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Three-body losses of a polarized Fermi gas near a p-wave Feshbach resonance
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We study three-body recombination of fully spin-polarized 6Li atoms that are interacting resonantly in
relative p waves. Motivated by a recent experiment, we focus on negative scattering volumes where three
atoms recombine into a deep dimer and another atom. We calculate the three-body recombination rate using a
Faddeev equation derived from effective field theory. In particular, we study the magnetic field and temperature
dependences of the loss rate and use the recombination data to determine the effective range of the p-wave
atom-atom interaction. We also predict the existence of a shallow three-body resonance state that manifests itself
as a prominent feature in the energy-dependent three-body recombination rate.
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I. INTRODUCTION

Experiments with ultracold atomic gases provide a unique
way to explore the interactions between atoms. Specifically,
strongly interacting system have recently received a lot of
attention [1–5]. For example, the loss rate of an ultracold
system of strongly interacting bosons will display discrete
scale invariance when it is measured as a function of the
scattering length. This discrete scale invariance is related to
the well-known Efimov effect [6] and displays a log-periodic
dependence of the three-body loss rate on the scattering length
[7–10]. Three-body losses occur in ultracold atomic gases
as a result of three-body collisions in which the atoms gain
kinetic energy due to the formation of a two-body bound
state. Indeed, the Efimov effect was first observed through its
signature in three-body losses in a cold gas of Cs atoms [11].

Identical fermions cannot interact in a relative s wave
due to the Pauli principle. However, their p-wave scattering
volume can be tuned, and a number of experiments have
examined the features of strongly interacting Fermi gases
[12–17]. The Efimov effect does not occur in these systems
[18–20]; however, losses still occur through recombination
processes into shallow or deep dimers. The three-body losses
in spin-polarized ultracold gases of 6Li were recently studied
in the group of Takashi Mukaiyama at Osaka University,
focusing on scaling laws [15], unitary-limited behavior [16],
and the role of cascade processes [17].

In this paper, we focus on the data taken by
Waseem et al. [16]. Specifically, they considered the
|F = 1/2, mF = +1/2〉 hyperfine state and measured
the loss rate at large negative p-wave scattering volume,
enhanced by a Feshbach resonance at B0 = 159.17(5) G.

*Corresponding author: lplatter@utk.edu

At negative scattering volume, three atoms recombine
into a so-called deep dimer, i.e., a dimer whose binding
energy is so large that it cannot be described by the
parameters of the effective range expansion. The authors
of this work used a simplified Breit-Wigner model for the
energy-dependent three-body recombination rate K3(E ) to
determine information about the atom-atom interaction and to
model the temperature-dependent three-body loss rate L3(T ).
While they managed to reproduce the measured loss data
appropriately, we will discuss in detail that their simplified
approach also has some important limitations.

It is particularly important to have an accurate microscopic
description for the three-body recombination if the goal is to
extract two-body observables from three-body processes with
some understanding of the resulting uncertainties. Various
approaches can be used to develop a microscopic descrip-
tion of this process. Effective field theory (EFT) uses the
separation between short- and long-range scales in a system
to construct a controlled expansion. It has been applied suc-
cessfully in particle, nuclear, and atomic physics [1,21,22].
The parameters that appear in the EFT description of atomic
systems with strong interactions can be related directly to the
effective range parameters. This approach is therefore model
independent and facilitates an unbiased analysis of experi-
mental data. Systems with p-wave interactions were previ-
ously studied using the short-range effective field theory [20].
It was found that a real three-body parameter is required for
renormalization. However, the emphasis of that work was on
renormalization issues and the spectrum of three-body states.

Here, we will use EFT to study the three-body loss rate
for recombination into deep dimers at finite temperature with
the parameters relevant to the experimental measurements by
Waseem et al. [16]. We will construct the interaction of two
atoms in a relative p wave and use it to derive a Faddeev
equation for the three-body system. Its solution allows us to
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compute the three-body recombination rate K3(E ). Temper-
ature averaging then yields the three-body loss rate L3(T ).
Comparison with the data obtained by Waseem et al. will let
us draw conclusions about the features of the two-body inter-
action such as the p-wave effective range. Moreover, it will
allow us to tie these features to other three-body observables
such as the energy of a shallow three-body resonance state.

In this study, we restrict ourselves to a leading-order de-
scription of the loss rate within an EFT valid in the nonuni-
tary regime, i.e., at energies below the two-body resonance
where a single partial wave dominates. The EFT expansion
discussed below allows us to estimate higher-order corrections
in terms of typical momentum scales, yielding theory uncer-
tainty bands for the loss rate. These bands also indicate the
beginning of the unitary regime where the EFT breaks down
since formerly higher-order terms become significant. Thus,
a different power counting would have to be developed for
the unitary regime. However, that is beyond the scope of this
paper.

This paper is organized as follows. In Secs. II and III, we
introduce our microscopic framework to calculate the three-
body loss rate. Some details of the EFT framework are given
in the appendixes. Our results are presented and compared to
the data by Waseem et al. [16] in Sec. IV. We end with a short
summary and outlook in Sec. V.

II. RECOMBINATION NEAR A p-WAVE RESONANCE

At sufficiently low energies, the elastic scattering proper-
ties of particles can be quantified using the effective range
expansion. In the p wave, the expansion is

k3 cot δ1 = − 1

a1
+ r1

2
k2 + · · · , (1)

where δ1 is the scattering phase shift, a1 denotes the scattering
volume, r1 is the effective range, and the ellipses denote
higher-order terms. We note that our definition of the effective
range r1 differs by a factor of −2 from the definition used
in Ref. [16]. For a van der Waals interaction, the expansion
k3 cot δ1 in powers of the momentum k contains a term linear
in k. However, it was shown first by Levy and Keller [23] and
later by Gao [24] using quantum defect theory for the van der
Waals interaction and by Zhang et al. [25] in a two-channel
Feshbach resonance model that this term is proportional to
a−2

1 . Zhang et al. proposed to use the ratio of 1/a1 and the
linear term at the relevant momentum scale to quantify its
importance. We find that this ratio is maximally 2 × 10−7 for
the thermal momenta and scattering volumes considered in
this work. We will therefore ignore this term in the following
discussion.

The level scheme of three spin-polarized 6Li atoms in
the hyperfine state |F = 1/2, mF = +1/2〉 is illustrated in
Fig. 1. Two identical 6Li atoms form a deeply bound state
denoted 6Li2(d ). The Feshbach resonance creates an excited
state 6Li2(e), whose position can be tuned by changing the
magnetic field B. The scattering volume of two 6Li atoms
in the |F = 1/2, mF = +1/2〉 state, a1, diverges at the reso-
nance position, B0 = 159.17(5) G. For B ≈ B0, the magnetic

E

6Li2(e) + 6Li
k2
res/m

3 6Li
0

∼ −r2
1/m

6Li2(d) + 6Li

B

FIG. 1. Level scheme of three spin-polarized 6Li atoms in the
hyperfine state |F = 1/2, mF = +1/2〉. Three-body recombination
into a deeply bound state 6Li2(d ) proceeds through the Feshbach
resonance state 6Li2(e). Its position k2

res(B)/m can be tuned by a
magnetic field B.

field dependence has the form

a1(B) = a1,bg

(
1 + �B

B − B0

)
≈ a1,bg �B

B − B0
, (2)

where a1,bg < 0 is the background scattering volume and
�B > 0 is the resonance width [16].1 As input, we use the
value a1,bg �B = −2.8(3) × 106a3

B G, obtained in a fit to the
thermalization rate of the spin-polarized 6Li gas by Nakasuji
et al. [26]. For fixed B ≈ B0, a1(B) is then given with an
uncertainty of roughly 10%.

The p-wave effective range r1 is usually assumed to depend
weakly on B in the immediate vicinity of B0 [16,26,27].
Waseem et al. suggested the near-resonance estimate

(r1)est ≡ 2

m δμ a1,bg �B
= −0.182(20) a−1

B (3)

and used it in their analysis of the experimental data [16]. In
Eq. (3), δμ = 113(7)kB μK G−1 denotes the relative magnetic
moment between 6Li2(e) and two 6Li atoms, with kB being
Boltzmann’s constant. We adopt the assumption that r1 is
constant in B. However, we note that different estimates for
r1 have been given that differ significantly from (r1)est. First,
Bruun et al. derived Eq. (3) only for two bosons near an
s-wave Feshbach resonance [28]. Second, Nakasuji et al.
obtained a different value −0.116(10)a−1

B in their fit to the
thermalization rate [26]. They also cited an even smaller
theory prediction, −0.096(6)a−1

B , by Julienne (Ref. [29] of
their work). This value deviates by roughly 50% from Eq. (3).
Thus, r1 introduces the largest uncertainty to the study. It is
one goal of this work to predict r1 from data of the three-body
loss rate L3.

In the experiment by Waseem et al., recombination was
studied for B − B0 > 0 (a1 < 0), where the process can be
distinguished from background losses [16]. Thus, we restrict
ourselves to this region when calculating L3. On this side
of the Feshbach resonance, the two-body system has a res-
onance pole above threshold representing the 6Li2(e) state.2

The position of the corresponding maximum of the scattering

1For detunings B − B0 < 0.5 G as in [16], the constant term in
Eq. (2) is less than 1% of the total and can be neglected.

2For B − B0 < 0 (corresponding to a1 > 0), 6Li2(e) is a shallow
bound state.
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amplitude on the real k axis will be denoted by kres (see Fig. 1).
It varies with B and will be denoted “resonance momentum”
in the following. For a large scattering volume, the resonance
momentum can be approximated by [29,30]

kres(B) =
√

2

a1(B)r1
. (4)

Note that kres(B) is real valued since both a1(B) and r1 are
negative for the Feshbach resonance considered in this paper.

The Feshbach resonance introduces a strong separation
of momentum scales to the two-body system. In particular,
the resonance momentum kres(B) is much smaller than the
natural (high) momentum scale set by the effective range r1.
Such a separation is an important requirement for the EFT
approach. In the system at hand, it enables an expansion of the
two-body scattering amplitude in terms of the ratio χ2(B) ≡
kres(B)/r1 � 1. This expansion yields a simple Breit-Wigner-
like diatom propagator at leading order in the expansion in
χ2(B) [30]. In the following, we restrict our analysis to leading
order (LO) in the expansion in χ2(B).

For B − B0 > 0, three-body recombination proceeds in the
absence of a shallow dimer state only into deep dimer states
6Li2(d ) + 6Li. Such a process involves a large excess of
kinetic energy ∼r1

2/m outside our EFT’s applicability region;
that is, the recombination process happens when all three
atoms are very close together. While the process cannot be
described in detail in the framework of our EFT, the total rate
for recombination into deep dimers can be described by mak-
ing the three-body parameter complex [31]. This corresponds
to using an optical three-body potential to model the losses
at short distances which can be treated in perturbation theory
[10].

As shown by Esry et al., the recombination rate of three
identical fermions vanishes at total kinetic energy E = 0 [32].
More specifically, it obeys the threshold law K3 ∝ E2 in the
partial-wave channel JP = 1+ and is suppressed by further
powers of E for other JP. Thus, we focus on the 1+ channel
at LO. To calculate the recombination rate K3, the absolute
square of the matrix element for the recombination process
in the JP = 1+ channel, M1mJ (mJ ∈ {−1, 0, 1}), has to be
integrated over incoming momenta p1, p2, p3, summed over
mJ , and divided by the three-body phase space φ3, i.e.,

K3(pE ) = 1

φ3(pE )

(
3∏

i=1

∫
d3 pi

(2π )3

)
(2π )4 δ(3)

(
3∑

i=1

pi

)

× δ

(
p2

E

m
−

3∑
i=1

p2
i

2m

)

×
∑
mJ

∣∣iM1mJ
({pi}; pE

)∣∣2
, (5)

where p2
E/m ≡ E . Explicit expressions for M and φ3 will be

given in Sec. III [see Eqs. (12) and (14)]. Equation (5) can
then partially be evaluated analytically by integrating over the
δ functions, as will be discussed below.

Data for three-body recombination are available only at fi-
nite temperature T ∼ μK [16]. For this reason, we have to cal-
culate the thermal average of K3. The energy E is distributed

according to the Boltzmann distribution of three equal-mass
particles which is proportional to E2 exp[−E/(kBT )] (see,
e.g., Refs. [33,34]). In terms of pE , it follows that

〈K3〉(T ) = 1

(m kBT )3

∫ ∞

0
dpE p5

E e−p2
E /(m kBT )K3(pE ). (6)

The thermal average is directly proportional to the experimen-
tally measured loss rate [8,16]

L3(T ) = 3
6 〈K3〉(T ). (7)

We reiterate that our focus is on three-body recombination
into deep dimers. However, the same formalism can be used
to study recombination into shallow dimers, i.e., three-body
recombination for a positive two-body scattering volume a1.
A preliminary study of this case can be found in Ref. [30].

III. THREE-BODY RECOMBINATION MATRIX ELEMENT

In order to calculate the matrix element M1mJ in Eq. (5),
we require the atom-diatom scattering amplitude T (1+ ) in off-
shell kinematics. This amplitude can be obtained by solving
an integral equation derived from effective field theory. In
general, the total angular momentum J = l + L is the sum
of the atom-atom orbital angular momentum l (l = 1) and
the diatom-atom orbital angular momentum L, implying P =
(−1)1+L. Thus, at small energies, the leading partial-wave
channel JP = 1+ is given by the single combination l =
L = J = 1. We restrict ourselves to this channel at LO. The
theoretical uncertainty introduced by this approximation will
be addressed at the end of this section. The partial-wave
projected Faddeev integral equation for the amplitude T (1+ )

reads [30]

T (1+ )(p, p′; pE )

= −V (1+ )(p, p′; pE ) +
∫ �

0

dq q2

2π2
V (1+ )(p, q; pE )

× Gπ

(
k̃(q2)

)
T (1+ )(q, p′; pE ), (8)

where

k̃(q2) = i

√
−p2

E + 3

4
q2 − iε (9)

is a momentum variable and Gπ is the Breit-Wigner-like LO
diatom propagator

iGπ (k̃) = i

[
− a−1

1 (B) + r1

2
k̃2 − ik3

res(B) θ (B − B0)

]−1

,

(10)

which contains information on the two-body effective range
parameters. Moreover, p (p′) denotes the incoming (outgoing)
atom-diatom relative momentum, and pE ≡ i(−mE − iε)1/2

is the momentum scale set by the total kinetic energy. The
quantity

V (1+ )(p, q; pE ) = 8π [Q0 − Q2]

(
p2

E − p2 − q2

pq

)

+ H (1+ )(�)pq

�2
(11)
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×
{pi}

+ ×
{pi}

FIG. 2. Matrix element for three-body recombination into a
deeply bound state. The cross indicates the pointlike vertex for
recombination into the deep dimer. The gray blob denotes the atom-
diatom amplitude T (1+ ) which is the solution of Eq. (8).

is the exchange potential arising from partial-wave projection
of the single-atom exchange contribution, where Q0 and Q2

are Legendre functions of the second kind in the convention
of Ref. [35]. The Faddeev equation (8) is equipped with a
momentum cutoff of natural order, � ∼ r1 or larger, which
also appears in the three-body force term. The three-body

force H (1+ )(�) is required for renormalization of the atom-
dimer amplitude [20] and depends on the cutoff �. Details of
the derivation, including the Feynman rules and partial-wave
projection, can be found in Appendixes A and B. Note that
for B > B0, the diatom is unstable and does not represent
an asymptotic state. However, the quantity T (1+ )(p, p′; pE )
is required in off-shell kinematics to calculate the three-body
recombination matrix element M1mJ .

The three-body recombination matrix element M1mJ , de-
picted in Fig. 2, depends on the three incoming atom mo-
menta pi (i ∈ {1, 2, 3}). For identical fermions, the matrix
element must be antisymmetric under exchange of each pair
of momenta pi, p j (i �= j). This property is automatically
taken care of by the anticommutation relations of the atom
field operators ψ,ψ† introduced in Appendix A. Applying
the Feynman rules dictated by the effective Lagrangian of
Eq. (A2) in Appendix A to the two diagrams in Fig. 2, we find

iM1mJ
({pi}; pE

) = iF (1+ )(�) 3

√
2π

m

∑
π∈C3

{pπ (1) − pπ (2)}1ml Gπ

(
k̃
(
p2

π (3)

))

×
(

C1mJ
1mL,1ml

{pπ (3)}1mL −
∫

d3q

(2π )3
T ml ,m′

l(pπ (3), q; pE )Gπ

(
k̃(q2)

)
C1mJ

1mL,1m′
l
{q}1mL

)
, (12)

where CJ mJ

L mL,l m′
l

is a Clebsch-Gordan coefficient that couples the angular momenta l and L to J and the sum is over all

even permutations π of (1 2 3), denoted C3. Sums over ml , m′
l , and mL are implicit. The coefficient of the pointlike vertex

for recombination into the deep p-wave dimer is given by F (1+ )(�). This regulator-dependent constant acts as a short-range
optical potential. The general equation for the unprojected amplitude T ml ,m′

l in Eq. (12) including all partial waves is given in
Appendix B. At LO, it reduces to its 1+ component, i.e.,

T ml ,m′
l (p, q; pE ) = T (1+ )(p, q; pE ) 4π

∑
mJ

[
Y (1,1)1mJ ( p̂)

]ml
[
Y (1,1)1mJ (q̂)

]m′
l ∗ (13)

in the convention of Eq. (B2b). The tensor structure {·}1m in Eq. (12) is defined in Eq. (A3).
To evaluate the expression for the recombination rate in Eq. (5), we further need the three-body phase space

φ3(pE ) = m p4
E

24
√

3 π2
. (14)

Inserting Eqs. (12) and (14) and integrating over the δ functions, we obtain

K3(pE ) = |F (1+ )(�)|2
m

432
√

3

p4
E

∫ 2√
3

pE

0
dpA pA

∫ 2√
3

pE

0
dpB pB θ (1 − |x0|)

× [|pA J (pB; pE )|2 + 2 Re {pB J (pA; pE )[pA J (pB; pE )]∗}], (15)

where

x0 ≡ 1

pA pB

(
p2

E − p2
A − p2

B

)
, (16a)

J (p; pE ) ≡ Gπ

(
k̃(p2)

)
(

p −
∫ �

0

dq q2

2π2
T (1+ )(p, q; pE )Gπ

(
k̃(q2)

)
q

)
. (16b)

The integral contained in the definition in J diverges
as � → ∞. This cutoff dependence is absorbed by an
appropriate running of the short-range factor |F (1+ )(�)|2
with �. The running of F (1+ ) can be obtained by making the
three-body force H (1+ ) in Eq. (11) required to renormalize
T (1+ ) complex. Thus, the running of F (1+ ) with the cutoff � is

fully determined by the running of H (1+ ). A similar procedure
was previously used to describe three-body recombination
into deep s-wave dimers [10].

Before we go on, we expand on the expected size of omit-
ted partial waves compared to JP = 1+. For sufficiently small
energies, their contributions to the recombination rate involve
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FIG. 3. Loss rate L3 as a function of the field detuning B − B0 for two temperatures T at � = 0.4a−1
B . Vertical grid lines mark points

at which kres(B) = pT . They separate the unitary regime (left) from the nonunitary regime (right). The solid red curve is a χ2 fit in
(r1, H (1+ ), F (1+ ) ) to the T = 2.1 μK data in the nonunitary regime for a1,bg �B = −2.8 × 106a3

B G. The black dotted curve is the resulting
prediction for T = 4.5 μK. Uncertainty bands in the nonunitary regime follow from NLO corrections of the order of p2

T /k2
res(B) < 1 and from

the experimental uncertainty of a1,bg �B. Naive application of the theory to the unitary regime leads to an overestimation of the data.

at least one more factor E [32]. Naively, one would compare
this factor to the breakdown scale r2

1/m set by the p-wave
effective range. For pE � kres(B) = χ2(B)r1, that would yield
an a priori uncertainty p2

E/r2
1 � χ2

2 (B) which is very small
(�0.01% for B − B0 � 0.5 G). In obtaining this estimate,
we have used the threshold laws of Ref. [32]. The work of
Suno et al., however, suggests that the threshold laws fail at
pE = kres(B) [36]. At this point, formerly subleading channels
may become comparable to JP = 1+. As a consequence, we
apply our LO framework only to the low-energy region pE <

kres(B). The a priori LO uncertainty at fixed energy can then
be written as χ3(B, E ) ≡ p2

E/k2
res(B) < 1.

To estimate the LO uncertainty χ̃3(B, T ) at finite tempera-
ture, we set pE to the maximum of the Boltzmann weighting
factor in Eq. (6), i.e., to

pT ≡
√

5

2
mkBT . (17)

This yields the expression

χ̃3(B, T ) ≡ p2
T /k2

res(B) ≈ r1

2
a1,bg �B

5

2
mkB

T

B − B0
, (18)

where Eqs. (2) and (4) have been used. Note that we aim to de-
termine r1 from the data and thus do not use the approximate
relation (3).

IV. RESULTS

A. Fit of free parameters and comparison with experiment

The data obtained in Ref. [16] can be divided into two
different regimes, the unitary regime and the nonunitary
regime. We define the unitary regime as the temperature
domain in which the resonance momentum kres is smaller than
the thermal momentum scale pT defined in Eq. (17). For a
given resonance momentum kres, the unitary regime sets in at

temperatures larger than

Tunitary = 2k2
res

5mkB
. (19)

We do not expect our EFT to work in this regime since the
expansion parameter χ̃3(B, T ) � 1. For convenience, we will
drop the superscript 1+ in the three-body terms H and F from
now on.

We use our approach to fit the effective range r1, the three-
body force H , and the short-distance three-body parameter F
to the experimental data for T = 2.1 μK from Ref. [16]. Our
results are renormalization group invariant and independent
of �, but for definiteness we use an ultraviolet cutoff � =
0.4a−1

B in the integral equations. We find an effective range
r1 = −0.11(2)a−1

B , which has the same order of magnitude as
the result by Waseem et al. but deviates by 40%. The negative
sign is consistent with the resonance momentum kres(B) being
real valued [see Eq. (4)]. For the three-body force, we find
H = 4+5

−7, and for the short-distance three-body parameter we

obtain log10 (F/m2) = 49.8+0.2
−0.1. We emphasize that these two

quantities are not observables and depend on the ultraviolet
cutoff � used to solve Eq. (8).

The red solid line in Fig. 3 shows the fitted loss rate L3 in
comparison to the experimental data (red circles). Experimen-
tal data in the unitary regime were excluded in the fit. These
data points are to the left of the red solid line Fig. 3. Once
the parameters of our approach are determined, we can use
Eqs. (6) and (7) to predict the loss rate at a different tempera-
ture. Figure 3 shows also the resulting prediction for the loss
rate at a temperature 4.5 μK (black dotted line) in comparison
to the experimental data from Ref. [16] (black diamonds).
Our results describe data at these small temperatures relatively
well.

Note that the B − B0 dependence of L3 can be eliminated in
favor of the |a1| dependence using Eq. (2). We have explicitly
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FIG. 4. Recombination rate K3 as a function of the energy E for several field detunings B − B0 at � = 0.4a−1
B . The inset shows the rescaled

energy gap m(E3 − E2) as a function of B − B0 with an error estimate given by the shaded band.

checked that our loss rate results exhibit an |a1|8/3 scaling
for small |a1| � 800/r3

1 as predicted by Suno et al. [33] and
measured by Yoshida et al. [15].

The finite-temperature averaging of the energy-dependent
recombination rate K3 smears out the resonance features from
the three-body loss rate. In Fig. 4, we show K3 as a function of
the energy for different magnetic field detunings. The curves
have been generated with the parameters obtained in the fit
to the T = 2.1 μK data from Ref. [16] discussed above. They
display a strong peak at lower energies followed by a sudden
increase and a smooth fall off. The peak on the left is caused
by the existence of a three-body resonance below the two-
body resonance. Its position is controlled by the three-body
force H . The sudden rise in K3 to the right of the peak is the
signature of the two-body resonance.

Given the fit results for r1 and H , the difference of the
three- and two-body resonance energies, E3 − E2, is a func-
tion of only the scattering volume, i.e., the magnetic field
detuning. Thus, our approach allows us to predict the mag-
netic field dependence of the three-body resonance energy
E3. In the inset of Fig. 4, we show the rescaled energy gap
m(E3 − E2) as a blue line. For B − B0 > 0, the three-body
resonance is below the two-body resonance, and E3 − E2 is
negative. Near B − B0 = 0, E3 is linear in B just like E2,
and the three-body resonance crosses the two-body energy.
In the region B − B0 < 0, the two-body resonance turns into
a shallow bound state, and the energy difference E3 − E2

becomes positive.
Corrections to E3 should arise from omitted JP channels.

Contributions of these channels to the loss rate L3(B) in
the fit regime should have relative sizes 0 � χ3(B, T ) � 1
[see Eq. (18)]. Gaussian uncertainty propagation then implies
a relative uncertainty of 46% for the χ2 value of our fit.
This number can be used as an estimate for the uncertain-
ties of the offset α and slope β of the m(E3 − E2) = α +
β(B − B0) curve. We obtain α = −0.4(2) × 10−7a−2

B and
β = −11(5) × 10−7a−2

B /G, which yield the blue band de-
picted in the inset of Fig. 4.

Let us emphasize that the three-body-state energy depends
only on the resonance parameters a1 and r1 and the three-body

force H . In this sense, the state has some degree of universal-
ity. To our knowledge, there has not been direct experimental
verification of this resonance so far. Such an experiment
would be most helpful to assess our predictions and to gain
a deeper understanding of universal binding mechanisms in
the p-wave sector in general.

Finally, Fig. 5 shows the temperature-averaged loss rate
L3 as a function of the temperature T for different detunings
B − B0. The vertical lines denote the beginning of the unitary
regime as given by Eq. (19), where the EFT power-counting
approach is expected to fail. While the curves exhibit the
expected T −2 behavior at large temperatures, they are not
independent of B in the unitary regime. Instead, they are sep-
arated by factors of 1.3–1.5. We expect that effects from the
unitary cut will be important in this region where the system is
able to probe the resonance peak [29]. Moreover, the contribu-
tion from spin-parity channels different from JP = 1+ could
be important. Even though suppressed close to E = 0, they
might contribute significantly at finite temperature. It would
also be instructive to iterate effects of the short-range three-
body factor F . A nonperturbative treatment would presumably
change the behavior at larger energies. Understanding the loss
rate in this region is left to future work.

B. Comparison with Waseem et al.

We now compare our results to the two-body model em-
ployed by Waseem et al. [16] in the nonunitary regime,

KWaseem
3 (E ) = 144

√
3π2

m3E2


e
d

(E − Eb)2 + (
e + 
d )4/4
,

(20)

where 
e = −4
√

mE3/2/r1, 
d = −4/(mr1a1), and Eb =
k2

res/m is the real part of the resonance energy.3 While the
temperature-averaged loss rate L3 of Waseem et al. looks

3Note that we have converted Eq. (20) to our conventions with h̄ =
1.
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FIG. 5. Loss rate L3 as a function of the temperature T for several field detunings B − B0 at � = 0.4a−1
B (χ 2-fit predictions). Vertical grid

lines at pT = kres separate the nonunitary (left) and unitary (right) regimes. Uncertainty bands are obtained as in Fig. 3.

similar to our result for the experimental temperatures, the
energy-dependent recombination rate K3 behaves very differ-
ently.

This can be seen in Fig. 6, where we compare the three-
body recombination model in Eq. (20) and our results for
a magnetic field detuning of B − B0 = 30 mG. The inset
shows that the temperature-averaged loss rates L3 of both
approaches agree for temperatures T > 1 μK measured by
Waseem et al. In contrast, the energy-dependent rate K3 shows
stark differences. The rate calculated in the EFT approach falls
off at small energies as E2, while the model in Eq. (20) grows
as E−1/2. Both approaches show a peak around E = 3kB μK,
but the microscopic origin is very different. In the model of
Waseem et al. it is simply associated with the Breit-Wigner
form put in by hand, while the resonance in the full three-body
treatment in the EFT framework is dynamically generated

by the p-wave atom-atom interactions. Finally, there is a
shoulder around E = 7kB μK in the EFT framework which
is not present in the model.

Currently, the data for the temperature-averaged loss rate
are not able to distinguish between the two approaches and
thus the underlying microphysics. The inset of Fig. 6, how-
ever, suggests that a new measurement at lower temperatures
T � 0.5 μK should be able to distinguish between the two
scenarios.

Having outlined the differences in the nonunitary regime,
we now compare the methods in the unitary regime. In this
region, Waseem et al. use a T −2 ansatz with an adjustable
coefficient and a functional form different from Eq. (20).
They perform separate fits in the nonunitary and unitary
regions, coinciding roughly at Tunitary. Results of these fits
can be seen in the inset of Fig. 6 as solid and dotted
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FIG. 6. Comparison of the energy-dependent recombination rate K3 from our EFT calculation (dashed curve) and that from the model
by Waseem et al. [16] (solid curve) as a function of the energy E for a magnetic-field detuning of B − B0 = 30 mG. The inset shows the
same comparison for the temperature-dependent loss rate L3, where the dotted curve shows the T −2 behavior expected from unitarity. The
dramatically different behaviors of the recombination rates at low energies lead to different predictions for the loss rates only at temperatures
below 0.5 μK.
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curves, respectively. This procedure leads to a good descrip-
tion of the temperature dependence in the unitary regime of
Fig. 5.

Our leading-order EFT, in contrast, is adjusted in a single
fit to the 2.1 μK data in Fig. 3, and all other curves are
predictions. Moreover, it is solely designed to explain data
in the nonunitary regime, where predictions are compatible
with data within the uncertainty bands. In the unitary regime,
the key assumption of dominance of the 1+ partial wave is
no longer satisfied, and our EFT breaks down. Thus, it is
expected that we cannot describe the data above Tunitary in
Fig. 5. In principle it is possible to formulate an EFT for the
unitary regime by adding further partial-wave channels and
so-far neglected two-body terms nonperturbatively. However,
such an extension is beyond the scope of this work.

V. SUMMARY

In this work, we have considered the temperature-
dependent three-body loss rate for a gas of identical fermions
with resonant p-wave interactions. We have used an effective-
field-theory approach to derive integral equations that de-
scribe the scattering of three fermions and used them to
evaluate the rate for three-body recombination of polarized
6Li atoms into deeply bound dimers and another atom. Our
approach requires the determination of four parameters to be-
come predictive: the scattering volume a1, the effective range
r1, and two pieces of three-body information to determine
the short-range three-body parameters H and F . The latter
acts as an optical potential and parametrizes the coupling
of the three-body system to final-state channels with deep
dimers. We have used the known magnetic field dependence
of the scattering volume a1 and the experimental data from
Waseem et al. [16] to fit the remaining parameters r1, H , and
F . Once these parameters are determined, we are also able
to determine the position and magnetic field dependence of
a fermionic three-body resonance with JP = 1+. This state
exhibits some degree of universality in the sense of its energy
position being dependent on only a1 and r1 and the three-
body force H . We note that this three-body resonance could
lead to interesting features in the three-body recombination
rate on the positive-scattering-volume side of the Feshbach
resonance, where the three-body state is a resonance close to
the atom-dimer threshold. For positive scattering volume, it
would also be interesting to consider atom-dimer relaxation
as an additional benchmark to our approach.

While the temperature-averaged loss rates L3 from the two-
body resonance model employed in Ref. [16] and from our
three-body calculation are very similar, the energy-dependent
recombination rate K3(E ) shows significant differences. New
experiments at lower temperatures T � 0.5 μK should be
able to distinguish between the two scenarios and determine
the nature of the microscopic physics responsible for the loss
processes.

In summary, we have shown that the three-body recombi-
nation rate K3(E ) for spin-polarized 6Li atoms with resonant
p-wave interactions possesses interesting features due to two-
and three-body resonances which can be seen at low tempera-
tures. We also have demonstrated that three-body loss data can
be used to extract detailed information on the two-body inter-

action once a reliable parametrization is established and used
in a full three-body calculation. Our effective-field-theory
approach has the additional advantage that the interaction is
directly given in terms of the effective range parameters.

Waseem et al. recently described the unitary regime us-
ing a model for cascade processes that leads to a modified
three-body loss rate L3 [17]. Our uncertainty analysis led
us to exclude this regime as more partial-wave channels are
expected to contribute to the loss rate at these temperatures.
It would therefore be interesting to include additional partial-
wave channels in our calculation of the total loss rate in order
to test their result and to analyze whether it is really necessary
to include additional recombination mechanisms to achieve
agreement with the data.

We finally note that the s-wave scattering between the
|F = 1/2, mF = +1/2〉 and |F = 1/2, mF = −1/2〉 hyper-
fine states of 6Li is moderately large (and negative) at the
magnetic fields considered in this work [37]. The study of re-
combination losses in this two-component system of identical
fermions with large s- and p-wave scattering lengths might
therefore lead to interesting features such as a competition
between odd- and even-parity recombination channels.
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APPENDIX A: LAGRANGIAN

The EFT Lagrangian for the spin-polarized fermions can
be split into three parts: L = L1 + L2 + L3. For 6Li atoms
with mass m = 6.0151223(5) u [38], the one-body part

L1 = ψ†

[
i∂0 + ∇2

2m

]
ψ (A1)

can be written in terms of scalar fields ψ,ψ† which anticom-
mute.

The remaining parts comprise all two- and three-body
contact terms compliant with Galilean symmetry. They are
formulated using bosonic fields πml , π

†
ml

(ml ∈ {−1, 0, 1}),
which annihilate and create two atoms in a p wave, respec-
tively. At LO, L2 reads

L2 = π†
ml

[
� +

(
i∂0 + ∇2

4m

)
+ · · ·

]
πml

− g√
2

[
π†

ml

(
ψ{−i

←→∇ 2}1ml ψ
)

+ H.c.
]
, (A2)
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where H.c. is the Hermitian conjugate and the sums over
ml are implicit. The p-wave nature of the diatom manifests
itself in the tensor structure {·}1ml

. Together with the Galilean-

invariant derivative
←→∇ 2 ≡ (

←−∇ − −→∇ )/2, it contributes a fac-
tor

{k}1ml
≡ (4π/3)1/2 k Y ml

1 (k̂) (A3)

to the π -ψψ vertex. Here, k = (k1 − k2)/2 is the atom-atom
relative momentum. To describe a shallow p-wave resonance,
two real low-energy parameters are required [29,39]. They are
chosen as � and the coupling g, both of which will be matched
to observables.

The three-body part L3 contains three-body interactions
which eliminate potential divergences in different spin-parity
channels JP. At LO, a single three-body force (JP = 1+)

enters the theory. It takes the form

L3 = −C(1+ )
0

12π

mg2
(ψ π)(1+ ) †

mJ
(ψ π)(1+ )

mJ
+ · · · (A4)

with the JP = 1+ (l = L = J = 1) field combinations

(ψ π)(1+ )
mJ

=
√

3C1mJ
1mL,1ml

ψ{−i
←→∇ 3}1mL πml (A5)

and the Galilean-invariant derivative
←→∇ 3 ≡ (2

←−∇ − −→∇ )/3.
Further, we define a dimensionless three-body force H (1+ )

with

C(1+ )
0 (�) = H (1+ )(�)/�2. (A6)

APPENDIX B: FADDEEV EQUATION

The Feynman rules resulting from the Lagrangian given in
the previous section can be used to derive an integral equation
for atom-dimer scattering. For orbital angular momentum
quantum numbers l = l ′ = 1 and projections ml and ml ′ , this
Faddeev integral equation is given by

T ml , m′
l (p, p′; pE ) = −V ml , m′

l (p, p′; pE ) +
∑
m′′

l

∫
d3q

(2π )3
V ml , m′′

l (p, q; pE )Gπ

(
k̃(q2)

)
T m′′

l , m′
l (q, p′; pE ), (B1)

where k̃(q2) is given in Eq. (9). The particle exchange potential is given by

−iV ml , m′
l (p, q; pE ) = −i24π

{q + p/2}∗1ml
{p + q/2}1m′

l

p2 + q2 − p2
E + p · q

(B2a)

= −i
∑

J

∑
L, L′

V
3LJ ,

3L′
J (p, q; pE )4π

∑
mJ

[Y (L,1)JmJ ( p̂)]ml [Y (L′,1)JmJ (q̂)]m′
l ∗. (B2b)

Projection onto partial waves with l = 1, total orbital angular momentum L, and total angular momentum J yields

V
3LJ ,

3L′
J (p, q; pE ) = −24π

√
(2L + 1)(2L′ + 1)

2J + 1

[
CJ0

L0,10 CJ0
L′0,10

1

2

(
p

q
t̂L′ + q

p
t̂L

)

+ pq

(
1

4
CJ0

L0,10 CJ0
L′0,10 t̂J + (2J + 1)

∑
k

Ck0
L0,10 Ck0

L′0,10

{
1 J L′
1 k L

}
t̂k

)]
Q·

(
p2

E − p2 − q2

pq

)
, (B3)

where Q· are Legendre functions of the second kind in the convention of Ref. [35] and the short notation t̂LQ· ≡ QL was used.
For the 1+ channel (l = L = J = 1), we recover Eq. (11).
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