l0, m
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Coulomb wave channel,[
k2

2
− (T + Vnuc)

]
ξ l0,m(r)

r

=
[

(T + Vnuc) − k2

2

]
g(r)

φ
(c)
l0,k

(r)

r
Yl0,m(r̂). (24)

As we previously employed [21,33], the six-dimensional
volume integral in Eq. (19) is operationally converted to
a surface integral using Green’s theorem along a constant
hyperradius ρ0 to give the double-ionization amplitudes,

f (k1, k2) =
∫

d	1

∫
d	1

∫
dρ

∫ π/2

0
dα

ρ5 sin2 α sin2 α

2

× �(−)(k1, r1)∗�(−)(k2, r2)∗

×
[←−

∂

∂ρ
δ(ρ − ρ0) − δ(ρ − ρ0)

−→
∂

∂ρ

]
�+

sc (r1, r2),

(25)

where ρ =
√

r2
1 + r2

2 and tan α = r2/r1. Also, the arrows
above the partial derivatives with respect to ρ indicate the
direction they should operate, and the δ functions confine
the integral to a particular hyperradius inside of the ECS
scaling point rECS. This testing function formalism reduces
to an integration of the quantity in Eq. (25) along a quarter-
circle arc at sufficiently large ρ0 in the r1, r2 plane (see the
bottom panel of Fig. 1) and eliminates all energetically open
contributions from the full solution �+

sc (r1, r2) that are not
double ionization by orthogonality; we previously utilized this
method to compute double-ionization amplitudes provided the
testing functions �(−)(k, r) are continuum solutions of the
residual one-body Hamiltonian that appears in the correlated
full Hamiltonian [Eq. (17)] [34,39–42].

III. RESULTS

In what follows we present a few results to compare
with benchmark theory calculations and experimental mea-
surements. The examples we present here are representative
of some of the key features that were previously explored
in double photoionization of He and H2; they permit us to
evaluate the accuracy of the hybrid Gaussian-DVR basis and
highlight the advantages of the method, primarily requiring
fewer partial-wave terms in the outer FEM-DVR region to
yield accurate results compared to pure grid-based calcula-
tions by utilizing the Gaussian basis to describe the region of
physical space containing the nuclei [31].

The most detailed information to be studied in a double-
photoionization event is the fully differential cross section,
given in the length gauge by

dσ

dE1d	1d	1
= 4π2ω

c
k1k2| f (k1, k2)|2, (26)

where, for what follows on molecular H2 in the Born-
Oppenheimer approximation, we have made the reasonable
approximation that a transition via the photoabsorption oc-
curs vertically at the equilibrium internuclear distance Req =
1.4 a.u. and the Coulomb explosion of the bare protons
proceeds without deposition of significant energy from the
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FIG. 2. Triple-differential cross section (TDCS) results for dou-
ble photoionization of H2 at a photon energy of 75 eV; the left
panel shows the absolute cross section in the coplanar geometry;
the right panel provides a polar plot of the same. Directions are
measured relative to the linear polarization vector (horizontal in the
right panel). The fixed electron (black arrow) is held at θ1 = 40◦, and
the internuclear axis is at θN = 20◦. For this case, the contributions
of the relevant dipole-allowed amplitudes of �u and �u symmetry
contribute approximately equally. The present results calculated us-
ing the hybrid Gaussian-DVR basis (black solid line) agree well with
the benchmark pure grid-based FEM-DVR results [23] for different
angular momentum maximum values of each electron, lmax = 6 and
lmax = 7 (red long-dashed and blue short-dashed lines, respectively).

photon. Observing these events in the molecular frame also
requires consideration of the molecular geometry relative to
the photon polarization direction, here taken to be linear and
horizontal in the figures that follow. For H2, this establishes
three photoionization amplitudes: one of �u symmetry and
two equivalent �u contributions reflecting the possible final
magnetic quantum states, M = m1 + m2, that can be popu-
lated by a linearly polarized photon from the 1σ 2

g ground state
of H2.

It is noteworthy that for H2 at the photon energy ω =
75 eV considered here, the M = ±1 contributions are gen-
erally larger in magnitude than the M = 0 amplitudes and can
often dominate the fully differential cross section. In our first
example of the body-frame triple-differential cross section
(TDCS) calculated using the hybrid Gaussian-DVR method
for comparison with a pure grid-based calculation [21], we
again choose a case where the �u and �u amplitudes con-
tribute roughly equally. Figure 2 shows the TDCS for a second
electron ejected from an equilibrium geometry H2 molecule
rotated at an angle of θmol = 20◦ relative to the polarization of
the light with the first electron carrying 80% of the available
excess energy and with a direction of θ1 = 40◦. The present
results, calculated with an inner-region Gaussian basis con-
sisting of 36 basis functions of s, p, and d angular momenta
centered on the nuclei and at the molecular center, and FEM-
DVR functions beginning at r0 = 0.8 bohr containing up to
lmax = 5 for each electron are compared to pure FEM-DVR
calculations with up to lmax = 6 and lmax = 7. The latter pure
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FEM-DVR calculation is also computed in the velocity gauge,
while the hybrid results and smaller grid-based calculation are
computed in the length gauge. Evaluation of the dipole terms
in the hybrid basis is more straightforward in the length gauge,
but we note that the results presented here agree well with both
the length and velocity forms of the pure FEM-DVR calcula-
tions. These results illustrate very good agreement between
the present results and the benchmark grid-based calculations
(of both gauges), with the most visible differences arising
in the valley between primary and secondary lobes around
θ2 ∼ 220◦, as well as the very slight differences in the peak
heights. A comparison of these results reveals that the present
representation of the bound and continuum states is fairly well
converged to resolve the significant features and accurately
compute the TDCS that results from incorporating the various
polarization-dependent amplitudes.

A. Helium double photoionization at ω = 99 eV

Because it is a well-studied problem [1–8] with many
theoretical calculations and experimental measurements in
good agreement while still providing a system for which the
correlation introduced via the electron repulsion term (and
thus the two-electron matrix elements of Sec. II A) must be
accurately represented, we utilized the hybrid Gaussian-DVR
basis to compute TDCS results for double photoionization
of helium at a photon energy of 99 eV and present a few
representative results. We note that this problem is the united-
atom limit of the molecular H2 double ionization, and thus,
we can expect the M = ±1 amplitudes and M = 0 to become
equivalent as the internuclear distance approaches zero and
the target becomes spherically symmetric.

Figure 3 shows the coplanar geometry TDCS results for
double ionization of helium with the fixed electron at θ1 = 0◦
along the polarization direction (top panels) and with θ1 = 90◦
relative to the polarization (bottom panels). These results were
computed with an inner-region basis of 12 total Gaussian
functions of types s and p centered at the origin. The s-type
Gaussian exponents are those of the first six from Huzinaga’s
10s expansion of the hydrogen 1s function in Gaussians [43],
while those of the p-type orbitals have exponents of α = 2.0
and 0.5. The FEM-DVR functions begin at a radius of r0 =
1.0 bohr from the origin and use six real finite elements with a
15th-order DVR in each, up to the ECS scaling point of rECS =
45.0 a.u. The region for evaluation of the mixed two-electron
integrals over which the Gaussians are considered sufficiently
nonzero extends up to r = 15.0 a.u. In the FEM-DVR region,
all angular terms are computed with up to lmax = 3 for each
electron. The energy sharing of the excess energy delivered
by the photon is split equally between the two electrons (E1 =
E2 = 10 eV). Figure 4 shows the same coplanar geometry
and equal energy sharing for helium, but now with the fixed
electron going out in directions of θ1 = 30◦ and θ1 = 60◦,
respectively. Again, the agreement between the present results
calculated with the hybrid Gaussian-DVR basis and previous
benchmark calculations [6–8] is excellent.

Included with the present results (black curves) in both
Figs. 3 and 4 are results computed using a pure grid-based
FEM-DVR calculation with similar numerical parameters (but
beginning at the origin). Comparison of these results for the
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FIG. 3. Triple-differential cross section (TDCS) results for dou-
ble photoionization of atomic helium at a photon energy of 99 eV
with equal energy sharing (E1 = E2); the left panels show the abso-
lute cross section in the coplanar geometry, and right panels show
polar plots of the same. The fixed electron (black arrow) is held
at θ1 = 0◦ (top panels) and at θ1 = 90◦ (bottom panels). Hybrid
Gaussian-DVR results (solid black line) again agree well with bench-
mark FEM-DVR results (red dashed line). As one approaches this
united-atom extreme, the �u and �u amplitudes become equivalent.

two calculations reveals excellent agreement in both mag-
nitude and angular profile of the lobed structure, indicating
an accurate representation of the electron-electron repulsion
mixed integrals that properly encodes the physics that drives
the double-ionization process. Both Figs. 3 and 4 also exhibit
angular distributions influenced by a parity-selection rule
which prevents both electrons from exiting in back-to-back
directions with equal energy [44].

B. H2 double photoionization at ω = 75 eV

Of course, the motivation for designing the hybrid
Gaussian-DVR basis is not to treat spherical targets (as grid-
based single-center expansions are well suited for atoms)
but to treat molecular targets with off-center geometries. For
H2, we construct the inner-region basis by duplicating the
hydrogen-atom basis from the united-atom limit above onto
each hydrogen nuclei at an equilibrium internuclear distance
of R = 1.4 bohr. The geometric center provides the origin of
our coordinate system, with the internuclear axis marking the
z direction in the body frame. In addition to this basis, d-type
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FIG. 4. Same as Fig. 3, but with the fixed electron (black arrow)
held at θ1 = 30◦ (top panels) and at θ1 = 60◦ (bottom panels).

Gaussian functions are added to each hydrogen atom center
with exponent α = 0.75, and to provide sufficient coverage of
the internuclear region, we augmented this inner region with
a few nondiffuse (i.e., smallest exponent α = 0.5) s-, p-, and
d-type Gaussian functions at the center of the molecule. The
remaining radial FEM-DVR grid parameters are unchanged
from those above, except for beginning the FEM-DVR region
at r0 = 0.8 bohr from the internuclear center and including
angular terms containing up to lmax = 5, which is less than
the maximum single-electron angular momentum used to
calculate converged pure FEM-DVR results for comparison
(lmax = 7). The starting point for the radial FEM-DVR grid
excludes the nuclei from the overlap region, keeping them
exclusively within the inner Gaussian region where higher
partial-wave contributions at the nuclear cusps can be encoded
in the Gaussian basis expansion.

We begin our examination of the hybrid basis results by
considering double photoionization from H2 at a photon en-
ergy of ω = 75 eV. Integrating the body-frame TDCS given by
Eq. (26) over the directions of the electrons gives the single-
differential cross section (SDCS), which reflects the energy
sharing of the ejected electrons carrying the (vertical) energy
above the double-ionization potential. Both unique compo-
nents of �u and �u symmetry (reflecting the polarization
direction relative to the molecular axis) are plotted in the top
panel of Fig. 5, along with the total SDCS. We note that for the
nonspherical molecular geometry, these distinct contributions
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Total

Π
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FIG. 5. Top: single-differential cross section (SDCS) results for
double photoionization of equilibrium geometry H2 at a photon
energy of 75 eV by unique M components, �u (dashed line) and �u

(dotted line), as well as the total from the sum of these two contribu-
tions (solid line). Also shown are pure grid-based results (symbols),
again showing nearly graphically indistinguishable agreement with
the benchmark calculations. Bottom: molecular asymmetry param-
eter β(E1) as a function of the energy sharing. The present results
agree substantially with the pure FEM-DVR results (circles).

are now substantially different in magnitude, whereas they
are identical (accounting for the double degeneracy of �u)
in the united-atom limit of the previous helium results. From
these relative magnitudes, we anticipate that the amplitudes
containing �u components will dominate those of the weaker
�u contributions for most molecular orientations that mix
them. Also shown is the comparison with a pure FEM-DVR
calculation [23], with lmax = 7, for which the agreement is
excellent.

The bottom panel of Fig. 5 shows the molecular asymmetry
parameter β(E1), given by

β(E1) = 2
(

dσ (�)

dE1
− dσ (�)

dE1

)
(

dσ (�)

dE1
+ 2 dσ (�)

dE1

) , (27)

for different energy sharings of the available excess energy.
Again, comparison of the present results is very good with
the converged pure FEM-DVR grid-based calculation and
with experimental results measured at equal-energy sharing:
β = −0.78 in the present results compared with the value of
β = −0.75 ± 0.1 measured by Gisselbrecht et al. [16].

063404-8



HYBRID GAUSSIAN–DISCRETE-VARIABLE … PHYSICAL REVIEW A 101, 063404 (2020)

ε

FIG. 6. Molecular-frame triple-differential cross section (TDCS)
results for double photoionization of H2 at a photon energy of
75 eV and with a fixed electron (black arrow) held at θ1 = 90◦

and carrying 20% of the available excess energy. Each panel shows
a different molecular orientation relative to the linear polarization
vector (horizontal): the left column has θN = 0◦, 10◦, and 20◦; the
right column has θN = 30◦, 60◦, and 90◦. In all panels, the present
hybrid Gaussian-DVR results (black solid lines) agree excellently
with the pure FEM-DVR results (red dashed lines). These theoretical
results are computed at the precise angles denoted and thus feature
no averaging (see text).

To demonstrate the agreement of the hybrid-basis TDCS
with converged benchmark calculations for a few represen-
tative results, Fig. 6 shows the in-plane TDCS for unequal
energy sharing, with the fixed electron carrying 20% of the
available excess energy and fixed in a direction perpendicular
to the (horizontal) polarization direction. Each panel shows
the angular distribution as the molecule is rotated relative
to the polarization. The top left and bottom right panels
show cases where the cross section contains only nonzero
components from the �u and �u continua, respectively. A
comparison with the converged pure FEM-DVR results [23]
reveals superb agreement. Examination of these TDCS re-
veals that for the geometries that involve only pure �u and
�u configurations, the dominant feature is two lobes directed
away from the fixed electron with no significant cross section
in the back-to-back direction that can be characterized as
atomiclike in that they resemble the angular distribution from
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FIG. 7. Molecular-frame TDCS results for double photoioniza-
tion of H2 at a photon energy of 75 eV and with a fixed electron
(black arrow) held at θ1 = 90◦ and carrying 50% of the available
excess energy (equal energy sharing). Each panel shows a differ-
ent molecular orientation relative to the linear polarization vector
(horizontal), as indicated: unaveraged theoretical results calculated
with the hybrid Gaussian-DVR basis (thin blue line) and with the
pure FEM-DVR treatment (dashed violet line) again show good
agreement with each other. Comparison with the experimental mea-
surements (red circles) of Ref. [16] requires an averaging of the
hybrid results over the experimentally determined acceptance angles
(thick black lines; see text). Magnitudes of the cross sections (in
b eV−1 sr−2) are shown in each panel denoting the radii of each polar
plot.

the similar geometry of the fixed electron perpendicular to the
polarization direction (see bottom panel of the helium results
in Fig. 3), although the �u cross section is several times the
magnitude of the pure �u cross section.

Because of this discrepancy between the magnitudes of the
�u and �u contributions, it is noteworthy that when com-
pared with experimental measurements where finite angular
resolution must be accounted for, the theoretical results for
measuring the body-frame position relative to the polarization
must also be averaged over a range of acceptance angles. This
is particularly most sensitive for measurements that would
seemingly probe the �u amplitudes since including other
molecular geometries that move the body-frame z axis away
from the polarization quickly introduces substantial contribu-
tions from �u that can swamp the M = 0 components. In
Fig. 7, we provide a comparison of the theoretical TDCS
calculated with the hybrid Gaussian-DVR basis and a pure
FEM-DVR calculation and also with experimental results [16]
at equal energy sharing (E1 = E2). The averaging angles for
this in-plane geometry with the fixed electron perpendicular
to the photon polarization are those of Ref. [16]: �θ1 = ±15◦
and �θN = ±20◦ in the first three panels and �θ1 = ±20◦
and �θN = ±30◦ in the final (bottom right) panel. The thin
lines represent the unaveraged calculations (including the
benchmark results for Ref. [23]), while the thicker black
line is the result of the present hybrid results averaged over
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the acceptance angles of the experiment. We can see the
result of the averaging produces good agreement with the
experimental results and substantially alters the magnitude of
the major features of the unaveraged cross sections at all of
the internuclear orientations considered.

IV. CONCLUSIONS

In this work, we have overviewed and applied a hybrid
basis of Gaussian-type functions combined with grid-based
methods to describe molecular double photoionization. The
enumeration and strategy to evaluate each class of mixed
two-electron integrals have been established to describe the
double-ionization event which relies on the correlation being
properly represented. Several results computed with this hy-
brid Gaussian method, both for atomic helium and for molecu-
lar H2, and compared with benchmark theoretical calculations
and experimental measurements reveal excellent agreement
of the hybrid Gaussian-DVR results with the existing data.
Atomic helium results help establish the accuracy of the
electron-electron repulsion encoded in the present formula-
tion, while the angle-resolved triple-differential and (single)
energy-differential cross sections for H2 at the equilibrium
internuclear geometry highlight the richness of the results that
are particularly sensitive to the molecular-frame environment.

Having established sufficient agreement with several key
results for H2, it is hoped that this hybrid Gaussian-DVR
method can be used to treat other diatomic molecules and,
eventually, polyatomic molecules where a pure grid-based
single-center expansion might be difficult to converge. In
particular, being able to sufficiently treat the ejection of two
valence electrons by representing them in a hybrid basis in

the presence of additional core electrons of the molecular
target that would remain bound to the fragments is one
avenue for exploration that we hope to further consider.
Such a description of a multielectron molecule possessing
the occupancy of core molecular orbitals constructed with
Gaussian-type orbitals in the inner region would allow for an
accounting of these core electrons’ influence on the electrons
that do become photoejected. Having utilized approximations
to consider multielectron targets in atomic double ionization
[39–42] and illustrated the hybrid basis’s ability to construct
closed-shell core and valence molecular orbitals for single
ionization [31], the next step to consider is double ionization
of a many-electron molecule with a frozen-core occupancy.
The results presented here provide necessary confirmation of
the hybrid Gaussian-DVR method for describing two elec-
trons in the nontrivial molecular continuum and strongly hint
at the utility of expanding this method for treating more
complicated and experimentally relevant molecular targets in
double-ionization studies.
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