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Strong-field ionization of atoms with p3 valence shell: Two versus three active electrons
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For a model atom with the p3 valence shell we construct consistent three- and two-active-electron models
enabling their direct comparison. Within these models, we study the influence of the third active electron on the
double-ionization yield in strong femtosecond laser fields. We reveal proportionality between double-ionization
signals obtained with both models in the field intensity region where nonsequential ionization dominates. We
derive analytically a correspondence rule connecting the double-ionization yields obtained within the three- and
two-active-electron models.
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I. INTRODUCTION

Physics of many-body systems interacting with strong,
time-dependent fields is a broad subject of current re-
search [1,2]. This area of research includes studies on
multiple-electron atoms [3–8], molecules [9–14], and con-
densed matter systems [15–19]. The reaction of these systems
to a strong external field depends both on the interaction of
electrons with the field and on the interaction of electrons
with each other. Collective and correlated processes not only
take place, but even dominate the response of the system in
some specific regimes of field amplitudes. Such a response, in
turn, can either be characteristic of many-electron systems and
their complex structure or manifest itself in observables that
exist even in simpler systems (one or two electrons). Charge
migration [9,20–22] is an example of the former kind of
response and high-order harmonic generation (HHG) [23–32]
and single and double ionization [33–43] are examples of the
latter.

The simplest system, in a context of ionization, in which
correlated processes take place is a two-electron atom. The
strong-field physics of that kind of system is fairly well
understood [33,42–50]. Furthermore, the response of the two-
electron atom to an external strong laser field is solvable
numerically in full-dimensional space [51–55]. However, the
addition of only one more electron complicates the system
so that it causes serious difficulties in studying it. A first
approach in treating strong-field ionization of three-electron
atoms used the classical description [56–60]. Yet, such ap-
proaches cannot account for electron spins, which impose
significant restrictions on the symmetry of the wave function
in realistic systems [61]. Still, classical analysis [58] helps
in developing simplified quantum models in which spin-
dependent effects can be studied [35,62–64].

*dmitry.efimov@uj.edu.pl

Due to the rising complexity of treating systems with
more than two electrons, one naturally seeks the possibility
of reduction of a complex system to a simpler system or
set of subsystems. The simplified systems are expected to
preserve the key elements of the dynamical response. If such
a reduction is successful, observables of the complex system
could be expressed as a combination of observables of the
simpler system or subsystems. A good example can be found
in [65], where a HHG spectrum of a many-electron xenon
atom is represented by a spectrum generated with a single-
electron time-dependent Schrödinger equation (TDSE) and
then multiplied by a ratio of photoionization cross sections
for different ionization channels of Xe.

Not always can such a solution be found. In our previous
work [64] we have studied a class of atoms with ns2np1 elec-
trons forming the outer shell, in which case a reduction to two-
electron subsystems was in vain. The double-ionization yields
(DIYs) could not be reproduced by a combination of DIYs ob-
tained with use of two-electron subsystems. The configuration
of the outer shell electrons imposed symmetry constraints on
a three-electron wave function. Two of the ns2np1 electrons
have the same spin; thus, the spatial three-electron wave
function is antisymmetric with respect to exchange of one pair
of electrons and symmetric with respect to exchange of two
other pairs. Consequently, in two-electron subsystems, one
has to consider symmetric and antisymmetric wave functions,
respectively. The final result of the work [64] can be rephrased
as follows: In the case of ns2np1 electrons the full three-
electron model cannot be represented by a combination of
two-electron models possessing different spatial symmetries.
One can wonder, however, whether a correspondence in the
sense of DIYs between the three- and two-electron models
can be ever established.

In order to investigate the above-stated question, we con-
sider a system with three equivalent electrons, that is, elec-
trons possessing the same spin. Consequently, the related
two-active-electron model inevitably consists of two electrons
with the same spin. In the language of spatial symmetries of a
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wave function this means that the totally antisymmetric three-
electron wave function, i.e., the one that is antisymmetric with
respect to any arbitrary electron-pair interchange, can only be
juxtaposed to the antisymmetric two-electron wave function.
The spin effects are thus withdrawn from our consideration
and the difference between the models’ performances natu-
rally reflects the difference between the two- and three-active-
electron models per se.

In the following, we examine the totally antisymmetric
three- and two-electron wave functions in order to reveal a
clear correspondence rule for models with different numbers
of electrons taken into account. As spins do not affect ioniza-
tion dynamics, we drop all the spin indications and sum up
ionization impacts from all electrons. The atoms with three
valence electrons having the same spin can be divided into
two groups. The first one consists of transition-metal elements
with a d3 or f 3 valence shell; the other one is the chemically
active 15th group atoms with a p3 valence shell. As a model
we have chosen atomic nitrogen because of reasonable values
of single- and double-ionization potentials, despite the diffi-
culty of using it as a target gas in the strong-field experiments.
The values of ionization potentials define the range of laser
intensities for which correlated processes are expected to be
important. The magnitude of intensity, in turn, heavily affects
the performance and applicability of the numerical algorithms
used to study the proposed models.

For such conditions, we have found that DIY as a function
of field amplitude has a very similar shape in both three-
and two-active-electron models, although it considerably dif-
fers in magnitude. Such a result suggests the existence of
a correspondence rule that allows for an unambiguous con-
nection between the two models. To identify that rule we
apply the quantitative rescattering (QRS) theory [4,66], in
which a double ionization is reproduced with the application
of three main factors: the returning electron wave packet,
the differential rescattering cross section, and the ionization
rates from excited ionic states. As the first and the last are
essentially the same for the two analyzed models, we propose
that the correspondence rule is associated with properties of
electronic rescattering cross sections.

The paper is organized as follows. We start with providing
a brief description of the three- and two-electron models
together with values of ionization potentials in Sec. II. We
further present in Sec. III results of numerical simulations
and then proceed with deriving a quantitative explanation
of the observed DIY ratios. We close with a summary and
conclusions in Sec. IV. Atomic units are used throughout this
paper unless stated otherwise. For the sake of clarity, we note
that 1 a.u. of energy is equal to 27.2 eV; at the same time 0.1
a.u. of electric field corresponds to 3.5 × 1014 W/cm2 of laser
intensity.

II. MODELS AND METHODS

Several computational approaches to the problem formu-
lated above could be adopted. With the current computational
physics developments the application of time-dependent den-
sity functional theory (TDDFT) [67] or time-dependent mul-
ticonfiguration Hartree-Fock theory (TDMCHFT) [68–70]
could be a method of choice. Those methods, optimal in

intermediate laser intensity regimes, in particular for HHG
spectrum simulations [30] have problems when treating the
dynamics of ionization and ionization yields for very strong
field [69,71]. For these reasons we restrict to a grid-based
approach for the reduced dimensionality model of the atom,
an approach often used in the past particularly for linearly
polarized laser fields. Such reduced-dimensionality models
often serve as test beds for checking the accuracy of more
sophisticated approaches [8] or are still used on their own (see,
e.g., [31,72]) also within the TDDFT scheme [71].

In the traditional, most often used approach, each electron
is allowed to move along a one-dimensional track along the
polarization axis [73] and the Coulomb potential is modified
with a soft-core parameter [74]. Such an approach is known,
however, to overestimate the electron-electron repulsion and
underestimate their correlation (as seen in its failure to repro-
duce correctly the characteristic knee feature associated with
the nonsequential double-ionization process [42]). There-
fore, we use the modified strategy that associates the one-
dimensional electron tracks with the motion of saddles in the
potential for a quasistatic electric field of a variable amplitude.
Such an “adiabatic” picture was proposed for double ioniza-
tion almost 20 years ago for two [75] and three electrons [58]
and used successfully for two-electron problems [76–78] and
recently extended for three-electron [63,64] problems.

a. Three-active-electron model. In our three-electron model
tracks are inclined with respect to the laser polarization axis at
the angle γ (tan γ = √

2/3) and at the angle π/6 with respect
to each other. Due to such a configuration we avoid overes-
timation of the electron-electron repulsion. The configuration
is not arbitrary; it is identified on the basis of an adiabatic
analysis of the ionization process [58]. In that analysis one
finds efficient ionization channels by considering transition
states, which are the saddles of the potential energy formed
in the presence of the instantaneous static electric field. The
saddles form a fixed configuration that moves along lines
inclined at constant angle γ with respect to the polarization
axis and at constant angle π/6 with respect to each other as
the field amplitude changes during the pulse [58]. The motion
of electrons is then confined to those lines.

The Hamiltonian of the three-electron system is

H =
3∑

i=1

p2
i

2
+ V (r1, r2, r3) (1)

with

V (r1, r2, r3) = −
3∑

i=1

⎛
⎝ 3√

r2
i + ε2

+
√

2

3
F (t )ri

⎞
⎠

+
3∑

i, j=1i< j

q2
ee√

(ri − r j )2 + rir j + ε2
, (2)

where ri and pi correspond to the ith electron’s coordinate
and momentum, respectively, and the field F (t ) is defined by
F (t ) = −∂A/∂t .

Because both the single- and double-ionization potentials
of nitrogen are defined uniquely, one can adjust the models
to get the proper values of the potentials. For this purpose,
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we introduce in Eq. (2) an effective electron charge qee to
the electron-electron interaction term. This way, in both three-
and two-electron models we have just two model parameters,
the soft-core parameter ε and the effective electron-electron
charge qee, that allow us to obtain the same single- and double-
ionization potentials.

b. Two-active-electron model. The two-active-electron
model is built consistently from the three-electron model in-
troduced above. Therefore, the electronic motion is restricted
to one-dimensional tracks that form a plane and cross at angle
π/6 as in the three-electron model. The electric field vector
is forced to lie in that plane, in contrast to the three-electron
case, thus forming a different angle δ [cos(δ) = √

3/2] with
electronic axes. For the sake of comparison between discussed
models, we impose the electric field operator geometrical
prefactors to be the same and equal to

√
2/3, as introduced

earlier in Eq. (2). The two-electron Hamiltonian then reads

H =
2∑

i=1

⎛
⎝ p2

i

2
− Z√

r2
i + ε2

+
√

2

3
F (t )ri

⎞
⎠

+ q2
ee√

(r1 − r2)2 + r1r2 + ε2
, (3)

where Z is a nuclear charge, set either as Z = 2 (neutral atom)
or Z = 3 (single ion).

c. The laser pulse. The laser pulse is defined by the vector
potential

A(t ) = F0

ω0
sin2

(
πt

Tp

)
sin(ω0t ), 0 < t < Tp. (4)

The pulse parameters are the field amplitude F0, the frequency
ω0, and the pulse length Tp = 2πnc/ω0 that is taken to be
a multiple of the number of cycles, nc. In the following we
set ω0 = 0.06 a.u. which corresponds to about 760 nm of
laser wavelength and the pulse to nc = 5 cycles. The field
amplitude is varied.

d. Ionization potentials. The values of soft-core parameters
and effective electron-electron charges are taken to reproduce
the experimental values of single- and double-ionization po-
tentials for a nitrogen atom in both three- and two-electron
models. For the first, ε = √

1.02 and qee = √
0.5, while for

the second ε = √
2.0 and qee = √

0.3. The single-ionization
potential is then 0.52 a.u., the double-ionization potential is
1.61 a.u., and the triple-ionization potential (for the three-
electron model) is 3.92 a.u.

e. Evolution. For each of the models, the TDSE is solved on
a spatial grid with the use of the split operator technique and
fast Fourier transform. The algorithms are described in detail
elsewhere [63,77,79]. Regardless of the model, the grid has
2048 points in each direction covering 400 a.u. of the physical
coordinate space. Absorbing boundary conditions at edges
of the integration box are used in a similar manner to [77].
The initial state is found by an imaginary time propagation
in an appropriate symmetry subspace for a much smaller
grid involving 512 points in each direction corresponding
to 100 a.u.

III. RESULTS AND DISCUSSION

In the following we focus on the double ionization. To
calculate double-ionization yields we use a spatial criterion
that we recall here in a nutshell; an extended description can
be found elsewhere [51,63,76,77].

First of all, let us discuss the observables we obtain during
evaluation of our numerical code. The coordination space is
divided into the regions corresponding to the neutral (A),
single-ionized (S), and double-ionized (D) atomic states (see
the Appendix for details of our approach). In the case of
a three-electron model, there is also a region corresponding
to a triply ionized state. The ionization yields are defined
as integrated probability fluxes through borders of different
regions. Such an approach allows one to numerically distin-
guish between two channels of double ionization: the direct
double ionization and the time-delayed double ionization. The
direct double ionization is calculated as an integrated flux
through the borders between regions A and D and is assumed
to describe processes in which both electrons leave the parent
ion simultaneously. The dominant ingredient of that channel is
the so-called recollision-impact ionization (RII) (that channel
includes also the simultaneous tunneling of both electrons, a
process which is expected to be negligible). The time-delayed
ionization (TDI) is calculated as an integrated flux through the
borders of regions S and D. It accounts for processes where
electrons leave the parent ion in different instants of time.
The spatial criterion for defining TDI inevitably puts into
this channel both the sequential double ionization (SDI) and
the recollision excitation with subsequent ionization (RESI).
Thus the pure SDI process cannot be resolved with the above-
described method.

The dependencies of double-ionization yields on the field
amplitude for both three- and two-electron models are shown
in Fig. 1. In each case, the RII and TDI channels are
plotted separately. One can notice that the characteristic knee
shape, the indicator of nonsequential processes, is barely
visible. This is not to be unexpected, since in our models
the electron-electron interaction term is modified with the
effective electron-electron charge qee. Low effective electron-
electron charges, qee < 1, reduce the efficiency of electronic
rescatterings and thus of all nonsequential processes in gen-
eral. It is worth mentioning that such a reduction of rescat-
tering efficiency leading to a partial or full disappearance
of the knee is not uncommon is strong-laser-field physics.
In particular, it has been observed for atoms in circular
polarization [80,81]. Its dependencies on field intensity [82],
frequency [83], and type of species [84] have been studied.

The much more interesting observation comes from the
comparison of ionization yields in each of the channels ob-
tained by three-electron and two-electron models. In Fig. 2 we
present respective ratios for TDI and RII channels. Both ratios
are nearly flat in the range of field amplitudes from 0.06 up to
0.2 (especially in the knee regime, i.e., F ∈ [0.08, 0.15]); in
each case 3E yield is one order of magnitude larger than its
2E counterpart. Finally, the TDI and RII ratios show almost
identical behavior, in the sense of shape and magnitude, in the
whole range of analyzed field amplitudes.

The observed constant ratio of ionization yields in both
channels suggests that the ratio of recollision cross sections
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FIG. 1. Double-ionization yields as a function of electric field
amplitude resolved for different ionization channels of the three-
active-electron model (3E) [Eq. (1)] and of the two-active-electron
model (2E) [Eq. (3)]. The channels are denoted as time-delayed
ionization (TDI) and recollision-impact ionization (RII). A five-
cycle-long sin2-shaped pulse of frequency 0.06 a.u. [Eq. (4)] has been
used for simulations.

for three- and two-electron models is field independent: while
the full cross sections are field dependent, their field depen-
dence is uniform for all models. To prove our point we further
reduce the ratio of ionization yields to the ratio of recollision
cross sections and thereafter show that the latter is indeed field
independent.

A. The ratio of cross sections

Following the standard QRS theory [85,86] one can ex-
press the double-ionization yield Pdouble as a sum of the two
ingredients, i.e., TDI and RII:

Pdouble = PTDI + PRII (5)

PTDI =
∫

Y tunn
0 (t ) dt +

∑
n

Y exci
n

∫
Y tunn

n (t ) dt, (6)

PRII =
∫

dE Y RII
E , E > 0, (7)

FIG. 2. Ratios of ionization yields obtained with the three-active-
electron and two-active electron models in TDI and RII channels,
respectively, as a function of electric field amplitude. The plot
corresponds to the data in Fig. 1.

FIG. 3. Ionization yields of initially excited single ion. Curves
correspond to different initial states. A one-dimensional model with
ε = √

2.0 is used. The eigenenergies of the first four excited states
are −0.62, −0.40, −0.27, and −0.19 a.u., correspondingly. The field
parameters are the same as in Fig. 1.

where Y tunn
n , Y exci

n and Y RII
E denote rates of tunneling ionization

from the nth excited state of an ion, collisional excitation of
an ion to the nth state, and RII with energy E transferred
from the rescattered electron to free the second electron,
correspondingly. We are going to consider the yields of TDI
and RII from Eqs. (6) and (7) separately.

1. TDI yields

For the field amplitudes from the knee regime, direct
emission of the second electron from the ionic ground state
(n = 0) is negligible. The interaction with the recolliding
electron is a must. Therefore, we can drop the first term of
Eq. (6). However, for the saturation regime, i.e., F > 0.2,
the omitted term becomes dominating and the ratio P3E

TDI/P2E
TDI

tends to unity—the trend observed in Fig. 2 for the high-
field-amplitude region. From now on we denote the respective
model with superscript (3E) for the three- and superscript (2E)
for the two-electron model.

For low and medium field amplitudes, Eq. (6) reduces to

PTDI �
∑

n

Y exci
n

∫
Y tunn

n (t ) dt

=
∑

n

∫
dσn

d p
W (p) d p

∫
Y tunn

n (t ) dt, (8)

where dσn/d p denotes the differential cross section of an
excitation of an ion from the ground state to the nth state by
an incident electron of momentum p. W (p) is the recolliding
electronic wave packet.

The electronic wave packets are the same for two- and
three-electron models because motion of the recolliding elec-
tron in each case is constrained to one dimension. Further-
more, the laser-induced ionization rates Y tunn

n (t ) are the same
because the ionization potentials are the same [87]. Therefore,
the only model-dependent element of PTDI is dσn/d p.

A direct evaluation of Eq. (8) is a complicated task. In
the given regime of field intensities, however, a good ap-
proximation is to put

∫
Y tunn

n (t ) dt � 1 for all excited states.
Their relatively high eigenenergies provide the saturation of
a laser-induced ionization for the field parameters used in
the current research. That observation is nicely illustrated in
Fig. 3, which shows ionization yields for first few excited
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states of an ion. Now, TDI yield is expressed by

PTDI �
∑

n

∫
dσn

d p
W (p) d p =

∫ (
dσex

d p

)
W (p) d p, (9)

where in the last step we introduced the full differential
excitation cross section dσex/d p ≡ ∑

n dσn/d p. In contrast
to the set of dσn/d p, the full differential excitation cross
section dσex/d p can serve as a good universal parameter
characterizing efficiency of TDI.

Let us assume that the differential excitation cross section
can be factorized as

dσex

d p
= σ̃ex f (p). (10)

The first factor is dependent on model parameters only, ε and
qee, while the second factor is only momentum dependent.
Thanks to the factorization the TDI yields can be rewritten
in the form

PTDI � σ̃ex

∫
f (p)W (p) d p. (11)

The integral is model independent; thus, we can express the
analyzed TDI yields ratio with the ratio of σ̃ex that corresponds
to each model:

P3E
TDI

P2E
TDI

� σ̃ 3E
ex

σ̃ 2E
ex

. (12)

2. RII yields

Similarly to the case of TDI yields, the ratio P3E
RII/P2E

RII
saturates for F > 0.2. The saturation directly follows from
two facts: (i) that Pdouble for either model is composed of two
ingredients, PTDI and PRII [see Eq. (5)] and (ii) that Pdouble

saturates for field amplitudes F > 0.2.
To analyze the ratio of the RII yields for the fields F < 0.2,

let us rewrite Eq. (7) in the form

PRII =
∫

dE
∫

dσE

d p
W (p) d p, (13)

where E denotes the energy of the recollisionally emit-
ted electron and dσE/d p is a cross section for recollision-
impact ionization with energy transfer E . Introducing the
full differential recollision-impact ionization cross section as
dσion/d p ≡ ∫

dE (dσE/d p) we arrive at similar expression to
Eq. (9):

PRII =
∫ (

dσion

d p

)
W (p) d p. (14)

The full differential recollision-impact ionization cross
section dσion/d p can be regarded as a particular case of the
dσex/d p because ionization can be treated as an “excitation
to continuum.” Therefore, we use the same assumption on
factorization of dσion/d p into σ̃ion and f (p) terms and rewrite
the RII yields in the form

PRII = σ̃ion

∫
f (p)W (p) d p. (15)

Again, the integral is model independent and the correspond-
ing RII yields ratio reads then

P3E
RII

P2E
RII

� σ̃ 3E
ion

σ̃ 2E
ion

. (16)

B. Cross-section evaluation

Let us now explain the difference of one order of magni-
tude between ionization yields for the three- and two-electron
models and validate assumption (10). For that purpose we use
a simple analysis in Born approximation inspired by Landau
and Lifshitz [88]. As we have shown, the model dependence
of TDI yield is incorporated in the full differential excitation
cross section dσex/d p. Starting with the basic expression for
dσex from the theory of nonelastic collisions (see paragraph
148 of [88]), we write

dσex

d p
=

∫ p

0

8π

p2

∑
n

|〈np′|Uee|0p〉|2 dq

q3
≡

∫
dσ (q)

ex , (17)

with Uee being a term in the potential describing the in-
teraction between electrons, |0〉 and |n〉 denote the ground
and the nth excited states of the parent ion, while |p〉 and
|p′〉, with q = p′ − p, denote rescattering electron momenta
before and after interaction with the ion. Within this notation,
assumption (10) can be expressed as

dσ
(q)
ex

dq
= σ̃exh(q, p), f (p) =

∫ p

0
h(p, q) dq. (18)

In our models Uee reads

Uee =
∑

a

q2
ee√

(r − ra)2 + rra + ε2
, (19)

where qee and ε are parameters of the model. Coordinates
of the incident and bound electrons are denoted by r and ra,
respectively.

First, we calculate the matrix element 〈p′|Uee|p〉:

〈p′|Uee|p〉 =
∫

e−iqrUee dr

=
∫

e−iqr
∑

a

(
q2

ee√
(r − ra)2 + rra + ε2

)
dr

= q2
ee

∑
a

K0

(
q

√
3

4
r2

a + ε2

)
e−iqra/2, (20)

where K0(q[(3/4)r2
a + ε2]1/2) denotes a modified Bessel func-

tion of the second kind. It decreases fast with increasing
|ra|; thus, it is reasonable to expand e−iqra = 1 − iqra + O(r2

a )
around zero. The constant part of the expansion results in a
zero matrix element; therefore, the approximate expression
for the matrix element (20) reads

〈p′|Uee|p〉 � −iq2
ee

∑
a

K0

(
q

√
3

4
r2

a + ε2

)
qra/2. (21)

After substituting Eq. (21) into Eq. (17) and applying
the rule

∑
n 	=0 |〈n| f |0〉|2 = 〈0| f f †|0〉 − |〈0| f |0〉|2 to the op-

erator (21), and remembering that |〈0| f |0〉| = 0 for the odd
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FIG. 4. Dependencies of the matrix element 〈d̃2
q 〉 from Eq. (23)

on the rescattering electron momentum difference q for two- and
three-electron models along with a ratio of these dependencies. The
range of q used on the plot covers possible magnitudes of rescattering
electron momentum in the case of external field amplitude F =
0.2 a.u.

f (ra), one finally gets

dσ (q)
ex ∼ q4

ee

〈
d̃2

q

〉
dq. (22)

In the above expression we have ignored p-dependent, q-
dependent, or constant factors as they are the same for both
models due to similar kinematics of the rescattering electron.
Also, a matrix element 〈d̃2

q 〉 was introduced:

〈d̃2
q 〉 ≡

〈
0

∣∣∣∣∣∣
[∑

a

K0

(
q

√
3

4
r2

a + ε2

)
ra

]2
∣∣∣∣∣∣0

〉
. (23)

It is instructive to compare the obtained result expressed
in Eq. (23) with the analogous one for the full-dimensional
case of the Coulomb potential, U Coulomb

ee = ∑
a q2

ee/|r − ra|.
Integration over r gives〈

p′∣∣U Coulomb
ee

∣∣p〉 = 4π

q2
e−iqra . (24)

Therefore, one can write

dσ (q)Coulomb
ex ∼ q4

ee〈d2〉 dq, (25)

with a matrix element

〈d2〉 ≡
〈

0

∣∣∣∣∣∣
[∑

a

xa

]2
∣∣∣∣∣∣0

〉
, xa = ra · F

|F | . (26)

Here 〈d2〉 is a matrix element of a square of a dipole moment
and it does not depend on q. So, in the case of Coulomb
potential the assumption in Eqs. (18) and (10) is well justified.
However, in the case of soft-core potential, the matrix element
〈d̃2

q 〉 [see Eq. (23)] still depends on transferred momenta q.
In Fig. 4 we show 〈d̃2

q 〉 as a function of q for both models.
In both cases the matrix element decreases monotonically
with increasing q in a similar way; the only discrepancy is in
the absolute value. Fortunately, the ratio of 〈d̃2

q 〉 for different

models is nearly q independent. Thus, a reasonable estimation
of cross-section ratio can be obtained by putting a constant
q = 1. Then, by defining a modified matrix element of a
square of a dipole moment 〈d̃2〉 ≡ 〈d̃2

q 〉|q=1 such that

〈d̃2
q 〉 � 〈d̃2〉g(q) =

〈
0

∣∣∣∣∣∣
[∑

a

K0

(√
3

4
r2

a + ε2

)
ra

]2
∣∣∣∣∣∣0

〉
g(q),

(27)

where g(q) is some model-independent function of q, one gets,
analogously to Eq. (25),

dσ (q)
ex ∼ q4

ee〈d̃2〉g(q) dq. (28)

The differential cross sections dσ
(q)
ex /dq are now clearly sep-

arable from the q-dependent and the model-dependent σ̃ex ≡
q4

ee〈d̃2〉 factors, proving the assumption in Eqs. (18) and (10).
Finally, the ratio of σ̃ex [Eqs. (12) and (16)] reads

σ̃ 3E
ex

σ̃ 2E
ex

� q4(3E)
ee

q4(2E)
ee

〈d̃2〉(3E)

〈d̃2〉(2E)
= 25

9

1.78 × 10−1

1.74 × 10−2
= 28, (29)

a number that matches well the visible one order of ratio
between the ionization yields in Fig. 2.

The observed proportionality between 〈d̃2〉(3E) and 〈d̃2〉(2E)

can be explained as follows. First, observe that K0([(3/4)r2
a +

ε2]1/2) decreases fast with increasing ε. Second, the spatial
distribution of the ground state of a single ion is different
for both models, thus affecting the integration of Eq. (27).
In the case of the two-electron model, the ground-state wave
function of a single ion is symmetric with respect to exchange
of coordinates because it describes a single active electron.
As a consequence of this symmetry it has a maximum near
the coordinate system’s origin. For the three-electron model,
however, the ground-state wave function of a single ion
describes two active electrons having the same spin orien-
tations and, thus, it is antisymmetric and has a nodal line
along r1 = r2 (that includes the nucleus position r1 = r2 = 0).
Therefore, the wave function is broader than its counterpart in
the two-electron model. As a benchmark, the values of the
average 〈0|(∑a ra)2|0〉 evaluated for ground states of single
ions in two- and three-electron models are 1.04 and 3.06 a.u,
correspondingly.

C. The correspondence rule

Expression (29) naturally implies the correspondence crite-
rion between different models: The TDI efficiency in the knee
regime (that is essentially RESI efficiency) is proportional to
the ionic ground-state diagonal matrix element of a square of
a modified dipole moment.

The form of such a modified dipole moment is defined
by the potential term responsible for the interaction between
electrons in the system. For example, it is identical to the
standard dipole moment operator, providing the Coulomb
potential describes the interaction. If the soft-core potential
is used instead, the matrix element has a strong dependence
on the soft-core parameter ε. In addition, the symmetry of the
wave function of the ground state of an ion plays a decisive
role in calculating the relevant matrix element, as discussed
in detail at the end of the previous section. The symmetry of
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the wave function, in turn, depends on the number of active
electrons included in the model. Eventually, such a situation
leads to a more efficient recollisional excitation in the models
with larger numbers of electrons than in the models with fewer
electrons.

There is one more feature that is valid for the cases in
which the effective electron-electron charge is introduced. It
follows directly from Eqs. (12) and (29): The TDI efficiency
is proportional to the fourth power of the effective electron-
electron charge.

In the reported case, the models were constructed in such a
way that this effective charge was larger for the three-electron
model.

A straightforward generalization of a differential cross-
section notion [Eq. (17)] to the domain of the final free states
together with Eq. (16) implies the same correspondence rule
for a RII channel. As well as in the case of TDI, the rule is
supported by numerical data in Fig. 2.

IV. CONCLUSIONS

We have performed simulations of ionization dynamics
in femtosecond laser pulses for a model atom with the p3

valence shell. Since all the valence electrons have the same
spin orientation their wave function is antisymmetric with
respect to exchange of any pair of electrons. This property
allowed us to construct consistent three- and two-active-
electron models ready for a direct comparison. Within these
models, we investigated how the number of active electrons
affects the double-ionization yield. In particular, for the laser
field amplitudes corresponding to the “knee” regime, we
have found that the ratio between double-ionization yields
obtained with three-electron and two-electron models appears
to be nearly constant. We have shown that the ratio between
double-ionization yields may be approximated by the ratio of
differential cross sections for recollisional excitation. From
the latter the model-dependent elements are easily extracted,
implying a correspondence rule for double-ionization signal
magnitudes obtained with different models.

The increase of excitation cross section while moving
from the two- to the three-electron model agrees well with
other trends known from the theory of electronic scattering
on atoms (ions) [88]: (i) the proportionality of the elastic-
scattering cross section to the square of the number of elec-
trons in the target and (ii) the linear dependence of Rutherford-
type inelastic scattering (qra � 1) on the number of electrons.
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APPENDIX: MODEL GEOMETRY AND FLUX
CALCULATION

The motion of electrons is restricted along predefined axes.
In both two- and three-electron systems these axes constitute
an angle γ = π/3: see the mutual positions of r1 and r2 in

FIG. 5. (a) Spatial geometry of the two-electron model. Elec-
trons propagate along r1 and r2 axes. The field is directed along the
z axis. (b) Space division for the two-electron model. The regions
correspond to neutral states (A), singly ionized states (S) and doubly
ionized states (D). Borders between these regions are defined as
ra = 12.5 a.u. and rb = 7 a.u.

Fig. 5(a), and r1 and r2, r3 and r2, and r1 and r3 in Fig. 6(c).
The laser field direction is chosen to be symmetric with
respect to all the electronic axes.

In our algorithm, the total electronic space is divided into
regions corresponding to neutral states (A), singly ionized
states (S), doubly ionized states (D), and, for the three-
electron model, triply ionized states (T ). The populations of
these states are calculated by integrating the probability fluxes
between the corresponding regions [89]. To this end, we as-
sign different spatial regions to the different ionization stages
and compute the fluxes across the borders. The assignment
of the regions has some ambiguities, since it is necessary,
for instance, to distinguish a highly excited atomic state with

FIG. 6. [(a), (b)] Space division for the three-electron model. In
color the borders between regions correspond to neutral states (A),
singly ionized states (S), doubly ionized states (D), and triply ionized
states (T ). The border distances are ra = 12 a.u., rb = 7 a.u., and
rc = 5 a.u. (c) Three-electron model. Electrons propagate along r1,
r2, and r3 axes. The field polarization direction, �F , is indicated by the
arrow.
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a large excursion of an electron from a singly ionized state
where that electron is no longer bound. Nevertheless, this
space separation method is commonly used in both classical
and quantum-mechanical time-dependent studies [42,51,61]
and provides results that can be used to deduce trends with
external parameters if the internal assignments of the regions
are preserved. The regions and the corresponding borders
between them are depicted in Fig. 5(b) for the two-electron
model and in Figs. 6(a) and 6(b) for the three-electron model.

The Schrödinger equation for the wave function ψ (r, t )
leads, as usual, to the continuity equation

∂

∂t
ρ(r, t ) + ∇ · j(r, t ) = 0, (A1)

where the probability density is given by ρ(r, t ) = |ψ (r, t )|2
and the probability current by

j(r, t ) = Im(ψ∗(r, t )∇ψ (r, t )) (A2)

in length gauge or by

j(r, t ) = Im(ψ∗(r, t )∇ψ (r, t )) −
√

2/3|ψ (r, t )|2A(t ) (A3)

in velocity gauge with vector potential A(t ). Changes of the
population in region R ∈ R3 can be expressed with the appli-
cation of Gauss’s theorem as a flux fR(t ) across its borders:

∂

∂t
PR(r, t ) = ∂

∂t

∫∫∫
R
|ψ (r, t )|2 d3r

= −
∫∫∫

R
∇ · j(r, t ) d3r

= −
∫∫

∂R
j(r, t ) · dσ ≡ fR(t ), (A4)

where ∂R is the border of region R and dσ is the corre-
sponding surface element. We assume that the wave function

decreases sufficiently rapidly as r → ∞ so that all the above
integrals converge for any region R. Correspondingly, the
instantaneous value of the population in region R is given by

PR(r, t ) = PR(r, 0) −
∫ t

0
fR(t ′) dt ′. (A5)

The regions for the different states are composed of rect-
angular domains that are aligned with the coordinate axes,
so that the boundaries between different regions consist of
surfaces parallel to coordinate surfaces. Following the original
proposition [51], we define the characteristic length ra = 12.5
a.u. related to a single-ionization (SI) region and rb = 7 a.u.
related to a double-ionization (DI) region. For triple ionization
we take rc = 5 a.u., as suggested by the location of the triple-
ionization saddle [89]. While these numbers seem somewhat
arbitrary, it may be verified that a reasonable change of
the borders leads to small quantitative changes of ionization
yields obtained only; the main conclusions about trends as
functions of external parameters remain unchanged if the
domains are not modified along the way.

The domains and their boundaries for the three-electron
model are shown in Fig. 6. The region assigned to the atom
(label A) is the central block in Fig. 6(a). Its surface is
composed of several segments that stand for transitions to
the differently ionized atom: Passing through the three yellow
surfaces one electron is emitted, so that one enters the SI
region (labeled S). Passing through the orange regions, two
electrons escape and one enters the DI region (labeled D).
Finally, leaving the atom along the diagonal gives immediate
triple ionization (labeled T ). The notation i ↔ j used in Fig. 6
indicates transitions between the different regions. Continuing
onwards, there are further boundaries between the ionized
states, accounting for transitions between regions SI (S) and
DI (D), for instance [see Fig. 6(b)].
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