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Transfer-matrix theory of surface spin-echo experiments with molecules
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3He beam spin-echo experiments have been used to study surface morphology, molecular and atomic
surface diffusion, phonon dispersions, phason dispersions, and phase transitions of ionic liquids. However, the
interactions between 3He atoms and surfaces or their adsorbates are typically isotropic and weak. To overcome
these limitations, one can use molecules instead of 3He in surface spin-echo experiments. The molecular degrees
of freedom, such as rotation, may be exploited to provide additional insight into surfaces and the behavior of their
adsorbates. Indeed, a recent experiment has shown that orthohydrogen can be used as a probe that is sensitive
to the orientation of a Cu(115) surface [O. Godsi, G. Corem, Y. Alkoby, J. T. Cantin, R. V. Krems, M. F.
Somers, J. Meyer, G.-J. Kroes, T. Maniv, and G. Alexandrowicz, Nat. Commun. 8, 15357 (2017)]. However,
the additional degrees of freedom offered by molecules also pose a theoretical challenge: a large manifold
of molecular states and magnetic-field-induced couplings between internal states. Here, we present a fully
quantum-mechanical approach to model molecular surface spin-echo experiments and connect the experimental
signal to the elements of the time-independent molecule-surface scattering matrix. We present a one-dimensional
transfer-matrix method that includes the molecular hyperfine degrees of freedom and accounts for the spatial
separation of the molecular wave packets due to the magnetic control fields. We apply the method to the case
of orthohydrogen, show that the calculated experimental signal is sensitive to the scattering matrix elements,
and perform a preliminary comparison to experiment. This paper sets the stage for Bayesian optimization to
determine the scattering matrix elements from experimental measurements and for a framework that describes
molecular surface spin-echo experiments to study dynamic surfaces.
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I. INTRODUCTION

A major thrust of recent experimental work has been to
achieve control over the longitudinal motion of atomic and
molecular beams [1–8]. Controlled beams can be used for
a variety of applications, ranging from loading molecules
into traps [9–11], to measuring cross sections for molecular
scattering with extremely high energy resolution [12–15], to
precision spectroscopy [16–18], to controlled chemistry [19].
The development of methods for the initial state selection and
control over both the longitudinal and transverse motion of
molecular beams has also paved the way for matter-wave in-
terferometry [20–22], nanolithography [23–25], and precision
studies of molecule-surface scattering. Although molecule-
surface collisions have been a subject of numerous studies
[26–29], combining the latest advances in molecular-beam
control with surface scattering experiments opens opportu-
nities for probing new regimes of molecule-surface energy
exchange and obtaining detailed information about surface
properties. This is well exemplified by 3He spin-echo (HeSE)
experiments [30–33] aiming to probe the structure of surfaces,
as well as quantum matter adsorbed on surfaces, by scattering
a beam of 3He in superpositions of nuclear-spin states off
a surface and observing the perturbation of the resulting

*Present Address: Department of Chemistry, Swansea University,
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interferometry signal. Analogous to neutron spin-echo exper-
iments [34,35], HeSE experiments have been shown to detect
the impact of gravity (on the energy scale of ≈10 neV) on
the kinetic energy of atoms in the beam [30]. When used to
study surfaces, HeSE experiments can be classified as a sub-
set of quasielastic helium atom scattering experiments [26].
Surface-sensitive HeSE experiments [31–33] have been used
to study surface morphology [36], molecular and atomic sur-
face diffusion [32,33,37–41], interadsorbate forces [38,42],
phonon dispersions [32,33,43], phason dispersions [44], struc-
tures and phase transitions of ionic liquids [45], and friction
between adsorbates and surfaces [46–48]. HeSE experiments
have provided information about potential-energy surfaces
[32,33,49] and surface-adsorbate interactions [32,33,50] and
are frequently combined with microscopic calculations to
both test theory and gain insight into surface-adsorbate inter-
actions [39,51,52].

The use of 3He as probe particles in HeSE experiments
can sometimes be limited by the weak interaction strength
between 3He and surfaces or their adsorbates. In addition,
3He offers no internal degrees of freedom to absorb energy
or induce anisotropic interactions. Therefore, an important
recent goal has been to extend surface spin-echo experiments
to molecular beams [53]. Molecules offer rotational degrees of
freedom and anisotropic, state-dependent interactions, which
could be exploited to gain new insights into surface dynamics.
For example, it was recently shown that orthohydrogen (o-H2)
can be used as a sensitive probe of surface morphology
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[53]: the experiment was able to discern how the interaction
between an o-H2 molecule and a Cu(115) surface depends
on the orientation of the rotational plane of the hydrogen
molecule relative to the surface. In addition, one could exploit
the transfer of rotational energy from the probe molecules to
surface adsorbates (or vice versa) in order to study the relative
effects of the rotational and translational motion on the dy-
namics of the adsorbates. However, the increased complexity
of molecules (compared to 3He atoms) makes the analysis
of the spin-echo experiments complicated and requires one
to account for the interplay of the translational, nuclear-spin,
and rotational degrees of freedom in strong magnetic fields
of differing orientations, in addition to the molecule-surface
scattering event.

Surface spin-echo experiments with molecules involve
passing a molecular beam through a series of magnetic fields
to control molecular wave packets before and after the scat-
tering event. A proper analysis of the resulting experimental
signal must be based on (i) the solutions of the time-dependent
Schrödinger equation accounting for the development of en-
tanglement between the translational motion and the internal
states of molecules in the beam, as the beam transverses the
magnetic fields of the spin-echo apparatus, and (ii) the de-
scription of the molecule-surface scattering events in the rele-
vant frame of reference by the scattering matrix involving all
relevant molecular states. This is a challenging task because
the potential-energy surfaces for molecule-surface interac-
tions are difficult to compute with sufficient accuracy [54–60],
the calculations of the cross sections for molecule-surface
scattering are extremely time consuming [61,62], and the
orientation and strength of magnetic fields necessarily change
throughout the spin-echo apparatus. An alternative formula-
tion can be developed to treat the molecule-surface scattering
matrix elements as varying parameters to be determined from
the experimental interferometry signal by one of the algo-
rithms used in optimal control theory [63–68] or reinforce-
ment machine learning designed to solve the inverse problem
[69,70]. In order for such a formulation to be practical, it is
necessary to develop a rigorous method for the description
of molecular dynamics inside the spin-echo apparatus, before
and after the molecular wave packets interact with the surface.
This method must be efficient to allow for multiple feedback
control loops, be accurate to ensure the proper description of
interferometry dynamics, and integrate rigorously the surface
scattering matrix amplitudes into the resulting output signal.

In this paper, we exploit the transfer-matrix method
[71,72] to develop such a theoretical framework. The
transfer-matrix method [71,72] has been applied in vari-
ous fields, such as for solving the two-dimensional (2D)
Ising model in statistical mechanics [73], calculating reflec-
tion and transmission coefficients in optics [74] and meso-
scopic quantum transport [75], determining photonic band
structures [76], and examining the tunneling of a molecule
through potential barriers [77,78]. The general and effi-
cient framework we present can be used to analyze the
coherent propagation of closed-shell molecules through a
series of static magnetic fields with different magnitudes
and orientations, as well as through one or more scattering
events.

We apply this framework to surface-sensitive interferome-
try experiments that use closed-shell molecules to study static
surfaces. Specifically, we develop a fully quantum-mechanical
model of surface-sensitive molecular hyperfine interferometry
experiments by deriving a one-dimensional transfer-matrix
method that includes the internal hyperfine degrees of free-
dom of the probe molecules and that accounts for the eigen-
basis changes between local regions of the magnetic field. We
account for the experimental geometry with rotation matrices
and describe the molecule-surface interaction with a scattering
transfer matrix (a transformed version of the standard scatter-
ing matrix).

The method is applied to an o-H2 hyperfine interferom-
etry experiment. By comparing the theoretical results with
experimental measurements, we illustrate the importance of
integrating over the velocity distribution of molecules in the
beam. We further show that information about the scattering
matrix elements is encoded in the experimental signal. In
particular, we demonstrate that the experimental signal is
sensitive to the magnitude and phase of the diagonal ele-
ments of the scattering transfer matrix. We also show that the
signal is sensitive to scattering events that change the pro-
jection quantum numbers of the molecular hyperfine states.
Such dynamical processes are described by scattering trans-
fer matrices with nonzero diagonal and off-diagonal matrix
elements. This sets the stage for determining, in part or in
whole, the scattering transfer-matrix elements of a particular
molecule-surface interaction by comparing the computed and
experimentally measured signals.

Finally, we compare our method with a semiclassical
method, which is described briefly in the supplementary ma-
terial of Ref. [53] for o-H2 and in more detail in Ref. [79]
for spin-1/2 particles. Within this semiclassical method, the
internal molecular degrees of freedom are treated quantum
mechanically, while the center-of-mass degree of freedom is
treated classically. Through this comparison, we demonstrate
that the present method can be extended to study dynamic,
instead of static, surfaces by surface spin-echo experiments
with molecules.

The remainder of this paper is organized as follows. In
Sec. II, we describe a generic molecular hyperfine interferom-
etry experiment. We then discuss, in Sec. III, the molecular
state after the state-selecting magnetic lens. In Sec. IV, we
time evolve the molecular state and integrate the result over
the length of the detection window to obtain the relationship
between the system eigenstates and the detector current. To
obtain the system eigenstates, we derive and apply, in Sec. V,
a transfer-matrix formalism that includes internal degrees of
freedom. We also discuss the rotation and scattering transfer
matrices used to account for the apparatus geometry and
the molecule-surface interaction, respectively. In Sec. VI, we
demonstrate the application of this theoretical framework to
the case of o-H2, illustrate the need to integrate over the
velocity distribution, illustrate the sensitivity of the calculated
signal to various features of the scattering transfer matrix,
and perform a preliminary comparison with experiment. We
compare the method of the present paper to the semiclassical
method discussed by Godsi et al. [53] in Sec. VII. Section VIII
concludes the paper.
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II. DESCRIPTION OF A MOLECULAR HYPERFINE
INTERFEROMETRY EXPERIMENT

A surface-sensitive molecular hyperfine interferometer
uses a beam of molecules to probe various surface properties.
To do this, a set of magnetic fields is used to simultane-
ously manipulate the internal hyperfine states of the probe
molecules and create a spatial superposition of molecular
wave packets. These wave packets sequentially impact the
sample surface and scatter in all directions. A second set of
magnetic fields collects the molecules scattered in a narrow
solid angle. This second set of magnetic fields further manip-
ulates the molecular wave packets, partially recombining them
and allowing for molecular self-interference. Wave packets
with particular hyperfine states are then passed into a detector.
A schematic of the experiment is depicted in Fig. 1. We now
discuss the different stages of the experiment in more detail.

The beam source must produce a continuous (or pulsed)
beam of molecules with a sufficiently narrow velocity profile,
mean velocity suitable for a particular experiment, sufficiently
high flux, and a density low enough to ensure that the
molecules are noninteracting. One current apparatus [53] uses
a supersonic expansion to produce such a beam. One can also
envision experiments with slow molecular beams produced
by extraction (sometimes with hydrodynamic enhancement)
from a buffer-gas cooled cell [9] or with molecular beams
controlled by electric-field [80] or magnetic-field deceleration
[81]. Deceleration provides control over the mean velocity and
narrows the velocity spread [1], which could be exploited for
novel interferometry-based applications.

The experiment selects molecules in particular hyperfine
states by employing a magnetic lens the magnetic field of
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FIG. 1. A generic molecular hyperfine interferometer consists of
a beam source (green), magnetic lenses (dark blue), auxiliary fields
(light blue), control fields (purple), the sample (hatched rectangle) in
an ultra-high-vacuum chamber, and the detector (red). See Sec. II for
more details on each component. The arrows and dashed line indicate
the direction and path of the molecular beam, which is initially along
the +x direction and then along the −x′ direction after scattering.
The two branches of the apparatus are separated by an angle θ . z
and z′ denote the direction of the quantization axes before and after
scattering, respectively. This definition of the quantization axes has
been chosen to match the experiment by Godsi et al. [53] and to
simplify rotating the quantization axes in the transfer-matrix method.
The y and y′ axes are identical and point into the page.

which has a gradient in the radial direction. A cylindrically
symmetric field gradient is used to ensure sufficient molec-
ular flux. The lens focuses molecules with low-field seeking
states and defocuses molecules with high-field seeking states,
allowing for purification of the molecular beam. After the
lens, a unique quantization axis for the internal states is
developed by using an auxiliary field that adiabatically rotates
all magnetic moments until they lie along a single direction
perpendicular to the beam path. The end of this auxiliary
field is a strong dipolar field aligned along the z direction
that defines the quantization axis. Hexapole magnets can be
used as a magnetic lens as their magnetic-field gradients are
sufficiently cylindrically symmetric [53,82,83]. More details
about the internal states of the molecules immediately after
the magnetic lens can be found in Sec. III.

Solenoids the magnetic fields of which are parallel to the
beam propagation path are used to manipulate the molecular
hyperfine states. These solenoids are helically wrapped wire
coils whose corresponding magnetic fields are generated by an
electric current passing through each coil. These solenoids are
labeled as the control fields in Fig. 1. Arbitrary magnetic-field
profiles can be obtained by changing the solenoid winding
patterns and/or using multiple successive solenoids.

The hyperfine states of a molecule change energy as
the molecule enters a magnetic field. These changes to the
hyperfine energy levels cause simultaneous changes in the
molecular momenta, as the total energy is conserved. That
is, when molecules enter a solenoid, molecules in low-field
seeking states slow down and those in high-field seeking states
speed up. Furthermore, because the direction of the magnetic
field in a control field is not along the z axis, the molecules
are in a superposition of hyperfine states, with respect to
the quantization axis defined by the magnetic field. Thus,
the differences in momenta cause the different components
of each molecular wave packet to spatially separate as the
wave packet traverses the solenoid. Upon exiting the solenoid,
the components of each wave packet return to their original
momenta, but remain spatially separated. That is, each wave
packet is now in an extended spatial superposition.

Each of these spatially separated wave-packet components
comprises a superposition of the field-free hyperfine states.
The exact superpositions of each wave-packet component, as
well as the spatial separations between the components, de-
pend on the magnetic-field profile of the first branch. Each of
the wave-packet components sequentially impacts the sample
surface and scatters in all directions. However, the experiment
only captures those molecules that pass through a particular
solid angle. While a current experiment [53] fixes the angle
between the two branches, one can in principle explore many
different scattering geometries by varying both the angle
between the two branches of the apparatus and the orientation
of the sample.

After scattering, the collected molecules enter another set
of control fields in the second branch of the apparatus. The
hyperfine states again change in energy and momenta. In
a 3He spin-echo experiment, if the second magnetic-field
profile is identical but opposite in direction to the magnetic-
field profile of the first branch, the spatially separated wave-
packet components realign (to first order) as they traverse the
magnetic field(s), producing a spin echo. This allows the
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wave-packet components to interfere with each other. Inter-
estingly, it has recently been shown [79] that echoes are also
produced when the device operates with the fields in the same
direction. With an arbitrary hyperfine Hamiltonian, such a
realignment is only partial, though still useful. Experiments
can be performed that explore either this spin-echo region or
different relationships between the two magnetic-field pro-
files, which may allow for a variety of insights about the
sample surface. For example, the two field profiles can be
different or the field magnitudes can be varied simultaneously,
keeping B1 = −B2. These different regimes of operation may
produce different echoes, which can be collectively analyzed
to provide more insight into molecule-surface interactions.

Additionally, as the spatially separated wave-packet com-
ponents hit the surface sequentially, rather than simultane-
ously, any temporal changes in the surface that are on the
timescale of the impact-time separation can differentially
impact the phases of each wave-packet component. This may
result in different interference patterns or even loss of coher-
ence. This loss of coherence is the basis for the sensitivity of
HeSE measurements to surface motion [84]. Here, as in the
recent experiment by Godsi et al. [53], we focus on surfaces
the dynamics of which are either much faster or much slower
then the molecule-surface or wave-packet–surface interaction
times. Note, however, that the current framework is suitable
for extension to interaction regimes where the surface dynam-
ics are comparable to these timescales.

After leaving the last solenoid of the second branch, the
wave packets pass through another auxiliary field that begins
with a strong dipolar field in the z′ direction. The auxiliary
field then adiabatically connects magnetic moments aligned
along the quantization axis to the radial direction of the final
hexapole lens. This hexapole lens then focuses wave packets
with low-field seeking hyperfine states into the ionization
detector and defocuses the rest. Finally, the ionization detector
produces a current that is proportional to the molecular flux
into the detector port. We describe how to calculate the
molecular flux that enters the detector port in Sec. IV and the
related transfer-matrix formalism in Sec. V.

Analyzing the detector current as a function of the
magnetic-field profiles, the apparatus geometry, and the sam-
ple orientation can provide information about the interaction
of the molecules with the sample surface. We discuss one
possible analysis scheme in Sec. VI.

Molecular hyperfine Hamiltonian

In principle, the only requirement for a molecular species
to be suitable for molecular hyperfine interferometry is that
the molecule have internal degrees of freedom whose energies
are magnetic-field dependent. Such a requirement could be
fulfilled by the presence of a nuclear spin, a rotational mag-
netic moment, or even an electronic spin. In practice, however,
if the energy dependence on the magnetic field is too weak
relative to the kinetic energy, state selection and state manipu-
lation are difficult. On the other hand, if the dependence is too
strong, the molecules may be difficult to control. Given these
restrictions, we deem molecules that have a closed shell and
are in an electronic state with zero orbital angular momentum
to be most suitable for molecular hyperfine interferometry.

In this case, the dominant interactions induced by magnetic
fields are due to the nuclear magnetic spins of the molecules.

The hyperfine states of such a closed-shell molecule with
zero orbital angular momentum arise from coupling between
the nuclear spin and the rotational degrees of freedom. Inter-
actions of these hyperfine states with a magnetic field arise
from the response of the nuclear and rotational magnetic
moments to the external magnetic field. We assume that the
hyperfine Hamiltonian, also referred to here as the Ramsey
Hamiltonian [85], is of the following form:

ĤR( �B) = U (Î2, Ĵ2, Î · Ĵ, I, J ) + V (Î2, Î · �B, I, �B2)

+ Q(Ĵ2, Ĵ · �B, J, �B2), (1)

where �B is the vector of the external magnetic field, assumed
to be uniform across the molecule; Î and Ĵ are the nuclear spin
and rotational angular momentum operators, respectively; I
and J are the nuclear spin and rotational angular momentum
quantum numbers, respectively; U contains all spin-rotational
couplings (such as Î · Ĵ or Î2Ĵ2); V contains all interactions of
the nuclear spins with the magnetic field (such as Î · �B); and Q
contains all interactions of the rotational angular momentum
with the magnetic field (such as Ĵ · �B). Both V and Q are
assumed to be proportional to positive powers of | �B|.

At large magnetic fields, V and Q dominate, making the
eigenbasis |ImI JmJ〉, where mI and mJ are the projections
of the angular momenta �I and �J onto the external magnetic
field direction, respectively. At zero field, ĤR is diagonalized
by |IJFM〉, where F̂ = Î + Ĵ is the total angular momentum
operator and M is the projection of �F onto a chosen quantiza-
tion axis. At intermediate fields, the eigenbasis is a function of
the magnetic field and can be represented as a superposition
of either |IJFM〉 or |ImI JmJ〉 states. Note that M is a good
quantum number at all field strengths. We call an eigenstate
of ĤR a Ramsey state, which we denote as |R〉 and which has
the energy ER. The number of eigenstates of ĤR is NR, such
that 1 � R � NR.

We treat the apparatus as a one-dimensional system and
account for the actual geometry by rotating the basis of the
hyperfine states at the appropriate locations (see Sec. V B).
The total Hamiltonian can thus be written as

Ĥ (x) = p̂2

2m
+ ĤR( �B(x)) (2)

where p̂ is the center-of-mass momentum operator, m is the
molecular mass, and x is the position of the molecule in the
apparatus. The magnetic field �B(x) is now spatially dependent,
reflecting the magnetic-field profiles of the two branches of
the apparatus.

In principle, the total Hamiltonian should incorporate
molecule-surface interaction terms, such as the molecule-
surface interaction potential. However, instead of treating
the molecule-surface interactions explicitly, we include the
interactions effectively through the use of a scattering transfer
matrix (see Sec. V C). This allows us to separate the details
of the molecule-surface interaction from the propagation of
the molecules through the apparatus. We can then treat the
molecular propagation analytically while allowing for the
scattering matrix to be determined by the level of theory
practical for a particular system. Even more importantly, this
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approach allows us to treat the scattering matrix elements as
free parameters that can be determined by fitting the calcu-
lated signal to an experimental signal. For the present paper,
we treat the scattering matrix elements as arbitrary parame-
ters, focusing primarily on the development of a theoretical
formalism to describe the molecular propagation. We choose
particular values for the scattering matrix elements only when
we apply the formalism specifically to o-H2 (Sec. VI). We
also assume that the surface is static on timescales relevant
to the experiment, such that the scattering matrix is time
independent.

The system eigenstates |ER〉 are defined by the total
Hamiltonian (2) through Ĥ |ER〉 = E |ER〉. Note that the
system eigenstate |ER〉 is NR degenerate and that any linear
combination of these states with the same label E is also
an eigenstate of Ĥ . This degeneracy occurs as, while the
NR different Ramsey states may have different energies, the
kinetic energy can always be selected to maintain the same
total energy. For the sake of convenience, we choose the
orthonormal basis to be that defined by ĤR( �B(x)) |ER〉 =
ER |ER〉 for x � 0−. The zero of x is defined to be immedi-
ately after the magnetic lens, while y± ≡ limδ→y± δ. We use
these limit definitions as we will deal with discontinuities
in the magnetic field when working with the transfer-matrix
formalism (Sec. V). As an example of the use of this notation,
the statement that both one-sided limits are equal at the
point x [i.e., lima→x− f (a) = limb→x+ f (b)] can be written as
f (x−) = f (x+).

The above definition of |ER〉 produces, for all x, a unique
labeling of the system eigenstate |ER〉 by the total energy E
and the internal state R, where R is a Ramsey state in the
high magnetic field located immediately after the magnetic
lens (i.e., at x = 0−). Note that, because of this definition,
ĤR( �B(x)) |ER〉 �= ER |ER〉 for x � 0+; that is, the system
eigenstates are superpositions of the local Ramsey states for
x � 0+. This unique labeling of the system eigenstates is
valid for all x as the eigenstate wave functions have a well-
defined phase relationship throughout the entire apparatus.
See Sec. V A for more details on the specifics of this phase
relationship.

III. IMPACT OF THE MAGNETIC LENS
ON THE MOLECULAR STATES

The magnetic lenses are designed to focus molecules with
certain hyperfine states either onto the sample or into the
detector. The remaining molecules are either defocused or
insufficiently focused and contribute significantly less to the
experimental signal. Roughly, high-field seeking states are
defocused, some of the low-field seeking states are well
focused, and the rest of the low-field seeking states are
partially focused. The actual proportions of each hyperfine
state in the molecular beam must be measured or calculated
from simulation. These magnetic lenses typically use large
magnetic fields and large magnetic-field gradients to perform
this focusing [82,83].

In general, magnetic lenses may take different forms, but
we will consider lenses that have one key feature: the in-
ternal degrees of freedom of the outgoing molecular wave
packets are decohered in the high-magnetic-field basis (i.e.,

|ImI JmJ〉). More precisely, we assume that the wave packet
exiting the magnetic lens is a mixed state of the form

ρ0 =
∑
R0

PR0

∣∣�R0k0

〉 〈
�R0k0

∣∣ , (3)

where

∣∣�R0k0

〉 =
∫

dr ψR0k0 (r) |rR0〉 ; (4)

ψR0k0 (r) ≡ 〈r|�R0k0〉 is the wave function of a molecule in
state |R0〉; ρ0 is the initial (time t = 0) density matrix; |rR0〉 ≡
|r〉 |R0〉; |r〉 is an eigenstate of the position operator; |R0〉 is an
eigenstate of ĤR( �Blens); �Blens is a high-magnitude z-aligned
magnetic field; k0 is the experimentally determined mean
wave number of the wave packet; and PR0 is the probability
that the hyperfine state vector of the molecule is |R0〉. Note
that ρ0 is diagonal in |R0〉 but not in |r〉 (or |k〉, the mo-
mentum basis). Also, �Blens = �B(x = 0−) corresponds to the
final portion of the auxiliary field (i.e., a strong, z aligned,
dipolar field), not the field inside the hexapole magnet itself
(see Sec. II).

That such a form of the wave packet is valid follows from
the work by Utz et al. [86]. The authors show that the two
wave packets arising from a spin- 1

2 particle passing through
a Stern-Gerlach apparatus are quickly decohered with respect
to one another, even before they separate spatially. That is, the
quantum dynamics themselves cause decoherence between
the spin degrees of freedom (but not the spatial); a measure-
ment or coupling to an external bath is not required. This de-
coherence occurs as the large magnetic-field gradients cause
a rapid oscillation in the off-diagonal terms of the extended
Wigner distribution. That is, the phase relationship between
the spin-up and spin-down components oscillates heavily in
both the position and momentum bases, destroying coherence.

Given that the magnetic lenses we consider act like a
Stern-Gerlach apparatus for the molecular hyperfine states, it
is reasonable to assume that the internal hyperfine degrees of
freedom will also decohere. Thus, we need only determine
the values of PR0 for a specific magnetic lens. These can be
found via semiclassical calculations [53,87], may be mea-
sured experimentally [87], or may potentially be determined
by solving the full three-dimensional Schrödinger equation
within the lens.

The mean velocity v0 and velocity spread σv of the
molecules in the molecular beam can be measured exper-
imentally [53]. Both of these values are determined from
the position and profile of scattering peaks obtained from
the scattering of the probe molecules by appropriate sample
surfaces [53]. We assume that the initial wave function of a
molecule ψR0k0 (r) is Gaussian and is characterized by k0 ≡
mv0/h̄ and σk ≡ mσv/h̄, where m is the mass of the molecule.
More precisely,

ψR0k0 (r) =
∫

dk
1(

2πσ 2
k

) 1
4

e
− (k−k

R0
0 )2

4σ2
k

eikr

√
2π

= √
σk

(
2

π

) 1
4

eik
R0
0 re−r2σ 2

k (5)

062703-5



CANTIN, ALEXANDROWICZ, AND KREMS PHYSICAL REVIEW A 101, 062703 (2020)

where kR0
0 is taken to be k0. Though kR0

0 may in fact depend
slightly (on the order of ppm) on R0, we show later that the
experimental signal is insensitive to small changes in kR0

0 .

IV. WAVE-PACKET PROPAGATION
AND SIGNAL CALCULATION

The primary measured value of the experiment is a cur-
rent that is proportional to the molecular flux entering the
detector. This measured current is a function of the magnetic
fields, the scattering geometry, and the surface properties. The
molecular flux entering the detector can be calculated as the
product of the molecular flux incident to the apparatus and
the probability that a molecule entering the apparatus will
successfully pass through the apparatus and be detected. It is
this probability of detection Pdetection that is sensitive to the
experimental parameters and surface properties. Note that the
incident molecular flux could be either continuous or pulsed,
as long as the density is low enough that the molecules can be
considered noninteracting.

As the detector has a finite time response, the probability
of detection is given by

Pdetection = 1

τ

∫ t2

t1

dt〈Ĉ(t )〉, (6)

where t1 and t2 are the initial and final times of the detection
window τ = t2 − t1, and 〈Ĉ(t )〉 is the expectation value of the
detector measurement operator Ĉ. This expectation value is
given by

〈Ĉ(t )〉 = Tr ρ̂(t )Ĉ, (7)

where ρ̂(t ) ≡ Ûρ0Û † = ∑
R0

PR0 |�R0k0 (t )〉 〈�R0k0 (t )| is the

time evolved density matrix, Û ≡ e−i Ĥ
h̄ t is the time evolution

operator, ρ0 is the density matrix (3) at t = 0, and |�R0k0 (t )〉 ≡
Û |�R0k0〉.

Given that the detector consists of a magnetic lens that
focuses molecules with particular states into a measuring
apparatus, such as an ionization detector [53], and that the
internal degrees of freedom of these molecules are decohered
by the second magnetic lens (see Sec. III), we can model the
detector with a diagonal operator:

Ĉ =
∑
RD

∫
dx cRD (x) |xRD〉 〈xRD| . (8)

The matrix elements of Ĉ are the probabilities cRD (x) of
detecting, at position x, a molecule whose internal state is a
high-field eigenstate |RD〉 of ĤR. Note that cRD (x) = 0 for x <

xD, the detector position.
Using the time evolution operator, we determine the time

dependence of the density matrix ρ(t ) to be

ρ(t ) =
∑

R0RR′

∫
dE

∫
dE ′ PR0 e− i

h̄ (E−E ′ )tαER
k0R0

α∗E ′R′
k0R0

× |ER〉 〈E ′R′| , (9)

where αER
k0R0

≡ ∫
dr ψR0k0 (r)�∗ER

R0
(r) is the overlap between

the initial wave function ψR0k0 (r) and the system eigenstate
wave function �ER

R0
(r) ≡ 〈rR0|ER〉.

We can evaluate 〈Ĉ(t )〉 by inserting a resolution of
the identity

∑
RD

∫
dr |rRD〉 〈rRD|, where ĤR( �B(x)) |RD〉 =

ERD |RD〉 for x � x+
D and xD is the starting location of the

detector (see Fig. 2). In other words, |RD〉 is a Ramsey state
in the strong dipolar magnetic field of the detector auxiliary
field. The result is

〈Ĉ(t )〉 =
∑

RD,R′
D

∫
dr

∫
dr′ 〈r′R′

D| ρ(t ) |rRD〉 〈rRD| Ĉ |r′R′
D〉

(10)

where we have evaluated the trace in the |r′R′
D〉 basis and

〈r′R′
D| ρ(t ) |rRD〉

=
∑

R0RR′

∫
dE

∫
dE ′ PR0 e− i

h̄ (E−E ′ )tαER
k0R0

α∗E ′R′
k0R0

�ER
R′

D
(r′)

× �∗E ′R′
RD

(r). (11)

We emphasize that R and RD are indices of different sets of
Ramsey states, i.e., 〈R|RD〉 �= δRRD , unless the magnetic fields
at the first magnetic lens (x = 0−) and the detector magnetic
lens (x = x+

D ) happen to be identical.
We also have

〈rRD| Ĉ |r′R′
D〉 =

∑
R′′

D

∫
dz cR′′

D
(z)δ(r − z)δRDR′′

D
δ(r′ − z)δR′

DR′′
D

= cRD (r)δ(r′ − r)δR′
DRD , (12)

which, when inserted with Eq. (11) into Eq. (10), results in

〈Ĉ(t )〉 =
∑

R0RR′

∫
dE

∫
dE ′ PR0 e− i

h̄ (E−E ′ )tαER
k0R0

α∗E ′R′
k0R0

×
(∑

RD

∫
dr �ER

RD
(r)�∗E ′R′

RD
(r)cRD (r)

)
. (13)

The initial wave packet is almost entirely confined to the
region r � 0−, as ψR0k0 (r) has a Gaussian profile (5) with
spatial width on the order of 10 Å (as determined from the
measured velocity distribution for o-H2 [53]). Thus, we can
evaluate αER

k0R0
≡ ∫

dr ψR0k0 (r)�∗ER
R0

(r) if we know �ER
R0

(r) for
r � 0−. Given the definition of the eigenstate |ER〉, discussed
in Sec. II, we show in Sec. V A that �ER

R0
(r) = AReirkER

δRR0 for

r � 0− [see Eq. (34)], where kER ≡
√

2m(E−ER )
h̄ [see Eq. (23)].

Combined with the definition (4) of ψR0k0 (r),

αER
k0R0

≈
∫

dr δRR0 A∗
R

√
σk

(
2

π

) 1
4

ei(k
R0
0 −kER )re−r2σ 2

k

= δRR0�
ER
k0R0

(14)

where �ER
k0R0

= A∗
R

(2π )
1
4√

σk
e
− (kER−k

R0
0 )

2

4σ2
k . Thus,

〈Ĉ(t )〉 =
∑
R0

∫
dE

∫
dE ′ PR0 e− i

h̄ (E−E ′ )t�
ER0
k0R0

�
∗E ′R0
k0R0

×
(∑

RD

∫
dr �

ER0
RD

(r)�∗E ′R0
RD

(r)cRD (r)

)
, (15)

where we have performed the sums over R and R′.
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Detector

First Branch Second Branch

Sample

State Selector

FIG. 2. Generic field profile of a molecular hyperfine interferometry experiment. The actual magnetic-field profiles of the experiment are
approximated by N + 2 regions of length Li and constant magnetic field �Bi (black line). The true field profile is asymptotically approached
as N → ∞. We assume large magnetic fields in the regions of the state selector (large arrow) and the detector (eye), which, when combined
with the dephasing discussed in Sec. III, allows us to neglect propagation in the selector and detector regions. That is, the exact locations of
x0 and xD are unimportant as long as x0 is in the high-field region of the state selector, xD is in the high-field region of the detector, and all
propagation is treated coherently between the two points. The initially Gaussian wave packet propagates from x−

0 along the first branch to the
sample surface (cross) at xS and then, after scattering, propagates along the second branch to x+

D . The two branches are separated by an angle
θ . The vertical axis indicates the magnitude of the magnetic field | �B| (the direction is not depicted for clarity), with | �B| = 0 indicated by the
gray solid line. |Ri〉 denotes the set of eigenstates of ĤR( �Bi ), Eq. (1), in each region.

If the detection window t2 − t1 is large enough that the
entire wave packet passes through the detection region defined
by cRD (z) we have

Pdetection = 1

τ

∫ t2

t1

dt〈Ĉ(t )〉 ≈ 1

τ

∫ ∞

−∞
dt〈Ĉ(t )〉

=
∑
R0

∫
dE

∫
dE ′ PR0

2π h̄

τ
δ(E − E ′)�ER0

k0R0
�

∗E ′R0
k0R0

×
(∑

RD

∫
dr �

ER0
RD

(r)�∗E ′R0
RD

(r)cRD (r)

)

=
∑
R0

∫
dE PR0

∣∣�ER0
k0R0

∣∣2

×
(∑

RD

∫
dr

2π h̄

τ

∣∣�ER0
RD

(r)
∣∣2

cRD (r)

)
, (16)

where 2π h̄
τ

δ(E − E ′) = 1
τ

∫ ∞
−∞ dte− i

h̄ (E−E ′ )t .
Physically, one can see that the probability of detection

is proportional to the overlap |�ER0
k0R0

|2 of the initial wave
packet and a system eigenstate multiplied by the overlap∫

dr 2π h̄
τ

|�ER0
RD

(r)|2cRD (r) of the same system eigenstate and
the detection region, as expected.

Substituting for |�ER0
k0R0

|2 and given that

�
ER0
RD

(r) ≡ 〈rR0|ER〉
= eikRD r 〈RD|ER0〉
≡ eikRD rβ

ER0
RD

for r � x+
D [see Eq. (34)], we have

Pdetection =
∑
R0

PR0

∣∣AR0

∣∣2
∫

dE
(2π )

1
2

σk
e
− (kER0 −k

R0
0 )2

2σ2
k

×
∑
RD

cRD

2π h̄

τ

∣∣βER0
RD

∣∣2
(17)

where cRD ≡ ∫
dr cRD (r) and β

ER0
RD

≡ 〈RD|ER0〉, the projec-
tion of the system eigenstate |ER0〉 onto the detector eigen-
state |RD〉 at x+

D . For the purposes of comparing to experiment,
only the dependence of Pdetection on the experimental parame-
ters is needed, not its absolute value. Also, the value of AR0 =
1 as AReirkER ≡ 〈rR0|ER0〉 = eirkER

(for r � 0−) because of
the specific definition of the system eigenstates (see Sec. II).
Additionally, one can see that Pdetection is not sensitive to minor
(on the order of ppm) changes in kR0

0 as σk ∝ k0 in exper-
iment [53]. Finally, in Eq. (17), only β

ER0
RD

is dependent on
the magnetic fields, the scattering geometry, and the surface
properties. It is thus sufficient to work with the following
equation:

Pdetection ∝
∑
R0

PR0

∫
dE e

− (kER0 −k0 )2

2σ2
k

∑
RD

cRD

∣∣βER0
RD

∣∣2
. (18)

To determine the values of β
ER0
RD

, we derive and apply
the transfer-matrix method with internal degrees of freedom
(Sec. V).
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V. TRANSFER-MATRIX FORMALISM WITH INTERNAL
DEGREES OF FREEDOM

The transfer-matrix method as applied in quantum trans-
port turns the solution of the time-independent Schrödinger
equation of a one-dimensional system into a product of
matrices [71]. Pedagogical introductions can be found in
Refs. [71,72,75]. The present problem has two unique fea-
tures: (i) the propagating molecules have many internal de-
grees of freedom which may be mixed as the molecule transi-
tions from one local field to another and (ii) molecules change
their propagation direction after scattering by the surface.
Problem (i) is addressed in Sec. V A, while problem (ii) is
addressed in Sec. V B. The impact of scattering on the internal
degrees of freedom is accounted for by using a scattering
transfer matrix (Sec. V C).

The transfer-matrix formalism we present in Sec. V A
is similar to the mixed multicomponent transfer-matrix for-
malism described in Ref. [88] and can be viewed as an
extension and application of the transfer-matrix formalism
used in the study of molecular tunneling [77,78]. The formal-
ism combines transfer matrices that incorporate the internal
molecular degrees of freedom of a composite particle [77,78]
with eigenbasis changes between regions of the external po-
tential. Similar eigenbasis changes have been employed in
the transfer-matrix formalism used in the envelope function
approximation, which is used to calculate electronic proper-
ties in abrupt semiconductor heterostructures [89]. We further
extend the transfer-matrix formalism in Secs. V B and V C to
account for the impact of scattering on the molecules and their
relevant internal degrees of freedom.

A. Propagation and discontinuity matrices

We first break up the arbitrary magnetic-field profiles of the
apparatus into rectangular regions of constant field, as shown
in Fig. 2. We then solve the Schrödinger equation for a single
eigenstate in a single region of constant field. Subsequently,
we determine the impact of the boundary conditions that exist
at the discontinuity between two regions of constant field.
Using these solutions, we determine matrices that describe
the spatial dependence of the eigenstate wave-function coeffi-
cients within a region of constant field (propagation matrices)
and matrices that describe how these coefficients change
across the discontinuity between two regions of constant field
(discontinuity matrices). Note that, while we derive these
matrices for molecules whose internal degrees of freedom are
described by the Ramsey Hamiltonian (1), the formalism is
not limited to this Hamiltonian.

Within a region of uniform magnetic field, the Ramsey
Hamiltonian ĤR is constant, which allows us to derive the
propagation matrix that includes the internal degrees of free-
dom. We begin by expanding a system eigenstate |ER̃〉 as

|ER̃〉 =
∑

R

∫
dx �ER̃

R (x) |xR〉 , (19)

where �ER̃
R (x) ≡ 〈xR|ER̃〉, we define |xR〉 ≡ |x〉 |R〉, and |R〉

is one of the NR Ramsey states of a molecule in some magnetic
field �B. Note that �B is not necessarily the local magnetic field
�Bloc of the current region and thus |R〉 is not necessarily an

eigenstate of ĤR( �Bloc) at this point. Also, the eigenstates |ER̃〉
are labeled by their energy E and a particular Ramsey index R̃,
such that ĤR( �B

∼
) |ER̃〉 = ER̃ |ER̃〉, with �B

∼
an arbitrarily chosen

magnetic field.
Using Eq. (19), the Schrödinger equation with the total

Hamiltonian (2) can be shown to be (Appendix A)

− h̄2

2m

∂2

∂x2
�ER̃

R0
(x) = �ER̃

R0
(x)E −

∑
R

HR
R0R�ER̃

R (x), (20)

where HR
R0R = 〈R0| ĤR( �Bloc) |R〉. Equation (20) is in general

difficult to solve because of the coupling of the internal
degrees of freedom by ĤR( �Bloc). However, if we choose
the eigenbasis of the internal degrees of freedom to satisfy
ĤR( �Bloc) |R〉 = ER |R〉 (that is, |R〉 is now a Ramsey state of
a molecule in the local magnetic field �Bloc), the equations
decouple and we obtain

∂2

∂x2
�ER̃

R (x) = −2m

h̄2 (E − ER)�ER̃
R (x). (21)

The solution is

�ER̃
R (x) = AReikRx + BRe−ikRx, (22)

where AR and BR are R-dependent coefficients and

kR ≡
√

2m(E − ER)

h̄
. (23)

As per the single-channel transfer-matrix method [71],
given that �ER̃

R (x + �x) = AReikRxeikR�x + BRe−ikRxe−ikR�x,
we can collect the AR and BR coefficients into a 2NR-
dimensional coefficient vector �φx = (A1, A2, . . . , ANR,B1, B2,

. . . , BNR )T and write

�φx2 = �x2−x1
�φx1 , (24)

where �x is the 2NR × 2NR propagation matrix

�x ≡
[⊕

R

eikRx

]
⊕

[⊕
R

e−ikRx

]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eik1x

. . . 0
eikNR x

e−ik1x

0
. . .

e−ikNR x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(25)

where ⊕ denotes the direct sum.
Following the derivation of Ref. [71], we can determine

how the coefficients transform across a step discontinuity in
the magnetic field. Using the propagation matrix (25) and a
relabeling of the coordinate system, we can always set the
discontinuity to appear at x = 0. Given that Eq. (20) applies
everywhere, the coefficients �ER̃

R (x) and their derivatives are
continuous across the discontinuity [i.e., �ER̃

R (x) ∈ C1(x)], for
each value of R. However, the coefficients are only known
when |R〉 is an eigenstate of ĤR( �Bloc), which differs on each
side of the discontinuity [that is, �B(0−) �= �B(0+)]. Note that
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the wave vector |ER̃〉 is the same everywhere in the system.
Thus, by writing the wave vector |ER̃〉 in the two different
bases corresponding to the eigenstates of ĤR on each side of
the field, we see that the coefficients at a specific value of x
are related by a basis transformation:

|ER̃−〉 = |ER̃+〉 ,∑
R−

∫
dx �ER̃

R− (x) |xR−〉 =
∑
R+

∫
dx �ER̃

R+ (x)|xR+〉,

∑
R−R+

∫
dx �ER̃

R− (x) 〈R+|R−〉 |xR+〉 =
∑
R+

∫
dx �ER̃

R+ (x)|xR+〉

⇒ �ER̃
R+ (x) =

∑
R−

�ER̃
R− (x)〈R+|R−〉,

(26)

where |ER̃±〉 is the wave vector written in the basis of |R±〉;
|R±〉 are the eigenstates of ĤR( �B(0±)) on the left (−) and
right (+) sides of the discontinuity at x = 0, respectively;
and

∑
R+ |R+〉 〈R+| was inserted in the third line (recall that

|xR−〉 ≡ |x〉 |R−〉). The values 〈R−|R+〉 are recognized as the
matrix elements SR−R+ of the matrix SR+

R− , the columns of
which are the eigenstates of ĤR( �B(0+)) written in the |R−〉
basis.

Since �ER̃
R (x) ∈ C1(x) for each value of R separately,

we can equate the two limits limx→0∓ �ER̃
R+ (x) and the two

limits of the derivative limx→0∓ ∂
∂x �

ER̃
R+ (x). Solving the resul-

tant equations for the coefficients AR+ and BR+ , we obtain
(Appendix B)

AR+ =
∑
R−

S∗
R−R+�+

R+R−AR− +
∑
R−

S∗
R−R+�−

R+R−BR− , (27)

BR+ =
∑
R−

S∗
R−R+�−

R+R−AR− +
∑
R−

S∗
R−R+�+

R+R−BR− (28)

where S∗
R−R+ ≡ 〈R+|R−〉, �±

R+R− ≡ 1
2 (1 ± kR−

kR+ ), kR± ≡√
2m(E−ER± )

h̄ , and ER± ≡ 〈R±|ĤR( �B(0±))|R±〉. There are
NR such sets of equations, one for each value of R+. Working
again with �φx = (A1, A2, . . . , ANR,B1, B2, . . . , BNR )T , one can
write the matrix equation

�φx+ = K �φx− , (29)

where x∓ indicates the location just before (−) or just after
(+) the discontinuity located at x and K is the 2NR × 2NR

discontinuity matrix

K ≡
(

SR+
R−

† ◦ �+ SR+
R−

† ◦ �−

SR+
R−

† ◦ �− SR+
R−

† ◦ �+

)
(30)

where ◦ denotes the elementwise Hadamard product, such that

(SR+
R−

† ◦ �±)R+R− ≡ S∗
R−R+�±

R+R− . This matrix allows one to
calculate the coefficients of the wave function as one moves
from one region of constant magnetic field to another through
a discontinuity. Thus, if one breaks up any magnetic-field
profile into a series of constant regions separated by disconti-
nuities, one can systematically approach a perfect description
of the propagation of a molecule with internal degrees of
freedom through a magnetic field of arbitrary profile through

repeated application of K and �x. Furthermore, this approach
is not restricted to molecules moving through magnetic fields.
Many other types of quantum objects moving in a single
dimension with internal degrees of freedom that couple to
an external static potential can also be analyzed in this
way.

The above analysis indicates that one needs to keep track
of 2NR components to build up the eigenstates of the system
exactly. However, for the current application in mind, one only
needs NR components as the magnetic fields typically change
the linear molecular momentum by such a small amount that
the amplitudes BR of the reflected part of the wave function
are negligible. That is, any backscattering of the molecules by
the magnetic fields is negligible and can be ignored.

For example, a typical velocity of the o-H2 molecules in the
experiment of Ref. [53] is vH2 = 1450 m/s. This corresponds
to the kinetic energy EH2 = 1

2 mH2v
2
H2

= 5.31 × 109 kHz. The
data reported by Ramsey [85] indicate that the maximum
energy change for the hyperfine states of o-H2 at 500 G is
approximately −2550 kHz. The experiment of Ref. [53] has
magnetic fields up to about 1000 G. For such fields, the energy
changes are approximately linear, so we expect the maximum
change in energy to be �E ≈ −5100 kHz. In the field-free
region before the discontinuity, kR− ≈ mH2vH2/h̄ and, after
the discontinuity in the field, kR+ ≈ √

2mH2 (E − �E )/h̄, as
per Eq. (23). Then, |�−

R+R−| ≈ 2.4 × 10−7 and |�+
R+R−| ≈ 1,

making K approximately diagonal and illustrating the decou-
pling of the forward and backward channels under typical
experimental conditions.

We thus only need to keep track of the AR components,
which correspond to the forward-propagating momenta. We
can define a new coefficient vector:

�ψx ≡ (
A1, A2, . . . , ANR

)T
. (31)

The corresponding NR × NR propagation Px and discontinuity
D matrices are

Px ≡
⊕

R

eikRx =

⎛
⎜⎝

eik1x 0
. . .

0 eikNR x

⎞
⎟⎠, (32)

D ≡ SR+
R−

† ◦ �+ ≈ SR+
R−

†
, (33)

where the matrix elements of SR+
R−

†
are S∗

R−R+ ≡ 〈R+|R−〉,
ĤR( �B(0±)) |R±〉 = ER± |R±〉, 0± indicates the position just
to the left (−) or right (+) of the discontinuity, and kR is
defined as in Eq. (23). Specifically, D changes the basis of
the vector �ψx from |R−〉 to |R+〉. That is, �ψx is always in
the eigenbasis of ĤR( �B(x)). Finally, given that BR ≈ 0, the
eigenstate coefficients are now

�ER̃
R (x) = AReikRx. (34)

Given that a generic transfer matrix M has the property
MσzM† = σz [71], the decoupling of the forward and back-
ward channels implies that the forward channel matrix MF

(composed of a product of Px and D matrices) is now unitary.
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B. Rotation matrices

Scattering by the sample surface changes both the propaga-
tion direction and the internal states of the molecule. To take
into account the change in the direction of the propagation
path when applying the transfer-matrix formalism, we need
only change the orientation of the quantization axis. However,
to address the impact of scattering on the internal states, we
need to apply a scattering matrix that is written with respect
to a particular reference frame (which is often a sample-
fixed frame; see Sec. V C). Thus, instead of just rotating the
quantization axis from the first branch to the second branch
(to account for the change in the direction of propagation),
we need to first rotate from the initial reference frame (xyz in
Fig. 1) to the reference frame of the scattering matrix. Then,
after applying the scattering matrix, we need to rotate from
the scattering matrix reference frame to the final reference
frame (x′y′z′ in Fig. 1). To perform these rotations coherently,
we apply NR × NR rotation matrices R(φ,�, χ ) to �ψx, where
φ, �, and χ are the Euler angles in the ZY Z convention

(with Y and Z being the axes of a space-fixed frame; see
Ref. [90]). In this way, we can account for both specular and
nonspecular scattering geometries and for various orientations
of the sample surface.

To change the orientation of the quantization axis, we
perform passive rotations on the state vector �ψx. These passive
rotations modify the basis of �ψx, but leave the physical state
unchanged. For example, if we were to assume that the only
impact of scattering was to change the propagation direction,
we would need to perform a passive rotation of the state vector
about the y axis by the angle θ to account for a change of angle
θ in the propagation direction (for the definition of the axes
shown in Fig. 1). We would perform this rotation by applying
the equivalent active rotation of angle −θ to �ψx, that is, by
using the matrix R(0,−θ, 0).

For the general case, we work with the rotation matrices
R(φ,�, χ ), the matrix elements of which, when written in
the |R〉 eigenbasis of ĤR( �Bloc) where �Bloc is the local magnetic
field, are

RR(φ,�, χ ) ≡ [〈R′| R̂(φ,�, χ ) |R〉] =
[ ∑

FMF ′M ′
〈R′|F ′M ′〉 〈F ′M ′|R̂(φ,�, χ )|FM〉 〈FM|R〉

]

= SR
FM

†
RFM (φ,�, χ )SR

FM, (35)

where |FM〉 ≡ |IJFM〉 is an angular momentum state with
total angular momentum F , z axis projection M, total nuclear-
spin angular momentum I , and total rotational angular mo-
mentum J; the subscripts of RR and RFM denote the basis of
the matrix representation, |R〉 and |FM〉, respectively; SR

FM is
the matrix the columns of which are the eigenstates |R〉 written
in the |FM〉 basis; R̂(φ,�, χ ) is the rotation operator (with
the same ZY Z convention mentioned above); and

RFM (φ,�, χ ) = [
δFF ′DF

M ′M (φ,�, χ )
]

= [
δFF ′e−iφM ′

dF
M ′M (�)e−iχM

]
, (36)

where DF
M ′M (φ,�, χ ) are the Wigner D matrices and dF

M ′M (�)
are the Wigner small d matrices [90]. Note that RFM (φ,�, χ )
is diagonal in F , because of conservation of angular momen-
tum, but not diagonal in M [90]. Thus, one must be careful
to also perform a passive rotation on the local magnetic-field
vector if rotations are performed in a region with nonzero
field. Typically, however, the sample chamber is magnetically
shielded.

We also note that the rotation may impact how to appropri-
ately match the boundary conditions between the eigenstate
immediately after rotation and the eigenstate at the start
of the second branch. As the propagation matrices Px (32)
are defined with respect to the momentum, which may be
positive or negative, it is important to choose the sign of the
momentum that results in the probability current flowing in
the same direction as the molecular propagation. For example,
using the axis definitions in Fig. 1, +kR is chosen for the first
branch and −kR for the second branch.

C. Scattering transfer matrices

Scattering by the sample surface can involve many com-
plex phenomena that may change the internal state, the mo-
mentum, and the total energy of the scattering molecule.
For the present paper, we focus on scattering processes that
conserve the total energy of the molecules. Energy-conserving
scattering may, however, include transfer of energy between
the internal and translational degrees of freedom. Such scat-
tering processes are described by a general, nondiagonal
scattering matrix in the basis of the molecular states.

The interactions of the molecules with the sample surface
can be phenomenologically described with the total scattering
transfer matrix. This matrix is the 2NR × 2NR matrix �̃ that
relates the wave functions on the “left” side of the scattering
event to those on the “right” (as opposed to the scattering
matrix, which relates the incoming wave functions to the
outgoing). However, because the initial wave packet (5) does
not contain any negative momentum states, the magnetic
fields of the solenoids do not cause significant backscattering
(Sec. V A), and the detector only detects molecular flux in
the forward-scattering direction, we need only work with the
NR × NR matrix � ≡ Pfwd�̃P†

fwd, where Pfwd is an NR × 2NR

projection matrix onto the forward-scattering states. We de-
fine � in the |ImI JmJ〉 basis, where the |ImI JmJ〉 states are
themselves defined with respect to the quantization axis that
is normal to the surface sample. We choose this basis to relate
to scattering calculations, which are frequently carried out in
the |JmJ〉 basis with a quantization axis normal to the sample
surface. In principle, however, any suitable set of Ramsey
states |R�〉 could be chosen as the basis for the scattering
transfer matrix and any suitable quantization axis could be
chosen, to take advantage of relevant symmetries.
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In general, the scattering transfer-matrix elements
�ImI JmJ I ′m′

I J ′m′
J

are functions of the incident energy E , the

outgoing energy E ′, the incident momentum �k, and the
outgoing momentum �k′. As we are restricting ourselves to
isoenergetic processes, E = E ′. Also, Eq. (23) defines the
magnitudes of the momentum before and after the scattering
event. This leaves the scattering transfer-matrix elements
as functions of only energy and the four angles that define
the scattering geometry. These angles are (1) the angle
between the two branches, (2) the angle between the surface
normal and the scattering plane, (3) the angle between the
first branch and the projection of the surface normal on the
scattering plane, and (4) the azimuthal angle of the sample.
The scattering plane is the plane defined by the two branches
of the apparatus.

Given that the experiment only probes a single scattering
direction at a time (see Sec. II and Fig. 1), the scattering
transfer matrix will not, in general, be unitary. This incor-
porates state-dependent loss channels into the formalism.
Additionally, the scattering transfer matrix is, in general, time
dependent. Here, we assume that the timescales of the surface
dynamics are significantly different from the molecule-surface
or wave packet–surface interaction timescales and assume �
to be time independent.

Because � is defined with respect to the surface normal,
we use rotation matrices to appropriately change the basis
of �ψ before and after applying the scattering transfer matrix.
We ensure that the total rotation corresponds to the change in
propagation direction induced by scattering off of the sample
surface and that the quantization axis is again coplanar with
the two branches of the apparatus.

The scattering transfer-matrix elements for a specific
molecule-surface interaction can be determined from scatter-
ing calculations [53,91]. Alternatively, they can be treated
as free parameters and determined from the experimental
measurements by solving the inverse scattering problem. Such
a problem can potentially be solved efficiently using machine
learning based on Bayesian optimization [69,92].

D. Calculation of eigenstate coefficients

To determine the dependence of the probability of detec-
tion (18) on the magnetic fields and the surface properties,
we must determine the coefficients β

ER0
RD

. This can be done by

multiplying the initial coefficient vector �ψER0
x0

(31) of a system
eigenstate |ER0〉 by a succession of transfer matrices to obtain

the final coefficient vector �ψER0
xD

≡ (βER0
1 , β

ER0
2 , · · · , β

ER0
NR

)
T

:

�ψER0
xD

= SRD
RN

†
M2M�M1 �ψER0

x0
, (37)

where M1 and M2 describe the propagation through the
first and second branches of the apparatus, respectively, M�

describes the scattering, and SRD
RN

†
changes the basis of the

coefficient vector to the eigenbasis |RD〉 of ĤR( �B(x+
D )) at the

location of the detector xD. The M matrices are defined as

M1 = PLn SRn
Rn−1

† · · · PL2 SR2
R1

†
PL1 SR1

Rini

†
, (38)

M� = SRn
FM

†
RFM (α′, β ′, γ ′)�FMRFM (α, β, γ )SFM

Rn

†
, (39)

M2 = PLN SRN
RN−1

† · · · PLn+1 SRn+1
Rn

†
(40)

where Rini refers to the eigenbasis |Rini〉 of ĤR( �B(0−)) at the
initial location of the wave packet; Ri refers to the eigenbasis
|Ri〉 of ĤR( �Bi ) in region i of the apparatus, as depicted in
Fig. 2; FM refers to the |IJFM〉 basis where �F ≡ �I + �J and M
is the projection on the local z axis; α, β, and γ are the Euler
angles that rotate the reference frame of the first branch (xyz in
Fig. 1) onto the reference frame of the scattering transfer ma-
trix, whose quantization axis is normal to the sample surface
(see Secs. V B and V C); α′, β ′, and γ ′ are the Euler angles that
rotate the scattering transfer-matrix reference frame onto the
reference frame of the second branch (x′y′z′ in Fig. 1); Li is the
signed length of region i, as depicted in Fig. 2; the sign of Li

indicates the direction of propagation with respect to the local
x or x′ axis; N is the total number of regions between x0 and
xD (see Fig. 2); n is the number of regions between the initial
position of the wave packet x0 = 0 and the sample position xS;

�FM ≡ SFM
RIJ

†
�SRIJ

FM
†

is the scattering transfer matrix written
in the |IJFM〉 basis; RIJ ≡ ImI JmJ ; and � is the scattering
transfer matrix in the |ImI JmJ〉 basis. Note the product of
the two rotation matrices RFM (α′, β ′, γ ′) · RFM (α, β, γ ) =
RFM (φ,�, χ ), where φ, �, and χ are the Euler angles that
rotate the reference frame xyz onto the frame x′y′z′ (see
Fig. 1). All of the Euler angles mentioned above are in the
ZY Z convention, with Y and Z being the axes of a space-fixed
frame and as per the convention defined in Ref. [90]. Note
also that while the scattering transfer matrix � is written here
in the |ImI JmJ〉 basis, other suitable bases |R�〉 may be used
(see Sec. V C), where R� refers to an arbitrary set of Ramsey

states. In such a case, �FM ≡ SFM
R�

†
�SR�

FM
†
. Also, note that

the propagation matrices PLi (32) are defined with momentum
+kR if the molecular propagation is in the direction of the
local x or x′ axis or, conversely, with the momentum −kR if
the molecular propagation is in the opposite direction of the
local x or x′ axis (see Sec. V B).

By defining a matrix �E
xi

≡ ( �ψE1
xi

, �ψE2
xi

, · · · , �ψENR
xi

), all
NR × NR coefficients β

ER0
RD

can be simultaneously obtained
from

�E
xD

= SRD
RN

†
M2M�M1�

E
x0

= SRD
RN

†
M2M�M11NR , (41)

where �E
x0

≡ 1NR because of the specific definition of the
system eigenstates (see Sec. II). Using Eqs. (38)–(41), we
can obtain β

ER0
RD

, and thus Pdetection (18), as functions of the
magnetic-field profile, the scattering matrix elements, and the
scattering geometry.

VI. APPLICATION TO ORTHOHYDROGEN

The theoretical framework described in Secs. II–V con-
nects the scattering transfer-matrix elements �ImI JmJ I ′m′

I J ′m′
J

to the experimentally observed signal, which is proportional
to Pdetection (18). By changing the magnetic-field profiles in
the two arms of the apparatus, one can obtain information
about how the scattering affects various hyperfine states. To
illustrate our theoretical framework and to demonstrate the
impact of the scattering transfer matrix on the experimentally
observed signal, we consider a beam of rotationally cold o-H2

and a simplified apparatus that contains only a few regions of
constant magnetic field, as depicted in Fig. 3.
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FIG. 3. A magnetic-field profile that approximates the true magnetic-field profile of an experiment using o-H2. We combine this
approximate field profile with the transfer-matrix formalism to calculate the observed signal. Bi refers to the different magnetic-field vectors of
the control fields. z′ and x′ refer to the new coordinate system defined to align with the second branch of the apparatus (see Fig. 1). The sample
is located at the cross in the center of the diagram. The surface normal of the sample is assumed to bisect the angle between the two branches
of the apparatus. The propagation direction is x before scattering and −x′ after scattering. The angle between x and −x′ (i.e., the angle between
the two arms of the apparatus) is θ = 45◦. B1 is directed along x and B2 is directed along −x′, as per the arrows. The fields just after the state
selector and just before the detector are directed toward the z and z′ directions, respectively, and as per the arrows. Additional computational
parameters not shown above can be found in Appendix C.

A. Rotationally cold orthohydrogen hyperfine Hamiltonian

The Hamiltonian describing the relevant internal degrees
of freedom of rotationally cold o-H2 is [85]

ĤR
oH2

( �B)

h
= −αÎ · �B − β Ĵ · �B − cÎ · Ĵ + 5d

(2J − 1)(2J + 3)

×
[

3(Î · Ĵ )2 + 3

2
Î · Ĵ − Î2Ĵ2

]
(42)

where, for simplicity, we have neglected magnetic shield-
ing of the nuclear and rotational magnetic moments by the
molecule and diamagnetic interactions of the molecule with
the magnetic field; �B is the local magnetic field; Î is the
nuclear-spin operator; Ĵ is the rotational angular momentum
operator; α ≡ μI

hI ≈ 4.258 kHz; β ≡ μJ

hJ ≈ 0.6717 kHz; c ≈
113.8 kHz; d ≈ 57.68 kHz; I = 1 is the total nuclear-spin
angular momentum in units of h̄; J = 1 is the total rotational
angular momentum in units of h̄; μI is the nuclear magnetic
moment of a single nucleus; and μJ is the magnetic moment
due to molecular rotation. The first two terms describe the
interaction of the nuclear and rotational magnetic moments
with the external magnetic field, the third term describes the
nuclear-spin–rotational magnetic interaction [85,93,94], and
the terms proportional to d describe the magnetic spin-spin
interaction of the two nuclei [85,93,94].

B. Experiment and observables

While there are many possible experimental protocols, we
focus on the full interferometer mode used by Godsi et al.
[53]. The experiment is performed by initiating a continuous
flux of o-H2 molecules through the apparatus and measuring
the current of the ionization detector while varying the first
and second control fields (B1 and B2 in Fig. 3).

In particular, B1 is set to a specific value while B2 is varied
around the point −B1 (i.e., about the spin-echo condition). In
principle, B2 could also be set to vary around +B1, where
spin echoes have also been observed [79], but we choose to
vary B2 about −B1 to match the relevant experiment by Godsi
et al. [53]. This variation of the magnetic fields results in
oscillatory curves of the detector current versus B2, as shown

in Figs. 4(a)–4(c). These oscillations reflect the interference
pattern that occurs when the various wave packets recombine
after passing through the final control field (see Sec. II).
This interference pattern contains information about how the
individual hyperfine states of the molecule interact with the
sample surface.

The x directed magnetic field of a solenoid changes the
energies of all of the NR = 9 hyperfine states and induces
all

(NR

2

) = 36 possible transitions. The frequencies of these
transitions depend on the magnitude of the magnetic fields. By
changing the magnitude of the second magnetic field, we are
able to probe the rates of change of these transition frequen-
cies with the magnetic field: the (generalized) gyromagnetic
ratios γi j (B) = | dfi j (B)

dB |, where fi j ≡ 1
h�Ei j = Ei−Ej

h , and Ei

is the energy of Ramsey state i [53]. The Fourier transforms
of the oscillatory curves that give these gyromagnetic ratios
are shown in Figs. 4(d)–4(f). To obtain these results, we
assumed that the surface normal of the sample lies in the
scattering plane defined by the two branches and bisects the
angle defined by the same two branches, such that α′ = α =
γ ′ = γ = 0, β = 3π/8, and β ′ = −5π/8, where β + β ′ =
−π/4 = −θ [see Eq. (39) and Fig. 3]. Given this geometry
and the axis definitions (Fig. 3), the propagation matrices are
defined with +kR in the first branch and −kR in the second. We
also assume that the scattering transfer matrix is the identity
matrix and is independent of energy, i.e., we assume for the
present calculation that the only impact of scattering is the
change of propagation direction, as modeled with rotation
matrices (Sec. V B).

The location of each feature in the spectra is reflective of a
gyromagnetic ratio and is independent of the molecule-surface
interactions, being only a function of the hyperfine energy-
level structure of o-H2. The relative height of each feature,
however, is dependent on the molecule-surface interactions, as
exemplified in the experimental spectrum shown in Fig. 4(f).
From Fig. 4, one can see that integrating over the velocity
distribution is important to produce the spin-echo effect and
to bring the observed signal closer to experiment.

A different spectrum can be obtained for every possible
value of B1 and then combined to form a 2D map of the
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(c)

(f)

(a)

(d)

(b)

(e)

FIG. 4. Upper panels: Calculated and experimental signals close to the spin-echo condition vs the magnetic field of the second coil |B2|.
Lower panels: Fourier amplitudes of the upper panels vs the generalized gyromagnetic ratio γ . For panels (a), (b), (d), and (e), the field profile
is depicted in Fig. 3; B1 = 440 G; the scattering transfer matrix � = 19 and is constant for all energies; and the signal is sampled at a rate
of 300 points per 20 G. Panels (a) and (d) only include a single velocity (or, equivalently, a single value of energy) in Eq. (18) while panels
(b) and (e) include the full integral. For the experimental data shown in panel (c), B1 = 437 G, the sample was the (111) surface of Cu and the
signal was sampled every 0.065 G (a sampling rate of ≈308 points per 20 G). Panel (f) shows data for o-H2 scattering off of Cu(111) (blue full
circles) and Cu(115) (red open circles). All experimental data were obtained from Godsi et al. [53].

generalized gyromagnetic ratios and their contributing ampli-
tudes as a function of B1, as shown in Fig. 5. This protocol
is equivalent to observing the scattering of molecules with
different internal hyperfine states as different values of the
magnetic field in the first branch produce different superpo-
sitions of the hyperfine states. One can clearly see both the
magnetic-field dependence of the gyromagnetic ratios, the

impact of integrating over the velocity distribution, and the
stark similarities and differences between the experimental
and theory plots.

We now examine the sensitivity of the calculated signals to
various changes in the scattering transfer matrices. Figures 6
and 7 demonstrate the impact of random variations of the
scattering transfer matrix � on the oscillatory plots (for B1 =

Theory
Single Velocity

Theory
Many Velocities Experiment

FIG. 5. Two-dimensional Fourier amplitude plots formed by the concatenation of spectra plots [such as Figs. 4(d)–4(f)] for various values
of the magnetic field of the first solenoid B1. Color indicates the Fourier amplitude. For the theory plots, the field profile is depicted in Fig. 3; the
scattering transfer matrix � = 19 and is constant for all energies; B2 was varied from −(B1 − 10 G) to −(B1 + 10 G); the signal was sampled
at a rate of 300 points per 20 G; and all data with a value less than 10−3.5 have been replaced with 10−3.5 for clarity. For the experimental
plot, the sample was the (111) surface of Cu; all data with a value of less than 10−8 have been replaced with 10−8 for clarity; the dashed lines
indicate transitions identified by Godsi et al. [53]; and the data were obtained from Godsi et al. [53].
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FIG. 6. Calculated signals close to the spin-echo condition as functions of the magnetic field of the second coil |B2|. The field profile is
depicted in Fig. 3; B1 = 440 G; and the signal was sampled at a rate of 300 points per 20 G. Each of the plots was created with identical
parameters, except for the scattering transfer matrices �. The scattering transfer matrices are identical for all energies and are randomly
chosen for each plot as follows. First row, random phases (RP): � = ⊕9

i=1 eiθi is a diagonal unitary matrix whose nine phases θi are randomly
chosen from a uniform distribution of width 2π . Second row, random diagonal amplitudes (RDA): � = ⊕9

i=1 Ai is a diagonal matrix whose
diagonal elements are randomly chosen from a uniform distribution on the interval [0, 1). Third row, random orthogonal matrices (ROM): �

is an orthogonal matrix randomly drawn according to the Haar measure on O(9). Fourth row, random unitary matrices (RUM): � is a unitary
matrix randomly drawn according to the Haar measure on U (9). Here, randomly drawing according to the Haar measure can be understood as
analogous to drawing from the “uniform distribution” over the space of possible matrices [95].

440 G) and their spectra, respectively. For simplicity, we keep
the matrix elements of � independent of energy.

The first row of each figure (labeled RP, for “random
phases”) reflects the impact of differing phases imparted
to each hyperfine state after scattering. Specifically, � =⊕9

i=1 eiθi is a diagonal unitary matrix whose nine phases θi

are randomly chosen from a uniform distribution of width
2π . Such a form of scattering would result from purely
elastic scattering where the different hyperfine states probe
the surface for different lengths of time (i.e., each state pen-
etrates to a different depth or encounters a resonance with a

different lifetime). Significant differences in the relative peak
amplitudes can already be seen at this point, indicating that
the calculated signal is sensitive to these phases.

The second row of each figure (labeled RDA, for “ran-
dom diagonal amplitudes”) reflects the impact of differing
state losses due to scattering. Specifically, � = ⊕9

i=1 Ai is
a diagonal matrix whose diagonal elements are randomly
chosen from a uniform distribution on the interval [0, 1).
This form models the impact of different losses of each
hyperfine state to different scattering directions, reactions
with the surface, or adsorption to the surface. Again, sig-
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RP RP RP
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FIG. 7. Fourier transforms of the signals shown in Fig. 6 as functions of the generalized gyromagnetic ratio γ . The panel labels are
described in the figure caption to Fig. 6.

nificant changes are observed, indicating sensitivity to these
features.

The third and fourth rows (respectively labeled ROM, for
“random orthogonal matrices,” and RUM, for “random uni-
tary matrices”) probe the impact of inelastic (projection mI mJ -
changing) scattering on the calculated signal. For the third
row, � is an orthogonal matrix randomly drawn according
to the Haar measure on O(9), while � is a unitary matrix
randomly drawn according to the Haar measure on U (9)
for the fourth row of each figure. Here, randomly drawing
according to the Haar measure can be understood as analogous
to drawing from the “uniform distribution” over the space
of possible matrices [95]. The orthogonal matrices model
inelastic scattering where no relative phase changes occur,
while the unitary matrices model inelastic scattering where
relative phase changes do occur. In both cases, there is no loss
of total population during scattering. Clearly, the calculated

signals are also sensitive to inelastic-scattering events, both
with and without relative phase changes. Finally, we can see
that the number of peaks in the signal between 430 and 450 G
varies as a function of the scattering matrix (compare the RDA
and RUM plots in Fig. 6, for example).

VII. COMPARISON WITH A SEMICLASSICAL METHOD

The present approach is fully quantum mechanical, while,
in their Supplemental Material, Godsi et al. [53] have de-
scribed a semiclassical method for calculating Pdetection that
they used to model the propagation of o-H2 in their molecular
hyperfine interferometer (see Ref. [79] for the case of spin-
1/2 particles). This semiclassical method treats the internal
degrees of freedom of the molecules quantum mechanically
and the center-of-mass motion classically. As a result, the
momentum changes induced by the magnetic field are ignored
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and every internal state is described as propagating at the
initial velocity v0 of the molecule. The internal degrees of
freedom are treated by applying the time evolution operator
for the time period ti ≡ Li

v0
spent in each magnetic field of

length Li. That is, the propagation is calculated in the molecu-
lar reference frame with a time-dependent Hamiltonian. Here,
we compare the results of the semiclassical and fully-quantum
approaches for o-H2.

We compare the two methods under conditions close to
the original application of the semiclassical method to flux-
detection measurements [53]. We work with a field profile as
shown in Fig. 3, but with the second arm assumed to be of
zero length and B2 = 0. The field B1 is varied. For the sake of
comparison, we also set the state selector and detector fields
in the transfer-matrix method to 100 000 G so that the basis
changes performed by the transfer-matrix method out of and
into these regions match well the Clebsch-Gordon transfor-
mation from |mI mJ〉 to |Fm〉 and its inverse, as used by the
semiclassical method. Note that the off-diagonal elements of
the full discontinuity matrix K (30) are still only ≈10−5 at
100 000 G, such that their neglect still does not invalidate our
fully quantum formalism at these large field strengths. We
also retain the rotation from the first branch to the second
branch and set the scattering matrix to 19. To maximize sen-
sitivity of the comparison, we use only a single velocity when
calculating Pdetection in both methods. All other parameters,
including the state selector and detector relative state prob-
abilities ηmI mJ and κmI mJ , are as per Appendix D. This allows
for a test that includes all incoming and outgoing states and
their relative phases at experimentally relevant conditions.

The signals Pdetection(B1) are calculated from B1 to B1 +
10 G for various values of B1. We include 1500 datapoints
in these 10-G intervals. The calculated signals are compared
between the two methods by calculating their relative absolute
difference at identical conditions. This produces a relative
absolute difference at each of the 1500 magnetic-field points.
We then calculate the maximum, mean, and median relative
absolute difference over the 10-G interval. Figure 8 shows
how these maximum, mean, and median values vary as a func-
tion of B1. At low fields, there is no significant dependence on
the magnetic field and the relative absolute difference is below
the expected experimental error. This lack of dependence on
B1 is possibly due to some residual numerical error present
in the implementation of one or both methods, which masks
any underlying field dependence. At approximately 460 G,
however, the error begins to increase with the magnetic field
until it saturates at approximately 46 000 G at a relative abso-
lute difference of approximately 1. This increase in error as
a function of magnetic field points to a systematic difference
between the two methods.

To illustrate the difference between the two approaches
in more detail, we plot the Fourier transforms of the calcu-
lated signals at various magnetic-field strengths in Fig. 9. At
field strengths below 1000 G, little difference is observed.
At higher field strengths, the feature locations agree, while
the Fourier amplitudes differ. The feature locations are deter-
mined by the eigenvalues of the Hamiltonian, identical in both
methods, while the amplitudes are a function of the relative
phases and amplitudes of the wave-function components.
These amplitudes and phases are expected to differ between

FIG. 8. Maximum, median, and mean relative absolute differ-
ence between the calculated signals obtained by the semiclassical
method discussed in the Supplementary Material of Godsi et al.
[53] and the present method, for various values of the controlling
magnetic field. See Sec. VII for a description of the semiclassical
method and the field profiles used. The relative absolute difference
between the calculated signals is calculated point by point as a
function of the magnetic field. The mean, median, and maximum
values are then calculated over the magnetic-field interval spanned
by the calculated signal. The calculated signal is sampled at a rate of
1500 points per 10 G; the magnetic field varies from B1 to B1 + 10 G
for each calculated signal; a single velocity was included in the
calculations; the scattering transfer matrix � = 19 and is constant
for all energies. All other parameters are listed in Appendix D.

the two methods at sufficiently high fields because of the
approximations made in the semiclassical method.

In particular, the semiclassical method accounts for most
of the relative phase and amplitude changes induced by the
controlling magnetic fields. It does this by time evolving the
internal state vector for times that correspond to the time ti
spent in each magnetic field by a molecule moving at its
unchanged initial velocity. However, the semiclassical method
ignores the small changes in the molecular velocity caused
by the magnetic fields. These changes to the velocity modify
the time spent in each magnetic field for each individual
component of the internal state vector. Thus, ti should depend
on the internal state |R〉. It is not immediately clear how
to include these state-dependent velocity changes into the
semiclassical method, however.

At low fields, these velocity changes and the dependence
of ti on |R〉 are negligible and the fully quantum calculations
agree with the semiclassical results to at least 0.1% for
fields below 1000 G. However, this agreement can only be
expected to occur for surfaces that do not change between the
surface-impact events of the spatially separated wave-packet
components (discussed in Sec. II). The maximum temporal
separation between these impact events, caused by the veloc-
ity changes, varies from a few to several hundred picoseconds.
Many surfaces do change on this timescale, as has been
measured in several 3He spin-echo experiments [32,33,37,38].
In other words, the semiclassical method cannot be used to
probe the dynamics of surfaces, while the method presented
in this paper opens the possibility to account for the surface
dynamics with molecular scattering experiments.
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FIG. 9. Fourier amplitudes of the calculated signals at various magnetic-field values computed with the semiclassical method discussed in
the Supplementary Material of Godsi et al. [53] (orange) and the present method (blue) as functions of the generalized gyromagnetic ratio γ .
The calculation conditions are identical to those of Fig. 8.

VIII. CONCLUSION

In this paper, we have developed a theoretical frame-
work for simulating a surface-sensitive molecular hyperfine
interferometer. The approach treats the interferometer as an
effective one-dimensional system, accounting for the real
experimental geometry by rotating the quantization axis of
the hyperfine states at the scattering point. The time evolution
of the molecular states is described fully coherently and
accounts for the mixing of the hyperfine states and momentum
changes induced by the magnetic fields in the experiment.
The present approach is fully quantum mechanical and in-
cludes a full description of the internal-state-dependent spatial
superpositions imposed on the molecular wave packets by
the controlling magnetic fields. This opens the possibility for
a description of molecular scattering experiments that aim
to probe surface dynamics on the picosecond to hundreds
of picoseconds timescale. To build the framework, we have
derived and implemented a transfer-matrix formalism that
accounts for the internal (hyperfine) degrees of freedom of
molecules and that allows for efficient computation of the
experimental signal.

In the present paper, the molecule-surface interaction is
accounted for by a scattering transfer matrix (a transformed
version of the scattering matrix) that is suitable for the de-
scription of experiments where the surface changes either
much more slowly or much more quickly than the molecule-
surface or wave-packet–surface interaction times (i.e., the
molecule-surface scattering event does not involve energy
transfer between the surface and the molecule). The extension
to arbitrary surface dynamics (currently under investigation)
requires a time-dependent scattering transfer matrix that re-
flects the underlying time dependence of the molecule-surface
interaction potential. Such a formalism would naturally incor-
porate energy transfers between the surface and the molecule
during the scattering event. We have demonstrated, using the
specific case of o-H2, how the different features of the time-
independent scattering transfer matrix, such as the phases
of the diagonal elements, impact the experimental signal.
In addition, we have shown that the experimental signal is
sensitive to off-diagonal scattering matrix elements describing
collisions that change the projection quantum numbers of the
molecular hyperfine states without energy transfer between
the molecule and the surface.
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The present approach also sets the stage for solving the
inverse scattering problem in molecular hyperfine interfer-
ometry by means of machine learning approaches, such as
Bayesian optimization [69,92]. For example, one can use the
results of the transfer-matrix computations presented here to
train Gaussian process models of the predicted experimental
signal [92]. The difference between the experimental obser-
vations and the results of the transfer-matrix computations
can then be minimized by varying the scattering matrix
elements, as described in our previous work [69]. The results
of Bayesian optimization will determine the properties of the
scattering matrix elements compatible with a given experi-
mental measurement. These scattering matrix properties can
then be used to gain physical insight into molecule-surface
interactions and surface properties. They can also be used to
test approximations used in ab initio calculations.

The formalism presented here is general to all closed-shell
molecules and is flexible to describe various experimental

setups. It can be used to explore various experimental pro-
tocols and evaluate their effectiveness at determining various
molecule-surface interactions and surface properties. Thus,
this paper provides the theoretical framework necessary to
interpret a wide range of molecular hyperfine interferometry
experiments, which are poised to apply molecular-beam tech-
niques to provide new information about molecule-surface
interactions, surface morphologies, and surface dynamics.
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APPENDIX A: SCHRÖDINGER EQUATION FOR EIGENSTATE COEFFICIENTS

Using Eq. (19), the time-independent Schrödinger equation is

Ĥ |ER̃〉 = E |ER̃〉 , (A1)

K̂ |ER̃〉 = (E − ĤR) |ER̃〉 ,∑
R

∫
dx �ER̃

R (x)K̂ |xR〉 =
∑

R

∫
dx �ER̃

R (x)(E − ĤR) |xR〉 ,

∑
R

∫
dx �ER̃

R (x) 〈x0R0| K̂ |xR〉 =
∑

R

∫
dx �ER̃

R (x) 〈x0R0| (E − ĤR) |xR〉 (A2)

where Ĥ is the total Hamiltonian (2) in the current region, K̂ ≡ p̂2

2m , we use ĤR as a shorthand for ĤR( �Bloc), and the last line was
multiplied by 〈x0R0|.

The different terms can be evaluated as

〈x0R0| K̂ |xR〉 = δR0R 〈x0|
∫

dk
h̄2k2

2m
|k〉 〈k|x〉 =

∫
dk

2π
δR0R

h̄2k2

2m
eik(x0−x), (A3)

〈x0R0| E |xR〉 = δR0Rδ(x − x0)E , (A4)

〈x0R0| ĤR |xR〉 = δ(x − x0)HR
R0R, (A5)

where |k〉 is a momentum state with wave number k, and m is the mass of the molecule. The additional factor of (2π )−1 in
Eq. (A3) comes from 〈x|k〉 ≡ (2π )−

1
2 eikx. After inserting these three equations into Eq. (A2) and evaluating most of the sums,

we obtain ∫
dx

∫
dk

2π

h̄2k2

2m
eik(x0−x)�ER̃

R0
(x) = �ER̃

R0
(x0)E −

∑
R

HR
R0R�ER̃

R (x0). (A6)

Noting that k2eikx0 = − ∂2

∂x2
0
eikx0 and

∫
dk
2π

eik(x0−x) = δ(x0 − x), we obtain Eq. (20) after the relabeling x0 → x.

APPENDIX B: COEFFICIENT RELATIONS ACROSS A DISCONTINUITY

Since �ER̃
R (x) ∈ C1(x) for a specific value of R and given Eq. (26), we get the defining equations for the continuity of the

wave function as

lim
x→0−

�ER̃
R+ (x) = lim

x→0+
�ER̃

R+ (x),

lim
x→0−

∑
R−

�ER̃
R− (x)S∗

R−R+ = lim
x→0+

�ER̃
R+ (x),
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TABLE I. Relative probabilities of the state selector ηmI mJ and the detector κmI mJ . The state selector probabilities PR0 are calculated as
PR0 = PmI mJ ≡ ηmI mJ /

∑
mI mJ

ηmI mJ and the detector coefficients cRD are calculated as cRD = cmI mJ ≡ κmI mJ /
∑

mI mJ
κmI mJ .

mI 1 1 1 0 0 0 −1 −1 −1
mJ 1 0 −1 1 0 −1 1 0 −1

ηmI mJ 0.0095 0.0138 0.0187 0.0416 0.0436 0.0606 0.3997 0.9015 1.0
κmI mJ 0.0611 0.08 0.1027 0.3834 0.5705 0.8425 1.0 0.9422 0.7209

lim
x→0−

∑
R−

S∗
R−R+ (AR−eikR− x + BR−e−ikR− x ) = lim

x→0+
AR+eikR+ x + BR+e−ikR+ x [Eq. (22)],

AR+ + BR+ =
∑
R−

S∗
R−R+ (AR− + BR− ), (B1)

where S∗
R−R+ ≡ 〈R+|R−〉, kR± ≡

√
2m(E−ER± )

h̄ , and ER± ≡ 〈R±|ĤR( �B(0±))|R±〉. There are NR such equations, one for each value
of R+.

Correspondingly, the defining equations for the continuity of the first derivative of the coefficients are

lim
x→0−

∂

∂x
�ER̃

R+ (x) = lim
x→0+

∂

∂x
�ER̃

R+ (x),

lim
x→0−

∑
R−

∂

∂x
�ER̃

R− (x)S∗
R−R+ = lim

x→0+

∂

∂x
�ER̃

R+ (x),

lim
x→0−

∑
R−

S∗
R−R+

∂

∂x
(AR−eikR− x + BR−e−ikR− x ) = lim

x→0+

∂

∂x
(AR+eikR+ x + BR+e−ikR+ x ) [Eq. (22)],

lim
x→0−

∑
R−

S∗
R−R+ ikR− (AR−eikR− x − BR−e−ikR− x ) = lim

x→0+
ikR+ (AR+eikR+ x − BR+e−ikR+ x ),

AR+ − BR+ =
∑
R−

S∗
R−R+

kR−

kR+
(AR− − BR− ). (B2)

Solving Eqs. (B1) and (B2) for the coefficients AR+ and BR+ , we obtain Eqs. (27) and (28).

APPENDIX C: COMPUTATIONAL PARAMETERS USED
FOR THE APPLICATION TO ORTHOHYDROGEN

We take the mean velocity v0 = 1436.14 m s−1 and the
velocity spread to be 4% full width at half maximum. When
performing the integral of Eq. (18), we take a k-space grid
spacing �k = 1 × 104 cm−1 and integrate from −7σk to
+7σk , where σk is the Gaussian width in momentum space
as defined in Sec. III. For the magnetic-field profile and the
angles between the two branches of the apparatus, see Fig. 3.
The relative probabilities used for the state selector probabili-
ties PR0 and the detector coefficients cRD are given in Table I.

Where applicable, the parameters above were chosen to
match those in the supplementary information of Godsi

et al. [53], apart for the relative probabilities in Table I.
The relative probabilities in Table I were obtained from im-
proved semiclassical calculations of the molecular propaga-
tion through the magnetic lens [53,87].

APPENDIX D: COMPUTATIONAL PARAMETERS
USED FOR THE COMPARISON WITH THE

SEMICLASSICAL METHOD

We take the mean velocity v0 = 1436.14 ms−1. The rela-
tive probabilities used for the state selector probabilities PR0

and the detector coefficients cRD are given in Table II. Where
applicable, the parameters were chosen to match those in the
supplementary information of Godsi et al. [53].

TABLE II. Relative probabilities of the state selector ηmI mJ and the detector κmI mJ , as used in the comparison to the semiclassical method
of Godsi et al. [53]. The state selector probabilities PR0 are calculated as PR0 = PmI mJ ≡ ηmI mJ /

∑
mI mJ

ηmI mJ and the detector coefficients cRD

are calculated as cRD = cmI mJ ≡ κmI mJ /
∑

mI mJ
κmI mJ .

mI 1 1 1 0 0 0 −1 −1 −1
mJ 1 0 −1 1 0 −1 1 0 −1

ηmI mJ 1.0000 0.9755 0.7901 0.1465 0.1111 0.0738 0.0343 0.0299 0.0258
κmI mJ 1.00 0.96 0.93 0.53 0.42 0.37 0.21 0.19 0.16
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