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Theoretical predictions for the Lamb shift in helium are limited by unknown quantum electrodynamic effects
of the order o’m, where « is the fine-structure constant and m is the electron mass. We make an important step
towards the complete calculation of these effects by deriving the most challenging part, which is induced by
the virtual photon exchange between all three helium particles, the two electrons and the nucleus. The complete
calculation of the o”m effect including the radiative corrections will allow comparing of the nuclear charge radii
determined from the electronic and muonic helium atoms and thus provide a stringent test of the standard model

of fundamental interactions.
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High-precision spectroscopy of the hydrogen atom enables
the determination of the Rydberg constant [1] and provides
a stringent test of the standard model of fundamental in-
teractions, through a comparison of the Lamb shift of or-
dinary (electronic) hydrogen and the muonic hydrogen uH
[2,3]. This was made possible by the success of the theory
of the hydrogen atom, notably, progress in calculations of
the higher-order two-loop quantum electrodynamic (QED)
effects [4,5].

The present paper is a part of a long and challenging
project, the aim of which is to extend the high-precision
spectroscopic tests of the standard model to two-electron
systems, specifically, the helium atom and light heliumlike
ions. Helium is better suited for experimental studies than
hydrogen because of the presence of several narrow lines in
the spectrum. As a consequence, a number of recent helium
experiments reached a relative precision of a few parts in
10~'2 [6-12]. This experimental precision is sufficient for an
accurate spectroscopic determination of the nuclear charge
radii of *He and “He.

Such determination is of great importance because it would
allow effective comparison of spectroscopic measurements in
ordinary helium and in muonic helium pHe [13]. A similar
comparison in electronic and muonic hydrogen [2,3] revealed
a large discrepancy, which remained unexplained for a decade
and became known as the proton-radius puzzle. Recent ex-
periments [14—16] indicate that this puzzle was most likely
caused by unidentified systematic effects in several previous
measurements in electronic hydrogen. These findings will
have a significant impact on the future development of hy-
drogen spectroscopy.

Our recent investigations indicate that similar problems
might be present also in helium spectroscopy. Specifically,
in Refs. [17-19] we obtained accurate theoretical predic-
tions for the isotope shifts of various transition energies
in helium. Combining these predictions with the available
experimental data [7,20-22], results were obtained for the
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difference 6r> of the mean-square nuclear charge radii of
*He and *He. Comparing values of 87> from different tran-
sitions, we found significant inconsistencies [17,18]. Since
then, an independent measurement of the 2395-23p transi-
tion energy [6] found a 200 shift from the previous ex-
perimental result [22], which led to a better, albeit not
perfect, agreement among different 8§72 values. This means
that further work is needed for a reliable determination
of 872,

A more stringent test of the helium spectroscopic results
could be accomplished if one extracts the absolute nuclear
radius and compares it with the corresponding value derived
from the spectroscopy of the muonic helium. In order to real-
ize this project, a significant advance in theory of the helium
Lamb shift is needed, specifically, a complete calculation of
the QED effects of order o’ m. The best existing calculations
of the helium energy levels [23,24] are complete through order
a®m. The higher-order o’m were calculated for simpler cases,
namely, for the fine structure [25-27], the hydrogen molecular
ions, and the antiprotonic helium [28,29].

The first step on the path towards the complete calculation
of the o’m QED effects was made in our previous work
[30], in which we calculated the relativistic correction to the
so-called Bethe logarithm. In the present paper we take the
next step, which is the calculation of the a’m correction
induced by an exchange of two and three virtual photons
between the two electrons and between the electrons and the
nucleus. The key part is the derivation of the corresponding
effective operator Hézgh. This challenging problem was suc-
cessfully solved in the present paper, and the final result is
compact and very simple. We leave for the future the third
and the last step, which is the calculation of the radiative
o’m corrections. After that, the calculation of the o’m QED
effects for the triplet states of two-electron atoms will be
completed, enabling the spectroscopic determinations of the
nuclear charge radii of the helium atom and light heliumlike
ions.

©2020 American Physical Society


https://orcid.org/0000-0002-0599-4847
https://orcid.org/0000-0002-2328-8444
https://orcid.org/0000-0001-5972-4546
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.062516&domain=pdf&date_stamp=2020-06-30
https://doi.org/10.1103/PhysRevA.101.062516

PATKOS, YEROKHIN, AND PACHUCKI

PHYSICAL REVIEW A 101, 062516 (2020)

I. NONRELATIVISTIC QED APPROACH

The derivation in the present paper is performed within
the nonrelativistic QED (NRQED) method, originally intro-
duced by Caswell and Lepage [31]. This method is based
on the NRQED Lagrangian, which we obtain by the Foldy-
Wouthuysen (FW) transformation of the Dirac Hamiltonian
in the presence of an electromagnetic field as described in
Appendix A.

Once the NRQED Lagrangian is obtained, the Feynman
path-integral approach is used to derive various corrections to
the nonrelativistic multielectron propagator G(t —t"), where
¢t and ¢’ are the common time of the out and the in electrons,
correspondingly. The Fourier transform over the time variable
yields the propagator in the energy-coordinate representation,

1
E—Hy—X(E)

where Hj is the Schrodinger-Coulomb Hamiltonian of an N-
electron atom. Hy may also include the nucleus as a dynamic
particle, but this is not needed in the present paper, so we
assume the nucleus to be a static source of the Coulomb field.
The operator X(FE) incorporates various corrections due to the
photon exchange, the electron and photon self-energy, etc.
The energy of a bound state |¢) is obtained as a position
of the pole of the matrix element of G(E) between the
nonrelativistic wave functions of the reference state:

1
(PIG(E)|¢) = +

G(E) =

o5 T Epy PIEEN)
+m BIDE) =g BENP) + ...
Tt (M

where
o (E) = (pIX(E)|¢) + (¢|E(E)m S(E)|¢) +“(_2.)

The resulting bound-state energy E (i.e., the position of the
pole) is
do (Eo)
0Ey

We assume that E can be expanded in a power series of the
fine-structure constant o:

E = Ey+ o (Ep) + o (Ep) ... 3)

E@) =ma*E?® + ma*E® + ma® E® + maS E©®
+ma7E(7)+..., (4)

where the expansion coefficients £ may contain finite pow-
ers of In . These coefficients can be expressed as expectation
values of some effective Hamiltonians with the nonrelativistic
wave function. The derivation of these effective Hamiltonians
is the central problem of the NRQED method. While the
leading-order expansion terms are simple, formulas become
increasingly complicated for higher orders in «.

The present status of the theory of helium energy levels
up to the order a®m is summarized in our recent review [24].
In the present paper we are interested in the next-order o’m
contribution E.

II. «’ m EFFECTS

The contribution of order o’m can be represented as a sum
of four parts:

B0 = (1) + (1) + 2 H)+ i

(&)
The first two terms here are the expectation values of the
effective Hamiltonians of order o’m induced by the photon
exchange and the radiative effects, respectively. The third term
is the second-order perturbative correction induced by the
Breit Hamiltonian H® and the effective Hamiltonian H® of
order o m, whereas the last term is the relativistic correction
to the Bethe logarithm.

The goal of the present paper is the derivation of the ef-
fective Hamiltonian He(zc)h, which originates exclusively from
the photon-exchange diagrams. It is convenient to split it into
three parts,

(Eo — Hp)

<He(zc)h> =E) + Ey + Ey, (6)

which are induced by momenta k of the exchanged virtual
photons of the order ma?, ma, and m, respectively. These
three terms will be referred to as the low-energy, middle-
energy, and high-energy parts, correspondingly. The deriva-
tion will be performed in the Coulomb gauge unless explicitly
stated otherwise.

The middle-energy and the high-energy parts Ey; and Ey
contain singular operators that need a systematic regular-
ization. In the present paper we will use the dimensional
regularization, with the dimension d = 3 — 2e. Singular con-
tributions of order 1/e will be canceled algebraically in
momentum space. After that, the result will be transformed
into the coordinate representation, where it can be calculated
numerically.

Ey consists of the two- and three-photon exchange con-
tributions. The two-photon exchange part is the most compli-
cated one. In order to eliminate possible errors, its derivation
is performed by two independent methods, namely, by the
NRQED approach and by the scattering amplitude method.
The derivation of the three-photon part from the scattering
amplitude is too complicated to be feasible, so we perform it
only within the NRQED approach. There are only a few three-
photon diagrams and the corresponding derivation within
the NRQED approach is sufficiently tractable to be properly
checked. The high-energy part Ey is derived from the two-
photon exchange scattering amplitude, in an analogous way
as it was done for the fine structure in Refs. [25-27].

The low-energy contribution E/* in Eq. (6) is a complemen-
tary part to the relativistic correction to the Bethe logarithm
[E; in Eq. (5)] calculated in Ref. [30]. The definition of
E; involved the cutoff photon-momentum parameter A. The
low-energy contribution E/ converts the A regularization to
the dimensional regularization used in Ej; and Ey, so that all
singularities can be consistently canceled.

In our derivation we will need the d-dimensional general-
ization of the Breit Hamiltonian. For a two-electron atom, it
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can be written as

H® — g 4 g, %
H® = _ 8d(r)+ Z{ nza (ra)
a=1,2
_ 4%112 O“l;j Vi|:Zr:li|€pé + #Gy Vé[%]epé},
H"® =_%P’i [37”+%]6p§— 501 03 8(r)

1 i oifa ; T
et

where 7 = 7 — 7, o/ is defined in Appendix B, 8(r) is
the Dirac § function in d dimensions, and [ ... ], denotes the
d-dimensional generalization of the operator [ ... ] written in
d = 3. The separation of H® into two parts is based on the
fact that H'® comes from the exchange of a Coulomb photon,
whereas H”"™® originates from the exchange of a transverse
photon.

The second-order contribution in Eq. (5) involves the Breit
Hamiltonian H® and the effective o> m operator H®), which
is the sum of the photon-exchange and radiative parts:

HO — g®

exch

+HS). 9)

This contribution is relatively simple. The derivation of H"),

is presented in Appendix D following the method described in
Ref. [32], and the result in d = 3 for triplet states is

7 o? 1

10
6w m2 3 (10)

The radiative H® od part is left for future investigation, along-
side H")

rad *

III. LOW-ENERGY PART

The low-energy part comes from the virtual photon mo-
menta of the order k o ma?. In order to derive formulas for
the low-energy part, we start with the one-loop nonrelativistic
dipole exchange contribution of the order o>m, which is

E_éfwd%8%ww L)
L= m2 0 (27T)d2k + b1 E() — HO —k P
+(1 +2), (11)

where 8 (k) = 8 — k'k’ /k*. We are interested in relativis-
tic corrections to Ejo of order o’m. Such corrections arise
through (i) perturbations of the reference-state wave function
¢, the zeroth-order energy Ey, and the zeroth-order Hamilto-
nian Hy by the Breit Hamiltonian H®; (ii) the perturbation
of the current p — 8J; and (iii) the retardation (quadrupole)
correction. The corresponding corrections will be denoted as
Ep1, Ep, and Ej3, respectively, so

E} =E}\+E)+Ef,. (12)

It is convenient to separate the k integral in Eq. (11) into

two regions:
oo A oo
[ dk:/ dk+[ dk, (13)
0 0 A

where A = m(Za)?A and A is the dimensionless cutoff pa-
rameter. In the small-k region, k < A, the binding effects
should be accounted for to all orders. Such contributions
give rise to relativistic corrections to the Bethe logarithm,
already computed in Ref. [30]. In the present paper we will be
concerned with the large-k region, k > A. In this region, k is
much larger than the characteristic energy of the intermediate
electron states and we can use the large-k expansion of the
resolvent 1/(Ey — Hy — k).

The perturbation of Eq. (11) by the Breit Hamiltonian can
be written as

EA_ez/m Tk siws i1 116)
=2 | @myak Ot PV e " Hy — kP2
+(1 < 2), (14)

where the symbol §(---) stands for the first-order perturba-
tion of the matrix element (---) by the Breit-Hamiltonian
H™, which implies perturbations of the reference-state wave
function ¢, the energy Ey, and the zeroth-order Hamiltonian
H,. Since k is much bigger than Hy — E(, we can expand the
integrand of Eq. (14) in large k, keeping only the 1/k* term,
while 1/k contributes at the lower order of a® m. The result is

ame %W+ﬂeb

—Hy—k

&5 (0 [7h [Ho — Eo. P11 10}

—ﬁwwuwﬂ] HOlg)

(Eo — Ho)
1 i 4

5 (ol [, piTlIo) 15)

where V is the Coulomb potential. The first term is the second-

order perturbation correction included in the third term of
Eq. (5), so we omit it here. We thus have

etd—1 [~ d% . .
m? d /A Gz [P [3HY. ] |o)
(16)

A _
ELI_

where $H™® is the spin-independent part of the Breit Hamil-
tonian that survives the double commutator, given by (in
momentum representation and in d dimensions)

o AT (4P
+ sii — L) i

m? [n 7 612( 7 >p2}
(17)

Here, § = pi’ — p1 is the momentum exchanged between
electrons, and o} -0, = 01 o,’. All integrations are per-
formed in the momentum space using formulas presented in
Appendix C. After expanding in € = (3 — d)/2 and then in «,
we obtain the result for the effective operator Hy, defined as

aTm
8H(4) = _WU] -0y —
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EA = (Hp):
H a? 7 1lnA 2 5
= —1071 0O _—_— — = — =
B |7\ T 27 7 o 1 9
1 L AT
A, q2+4P1-P2—4(‘ (P a)7)
3 q*
(18)
where
1
InA, = — +2In[(Za) 2] — 21n(21) (19)
€
and
. 1., S r .,
P1=§(P1+P1), P2=§(P2+P2) (20)

are sums of the in and out momenta of the corresponding
electron.

The second term in Eq. (12) comes from the correction to
current. Specifically, p; gets a correction 871 , which is

8ji =i[HY, r!]

1 i
= 2 3p1p%

147'[0: ; q”q’/ ;

where ¢’ is the exchanged momentum, and the same for p,.

The correction Ej» is then
2 oo ddk - . 1 .
Efy =25 87U @8 )i = 1)
L2 — /;\ 2n )d2k 37 ( )<¢' JIEO—H()—kpz ¢’>

+(1 < 2). (22)

Expanding for large k and performing the angular average, we
arrive at

d—1 [* dk ; ;
B = S [ agtol i V. 21 o)
+(1 < 2). (23)
|

This expression contains three-photon &~ a* and two-photon
~ o terms. The result for the effective operator Hy,, Ef =

(Hpo), is
o ([ z1 20 4
_ o [z _20 4 A
m3 pZa I’2 gvpz 9 3
N 1
x(&f—%)—zﬂlez)}
7 )q

o? 20 4 1 .
+—(—-=-=-hA, 2(P1 P2) +P P

1 P, —PB) -G P - (B -G

R (G 2z) - & q)gz q))

4 q q

I O ST SO (24)
7—|=-+=-In —In2—-1In .
m\9 30T 3 3 n4)e

E} is the correction due to the retardation. We write it as

e [ dlk
Ef = k)8
o /A Gryiag 11 0%

m2
x R~ ) ik
(@17 Ey—Hy k1 p)

+(1 < 2). (25)

Here the symbol §;2(...) means that the exponent functions

¢® and ¢=*7 in the matrix element (. ..) are expanded in
small k and only the k? term is left. We now perform the large-
k expansion of the resolvent:

1 1 Hy—Ey (Hy—Ep)
Eo—Ho—k & k2 k3
(Hy — Eo)*
+%+ (26)

We have to extend the expansion up to order k~*
because of the additional k> from the expansion of
the exponent functions. The result of the expansion is

E1\3:e_2/oo d%k Slj(k)8k2<¢|p1 lkrl(HO_E0)3 J —1kr2|¢)+(1(_)2). (27)
B m2 [, Qu)d2k’

This expression is evaluated in Appendix E, with the result for Ef =
H a3 z i ] i 184 n 4 A,
—_— , — —_— n
) | LN el e S 225" 15
n 254 141 A j Z q’ Lo 2) o? 124
— 5z = nAd)|p - | |5 < —
25 15 P ] g w225 F

136 4 " 10 2 [P
+ _+§1HA P2+ ?‘FglnAg

pp—P)- g +<112
q2

45

o’ (29 1 2 2
—| 55z — = InAe ln2+—lnq
m

225 15 15 15

= (Hp3):

N qq’ 436 16 1
2\ 725 15 7

P2)2+ 74 >

P)-g1?

(
> q)(Pz q)}

(28)
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The total result for the low-energy contribution is a sum of three terms in Eq. (12):

E} = (Hy) = (Hpy + Hyo + Hps),

=10 (-2 Al

316

H =
L 225

188

8
~ 22 A
+< 25 15"

+ 10 21A
— — —=1In
9 3 ¢

+na3 43~|—31nA L8
755 5

2_|_ _ﬁ_i
< )4 45 3

) [(P, — P) - I
qz

This concludes the derivation of the low-energy part E;*.

IV. MIDDLE-ENERGY PHOTON-EXCHANGE PART E,

The derivation of E); is by far the most complicated. We
start with deriving the NRQED Hamiltonian by the Foldy-
Wouthuysen transformation of the Dirac Hamiltonian in the
external electromagnetic field, as described in Appendix A.
The result is

Hpw = eA® + 77_2 - icr B — 71_4
W= 2m  4m 8m3
+ 16m3

e N .. . .
— gV B+ o E. 7D

2 . &2 2
F 2 T ——BYBY — —oVA'E/
n- mn
. 2 ez . .
Al J — AN/ RBY
+ Tom 3[0 A, wl), w7 = s ATVIBY, (30)
where Ej = —VV and BY = §'A/ — /A, o -B =o' BY.

From this Hamiltonian we obtain the single transverse photon
vertices,

e(. - 1
SstHrw = —Z(P'A‘i‘ id 'B>

"2 ..1 e i A
+—p ,PA+ -0 -Br+—0"E/A

4m?3 4 2m?
62 i i 2
+ 4—E|| AL Py, P’ (3D
and the double transverse photon vertices,
e . 1 - e
SorHpw = — A2 — — (52 A — (A 5)
DTHFW = 5 83 (P, e"A%) 3 (A-p)
&2 &2 o 2
— oE" A —E7 B BY
LT S 16m3
e2 A
— —A'"V/BY, 32
T3 (32)

4 (P -
lnA€> +—( L

+o01-02

6 6
In2 — glnq>q.

16 qq’ [ 64 4 1
Cma)+ (22 DAl |-
5 €>+ e (225+ ;5" €>i|q2

(B N T2 ) 14
_—— — — n ’_ — — e — —_—— —
225 15 )Tl e m* |\~ 25

2 5 B2
glnl\e (P —P)

15 q*

(29)

(

where we omitted terms contributing to the fine structure only.
From 8stHrw and éprHpw in Egs. (31) and (32) we obtain the
set of all possible vertices that enter time-ordered diagrams
describing the corrections to the energy of the order o’ m.
There are altogether 17 classes of diagrams contributing to
the middle-energy contribution, listed in Fig. 1 and in Table 1.
So, the middle-energy contribution Ej, is split into 17 parts,
each of which is represented as an expectation value of the
corresponding Hamiltonian:

17

i=1

(33)

In the remaining part of this section we evaluate all diagrams
one by one. The calculation is performed in the momentum
representation. Most of the terms are calculated from these
time-ordered diagrams, for which one can use the following
formulas for A and E in the vertices (31) and (32):

. dk 1 e
A=

- a; zkr+ 4 —zk? , 34
qu( e B9

N dek o o
JWI (—> (39)

with €, being the polarization vector and a; , and agk being

the annihilation and creation operators, respectively. However,
Eyy and Es, due to their specific structure, are calculated
from Feynman diagrams. In the following derivation we will
extensively use the currents
i .
RN 1 .
]l(k) — g 4+ kk O,kl.

m 2m

(36)

The commutator of two currents with ¢'*7 factor is evaluated
as

L'k €7, i) €™

= [ (p. ki, ko) + 7 (ky, )] € BHRT 1 (37)
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552525%
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Es Eg E7+ Ey
Ev2+Ei13+FE1a+E7

Eziﬁ%ﬁ

FIG. 1. Individual time-ordered diagrams contributing to the
middle-energy contribution. We note that £ and E s were calculated
from Feynman diagrams. The large dot denotes a correction to the
vertex according to dstHrw and SprHpw, as explicitly shown in
Table I.

where
1 i i
J (k) = ) (—P ki + p' k), (38)
Qi T io* “ .ij,ab
i (ki kp) = 2 s (k1. k2). (39)
Jib Ry, Ky) = —ky - ko 81 870 — SURIKS + kKb 6™
+ ik 877 — Kk 8" — kikh 87, (40)

Moreover, we will often suppress writing arguments of cur-
rents j,/ (7, k1, k2) and j (ki1 k»).

A. Evaluation of individual diagrams

1. Triple retardation in nonrelativistic single transverse photon
exchange E,

The correction due to the single transverse photon ex-
change reads

SE = 2 d'k sk ik ik-Fy
=e /m 1 (k) {@lj(k)e m
x j3(—k)e " p) + (1 < 2). (41)

Expanding the denominator of the above expression in k and
taking only the term contributing to the order ma’, we obtain

/ s k)l ( 2 + L gtivt
Qn )d 245+ 2m !
x €N (Hy—Ey)? <% ﬁazjvz) 7lk'72|¢)+(1 < 2)

—EP +E", (42)

where

ss 62 ddk l kipk ik-F
Ej =2 | ikl 87 (k) (] k"™ Hy — Ep |,

|:H0 — Ey, |:H0 — Ey, (2”1[) ijl ik r2i|i|:| (o)

62 01 -02 f ddk K" <¢| ik-7
= e
8m* d 2w )? k3

x [p’f, [[ﬂ ,p’z"ﬂ|¢>, 43)

2 dk
Ef" = # @n )dksaj(k)<¢|[[l’1 e*7 Hy — By,
[Ho — Eo. [Ho — Eo. py e *]]]i9)

_ &2 dik
Tom? ) Qrydks Tt

ri 3 ik
— V.| ==+V,pye ™ .
|:2m+2m+ |:2m+ p2e :|:|i||¢>

2
5”(k)(¢l[[ ek, 2”—1 ¥ v]
m

(44)

The spin part is easy to evaluate and for this we use integrals
from Appendix C with the result

3 9% 9 9

For the spin-independent part H{"* the evaluation is quite
lengthy and thus is moved to Appendix F. The result for the
sum of both parts is

ol 11 2 2 )
Hi‘:m—al-az —=———+-In2+4+-Inqg|q". 45

o? 1 1 2 2 4 26[(P —P,)-q> 28 4.
H = —{o - - — — 4+ Zml2+21 G- RN A N SR P+ -P P
! m4{al Uz( 379 Tg" +9nq)q ML T pe 57 T
6P - PG (8 5 s, 4B —-P)-G° 16 , 8P -HP-q 1
-+ (=P -P —— = ) - = +m2+1
3 pe T h R 7 57 T3 pe 2e Tmeting
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TABLE I. List of 17 diagrams contributing to the middle-energy part Ej,. The exponent in (H — E')" corresponds to the retardation order,
i.e., the order in the large-k expansion of 1/(E — H — k). The term Es and a part of Eg are contained in E, (the transverse photon exchange
combined with the Breit interaction) and thus are excluded in order to avoid the double counting. Terms E}, a part of E,, and terms E; — Ey;
are due to the single transverse photon exchange; the remaining terms correspond to the double transverse photon exchange.

Vertex Vertex Vertex/comment Retardation order Diagram
—ﬁ(ﬁ-1¥+§o-3) —ﬁ(*-/i+§a-3) (H-E)* E;
£(p-A+ 10 -B) £(p-A+10-B) Perturbed by H® (H—E) E,
25 25 (H—E) E;
cp ~£(p-A+ 1o -B) ~4(p-A+ 1o -B) (H—E) E,
—2(p-A+i0-B) —2(p-A+i0-B) x2 : reducible part (H—-E) Es
—£(p-A+i0-B) m(p A+lo-B) x2 : irreducible part (H—E)° Es
—£(p-A+ 10 -B) “{p2p-A+1o-B) (H—E) E
_ﬁ(ﬁ.j_;_%g.]g) L ’-/EA-’ (H—-E) Eq
£(p-A+Lo-B) e [a’f{A’ P} (H—E) Eq
550 EAT = za”E ‘A (H—E)° E
(P A+ +30-B) 4,,1% E\E, (H—-E)° Ey
;T,lAz —8,,13 (P &A% (H—-E)° E,
Ly e (A-py (H—E) Ep
25 gfn E? (H—E)° Ei3
p — £ BB (H—E) Eu
e? o EL AT et o EL AT (H—E)° Eis
et oEL AT —£(p-A+1i0-B) —£(p-A+1i0-B) (H—E) Eus
cp — A VB (H—E)° E

L2 1 4 L o z 2 14 28 28 g
— —_— —_—— — — ’— — —_— — _—_n —_n —
m \ 5 15¢ 15 1)1 7 . 15" 15¢ 15 15 7)) g
Iz ol 4 4 8 8 dq' (16 16 32 32 1
TSR [t B VA | S SIS Y, S B I e Y il
+H”2 [rzu pzM ( T RRT AT )+ e (15+ 15¢ 15" 15 nq):|q
+(1<—>2)}. (46)

2. Single transverse photon exchange with Breit correction E,

This contribution comes from the perturbation of the nonrelativistic Hamiltonian Hy, energy Ey, and wave function ¢ by the
Breit Hamiltonian H® in the single transverse photon exchange. We thus have

1] 1 kixzk lk 7l 1 1j ,,/;,;2
2 )"2k3 2ol +%“l Vi)t ma - (7 +2— V5 e ERIg) + (1 2)
dk P 1 . . 1
= 62/ m lj(k)3(¢||:< 2— k’V{‘)e’k"‘, |:H —E, <I;; + EozlJvz)ezk ro:|i||¢>
UL ok i L
/ 2 )d 28 L(k){(‘m[(% - %“{Clvoelk'r" [H W -E®, (% + gaz”vé)e"’”zﬂlw
1 1 . o 1
ot | (o et [ (5 ¢ gt o

I L o) 7 D Lo gjon) —ier 1 )
— + —0;'V "1 Hy — Ey, —o0,'V || ——H . 47
+ <¢||:<m + 2m01 1>e |: 0 0 (m + 2m02 2 )€ (Eo — Ho) |p) 47)
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The last two lines are a part of the second-order contribution,
the third term of Eq. (5), and thus will be omitted here, so

dk . P 1 . -
E, = 2 — Yk 21 _ klvk ik-Fy
r=e /(271)"21(3 i )(¢||:<m +2m61 1]e s
|:H(4) _E@® <p_é + Lgljvl) e—ilz'72j|:||¢> (48)
‘\m  2m? 2

=E, +Ej, (49)

where Ej; is a correction due to H'™® and EJ is due to H"®.
EY is the double transverse photon exchange, because H"*)
comes from the transverse photon exchange. Therefore, this
double transverse photon exchange will later be excluded
from Es + E{ in Eq. (80), to avoid double counting. We
transform EJ and EJ' as

) ddk O'klO'mn iz )
E2=€2/(2)—d%3 Tk ) 2(ol— lekk”E’k v/

mn 1j
x V™M |:gi| _ g, 62/ kl k" ei/;-? Vi Vm|:gi|
r. 8 rl.

+ [P 57 [ a8r), phe 2 ]]ig), (50)

dk, dk,
E”=—4/ / 8”k 8™ (k

<¢|[ 7] lk[ rl"lll‘n lkz r]][jgefl'kgfg’

e E ] g).
(51)

We now evaluate the E; part. The term with the delta function
vanishes because, due to the delta function, the exponent
function disappears, e/*”
larization, by definition,

=1, and in the dimensional regu-

/ dkk* = 0. (52)

We thus have

ol
X Vjvm[gi| 42 2 62 2 kl e ik-7 Vl Vm|: i| |¢>
r, 8 r,

2 d
e d%k y 2. . _|Ja
— | ——=87 (k) *T VIV = | |§). (53
=2 | aoratl®le [rlms) (53)
The corresponding operator in the momentum representation
is
2
o 7 1 2 2
H=—(--——+>In2+>Ing* )¢’ (54
2 m4(9 3e+3n+3nq>q >4

Now we turn to contributions due to E; and use Eq. (37):

d’k, dk,
Ej=¢' 8" (k)8 ™ (k
2= | Goyae | Gop etk k)
(¢|J;mjn]n zm ab ]n kil O,l 0_21|¢> (55)

This can be spin averaged w1th the help of Eq. (B6). The
corresponding operator in the momentum representation is

a?( 8. _ 8PP -PHB-J
H//:_ _ - P R S S o
2 m4< 3 1 2+3 C]2 )

1 1 2 41 a?
X|=-——+m2+Ing )+ —o;-
2 2e a m“(71 o2

0 5 5 5
L Y S 56
X( 9 Tzt +9nq>q’ (56)

and the result for H, = H; + H; is then

H o 10 > +51n2+51n 2
= —{o0 -0 _ —
2517279 T 18 T o g )4

(-l e Zng)e
————+4+=In —In
9 3¢ 3 34

20 8. - 8B -PB-9
~—(-=p.P+ -1 -
+m4( 3! 2+3 q? )

1 1
—— —+1In2+1 . 57
x(2 5ot +nq> (57)

3. Retardation in the double seagull E;

&2 4% N o ki grmn . In the case of the double seagull diagram we have to take
Ey=—— / m(ﬂ (k) (¢ KKk e the double retardation to obtain correction of the order ma”:
m T
e \? dk, A% o 1 o
E. = — S (k8 (k i(ki+ky)-7 —i(ki+ky)- 72 1 )
’ <2m> @ny 2k, | Gyl 2k, LKL Gle Eo—Ho—ki—k * I¢h+ (1 2)
o ﬁ 22 ddkl ddkz 5ij(k )5ij(k )<¢|ei(1€]+l?2)4?, M e_i(121+122).;2|¢> +(12)
2m Q)i 2k, ] Qu)yd 2k, LOLNE (k1 + ko)
2\ dk, dk, 1 - - [
- | — 8’] k 8’] k _2’ i(ki+ky) 7 1 ) 58
() [ amv [ Govem i estoon . [0 2L o 38)

The result in momentum representation is

=2
S 5

@ (=9+81In2) (P - §)(P; - §)

" (59)
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4. Retardation in the single seagull E,

For the single seagull diagram we have to take a single retardation correction in order to obtain the contribution of the order
ma. Using the definition of jj(k), we write E4 as

et dk, dk,

E =2
YT m ) o2k | Qe ok

. . - 1 T 1 -
S (k)8 (K ik iky -7y —i(k;+ky)-7> i (ke iky -7
k)8 ( 2){(¢|11( e Eo Ho K, © Eo—Hoky 1 (k2) ™" |p)

1
Ey—Hy—ki —k

4 <¢|]?(kl ) ei/‘(‘p?l J}l’n(kz) eiE2~7] e*i(/‘(‘1+l_€‘2)~7'_> |¢>

Eo — Hy — ky

+ e—z(k1+k2)-r2 ik elkl-rl
@l Eo—Ho—h 1 1KV

=1 i%z-?]
B ke |¢>} + (1 2). (60)

After expanding in Hy — E and further simplifications of the expression, it can be transformed to

64 ddkl ddkg

Ey=——
4 m ] Qu)yl2k ] 2n)l 2k

. A 1 /1 .
(Sm k alm k _ _ 1 k zkl-r17 H _E ,
T (k)8"( 2){k12 (k2 + T +k2>(¢|[[h( e o — Eo]

jqn(k2)eii€2]l] e—i(il+iz)-72|¢> + <¢|[j11(kl)ei1€1~71’ jqn(kz)eﬂ?z'?l][H() _ EOv e—i(lz1+1€2)-?2]|¢>} + (1 < 2) (61)

1
ki (ki + ka)?
Using the the Jacobi identity

[[A1, B], A2] — [[A2, B], A1] = [[A1, A2], B], (62)
we obtain
et d%k d, ‘ 1 1 1 1 11
E)s= — — 8mk 3lmk - - - -
4 2m (2n)d2k1/(2n)d2k2 L ‘)i(Z){(kfk2+klk§+k12 k1+k2+k§ k1+k2>

2 o e 1 1 1 2k
ik zk|~r|’ Hy — E,), i"(k iky 71 ,—i(k1+k2) o i
x (B[ ki)e o — Eo), Ji'(kp) e ]e |¢>+k% st i e TG 6y

x (I[j1 k)™, jr(ky) €™ ][Hoy — Eo, e"<"1+"2>'72]|¢>} +(1 < 2)

=FE41+Es2+Es3+Esq. (63)

Here, E4 4 corresponds to the second term in the curly brackets, while E4 1, E4 2, and E4 3 are parts of the first term in the curly
brackets. Specifically, E, ;| corresponds to the spin-dependent part, and E4 ; and E4 3 are coming from the two- and three-photon
contributions in the spin-independent part, correspondingly.

We start with the first term in the curly brackets in Eq. (63):

Euy + Eyp + Eon = - ks d (1 L L L 1L ) e
MTERRTES T | o2k ] Qo) 2io\Kk | kK Rk t+k KRk k)
X<¢| |:ei(E1+E2)~72 <pr1n + %O.]rmk§> ei/?ﬁ, ,
2 ; -
PLy (pr+ Lomie ) e® || 1g) + (1 < 2).
(64)

The spin-dependent part E ; is
84 ddkl ddkg 1 1
tom?) 2m)! ) Qo) kiks

_l’_
.7 NS 7o p2 7 o
X (¢|e—l(k1+k2)<r2 [elkgﬁ’l’ [_l,elkl-rl]} |¢> + (l < 2)
2m

Eyy = ) 8 (k)T (ko) ook}

64 ddkl ddkz 1 ( 1

. . - - \2 - -
- — (= 8(ky) 8™ (ko) (8™ (Ry - Ka) — K™K Ry - K
16m* | Qr)l | @nyl Kk \k T4 +k2> L) 87 Ro) (0™ (1 - k)™ — Kk ko - Ka)

x (p] FHRIT gy 4 (1 & 2), (65)
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where we performed spin averaging. The result in momentum representation is

o? 5 23 23
Hy=—(-=4+—-=1 2 66
R ( 72 % 12 nq>q (66)

The spin-independent two-photon exchange part is
et dk dk, 1 ( 1 1 1 1 1

Eip= — 2 1
2 8m’ | 2ryl | Qu)l kik \ K2k th 2 + 12 ky + ky + 12 ki + ky

>8T(k1)8’f‘(k2)

2
—i(ky+ha) Py m ik | P n ik
x<¢|[e )T it it [ Pt H|¢>+(1e2>

2
- €4 f ddkl / ddk2 1 1 + 1 <¢| m 2/—(» /_é am(k)(slm(k) (k" k")
T 8wt ) Cny ) ery ik \k ki +k ) prizortioL i) =
x K5 8 (k)8 (ka) + (kY — K5 K 53'_'(k1)61"<k2>} FRHRIT ) 4 (1 5 2). (67)
The result for this term is
@32 . . 83 17[(P,—P)-G1> 64~ -~ 34 -)P-q) 8 . . 16
Hip=—|=P -P)P——gf+——~r 2T Pt - T2 V(2B - B+ —¢*
42 m4|:45( AT 7 MR T +< AT

8P —P)-g 16, - 16(P 9P -q)
_ - PP

L. L 1
- =77 2+ 2P — B)? —¢*>+4P, - B[ — — +1 . (68
5 7 75 5 7 )n +[2(A — P)" —q” + 4P 2]( T H(I)i| (68)

The spin-dependent three-photon part Ey4 3 is
64 ddkl dde 1 1 n 1
4m3 (%4 )d Q2 )d k13k2 ko ki + ko
x 81 (kST k)@l [ 1, [V, pi]] €77 19)
+ (1« 2). (69)

Eyz=—

This expression contains two-body and three-body terms. Evaluating it we obtain

i AT T IZ] Tl (s o 4 By 8l @0 (12 4 32 8 1
= — A=1—=1. —+———In2—=In —— ==+ —In = In —
BEELD AR 153 15 3 )T 5 315 3P

+1 o2+ o 8 2 4, 14+ 8 (70)
DAY — === - —In —1In .
T\ T 15 3 15 3194

The last part E4 4 is evaluated as

64 ddkl ddkz 1 1 1 2k1 ia ib
Ejs= —5— + + 8 (k)oY (k2)

2m ) Quyi2k ] Qr)yi2k, B \ky | ki +ky (ki + ko)
< (B[ e k) €M7, jo(ky) €T ] [Hy — Eo, e BRI 19) 4+ (1 < 2) (71)
R dk, dk, 1 (1 L ! 2k )
T dm ) Qu)2k ) QrY2k 2 \ka | ki+k (kg +ko)?
x(@l[p3, 8% (k1) 8 (ko) (— Pl kY + P kS) BT T 19) + (1 < 2) (72)
e d'k, de 1 (1 1 2k
4dm Q2 ) 2k, (@54 )d 2k, k]2 ko ki +ky (k1 + k2)2

< (BI[P3, Pl (57 (k) 8 (ko) Ko — 812 (k1) 87 (ko) KY) €M1 7] 1) + (1 <> 2)

= 0. (73)
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This expression vanishes because the two terms in curly brackets in the matrix element cancel each other. The total result for
Hy=Hy ) +Hyp+ Hyzis

+—P B

32 _o 1TUP —PB)-GP 64 -~  34(P -G
— P _ P e _—
‘T [ (Pr = Po) + 15 7 45 15 7

Py — —

8[(P —PB)-gI* 16- -~ 16(P - (P
_8[(A—P) q]__P B (P - (P, - §) 2
5 5 q> 15 5 q>

L . 1 119 35 16 35
+(2(P1—P2)2+4P1P2)<—Z+]Hq>+<__+_+—l 2——1nq>q2:|

120 " 24¢ T 15 12
o3 z 4 4 3 8 I 12 4 R 8 1
L I B e P S S-S L 24 Smg) =
+m3””‘ [ [n]e ”‘m (15+3e 50073 )+ 7 < S TR “q)}f
I SY S G N S RO (74)
<~ T—-—=—-=- — .
m\ 15 3¢ 15 3 4)4

5. Retardation in the nonoverlapping double transverse photon exchange Es

There are altogether 12 double transverse photon exchange diagrams, which we split into two parts, E5 and Eg. E5 corresponds
to four diagrams where the photons lines do not overlap with each other, while Es corresponds to the remaining eight diagrams
where the transverse photons are overlapping. Es is written as

b= / (2:()15 12kl / (2:j5 22/<2 (Sij(k‘)sﬁl(b){((p”i(kl)eﬂzr?l Eo—Ho—Fi g(_k‘)e_immj k)"
* By~ BRI+ Uk gl Gt 8
oy JH(—ky) e ® ) + (| (ky) €T T— jg(_kl)efuafzmj;g(kz)eﬂzm
“E—Ho— ko JH(—ka) e ) + (k) €7 T— =k ek mﬁ(kz)eﬂg.m
“Eo—Ho— ks jé(_kZ)e_iE2'7zl¢>}. (75)
Expanding in Hy — E, and simplifying, we obtain
b= (zjjflzkl (z:jfzzk B ()3 (k2>{<¢l[ e [Ho — Eo. fle P R e g ka
+ (@l et e m [ [Ho = Eo. jye ™ P]]i0) k2 +(ljieh T e
X o BT e g (?lkz " Flkg) } 6

The first two terms in curly brackets in Eq. (76) correspond to a part of the second-order term (H (4) mH )}, which is

considered separately and thus is omitted here. The result is

£ _2/ L / PR )5 Gl BT e (1 gy (o)) e By (S LY )
ST @ik | @uydak, SLNOLERE 2 2k Taig)

The part with |¢) (@] is canceled by o (Ey)o’(Ey) [see Eq. (3)], so Es5 becomes

ki + ko
kiks

dk d%k 2 -
Es =2 1 == 8T8 ) (gLt 7 e LT e T g)

Qm) 2k J Qm)d 2k, (78)

Es will later be combined with E{’ to give EJ, so we leave it in this form for now.
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6. Retardation in the overlapping double transverse photon exchange Eg

The contribution due to the overlapping two transverse photon exchange is

d%k dk, 1 1 1
E. = —2 8” k 8kl k i 1k1 - sk zkz r1 .j 7zk1 Py el 71k2 P
o arior | Gy Sl U @1 T R R e )
1 1 1 1 1 1 1
i ik k zkz sl —tkz Py o+ e—lkl 7 + = + —
+{liie 26 00 |¢><k1 thk  KBhtk KBk +k2>}
d%k dk, 1
-9 81] k 8kl k i ikiF k zkz Fiposd =ik T T2 l —lk2 R
i | Gyt st ey @it e [jle e
i ik P ¢l Bl —iky Ty s —ik) T ki 4 ka ’ ’
<¢|] iky -7 k ik> I]ée ky 2Jée ki 2|¢> 5 }=E6+E6/. (79)
klkZ
E{ is combined with Es to give EJ, as follows:
d’k, d®k, ki + ky
Es+E{ =2 87 (k)8! (k
s+ 5 Qryi 2k | 2n) 2k S L koL (ke) =aa~ 1212
% (¢|]ll eil}'l-rl J] e—lkl ) ]/1< ei/;2~71 ]é e—ilzz-rz ]l el/q 71 ]k elkg-ﬁjé e—i/zy_-?z ]é e—i/zl-72|¢> (80)
d%k dk,
= 8” k)M (k
ery2i | aoie L (k18" (k)
<¢|]l lk] sl ] 71/(1 - ]/1( elkz-;l ]é e*l’]?z-?z _ ]l lk[ sl ]k elkz-?]]é lkz ) ] e lkp?z
+J e[kz~r1 jé e*l’kz'?z Ji eil?ph jé e*l’i{’p?z _ Jé e*ikp?z Jé g7[k2~72jll€ eikg~r1 Ji eik1~r1|¢>
- / @r )dz o Sl tnw@liie BN e M HE — M R
+H”(4) . zk1 i Jé e—lkl»rz . jé e—lk1~r2 H'® ji ei121-71|¢>
- / (2n mks ST k@I 7 [HD. e F ] ig) = . 81)

which has already been accounted for as a part of E,. The remainder E; then represents the double transverse photon exchange
correction:

dk, dk,

E — _ 89 (e Vsk (k . ilém’ & iky P\ 2 4/}'].72’ 1 —iky T ) 82
¢ i | Goih vk T8 k) (@I[J1 7, Jy e ][ e e ]ig) (82)

Evaluating commutators of currents, we have

E, = ot d?k, dk, 1 5 (ky )8Iil(k2)<¢|(jik(p»l’ R k) + jik,abalub) oikitha)
Qu)2k2 | QY 2k3 by +ky * " s
x (ji (P2, —ki, —k) + jI"" oy |9) (83)
dk d 1 - ,~ N iAo o
— ¢ 8 (k)8 (ka)(@| (=i kY + pi k3) €“H)7 (ki py — k) ph)

Q) 2k3 ) (2w)? 2k3 ky + ko

0102 .ikab z(k1+l:2)<? . jl,mn Samabn _ aanabm
+—d(d )]s 7 o),

(84)

where we omitted terms contributing to the fine structure only. The result for the corresponding effective operator Hs, E{ = (H),

is
o? 8. - 8P -PB-§ 179 3 7 3
Ho=—||-—=P P+ ——""=T¢)(1—-7In2 oy — 4+ ——=-In2——1 2. 85
6 |:( RARRET: p g)( n2) + o G2<216+326 o2 - ¢ HQ)CI] (85)

7. E7

We now turn to the single transverse photon exchange contributions coming from vertices in dstHrw in Eq. (31). The
first contribution, denoted as E;, comes from the transverse photon exchange with vertices —(e/m)(p-A + ia -B) and
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(e/4m*)(p, p-A+ Lo - B):

E _e2/ dk A% i 1
L N O 3 ) @I T 2,

. . A
"’W) e*" (Hy — Ey) {pi, (p’z + Eoz”v;) —ik- ’2} |#) + Hc. + (1 < 2)

l 1 i iq'?] l —ik-F
= 4m3/(2 TRl ’(M(qﬂ[[(ﬂ 301 "V{‘)e" ,Ho—Eo], {p%, <p2+2021v2) * -”|¢)+(1«>2)

e d’k ik i —ikFs
— 1 | Gy @Il VL (e phe T 10+ (1 > 2, 0

The operator in the matrix element can be rewritten as
([P V] {737} ]
— Vi [plé [pg eil’é-f]] + zplé Vil gk pg
+2 [plé’ [pjz" yik 6512-7]] + 41)/5 yik 6512-? pé, (87)

where ViV = [pi, [V, pé]]. Performing now the momentum
integration, we arrive at

o [2 8L(P —P)-GI> 7
H,=—1=(P,— P = T 7
7 m4{9( | — Py)’ +t3 pe o4

4. - 16 -PB - 45 By
p P — st | ;PP
+9 + = 3 e + 3( 1= F2)
SUP-P)-qF 2, 85 3
ST S ChLB
3 q 3 3
16 (B, - 3) (P> - & 1
_ _%EZCD)(_ — +1n2+lnq>}- (88)
3 q €
8. Eg
The second contribution comes from the term

(e2/2m2)aijE|jA-f in SsyHpw. This gives a correction to
the single seagull diagram with one Coulomb and one
transverse photon with retardation:

e’ d'k 1 . o
Ee = —— 5’/ k ktvk ik-7y
57 om? / my 2 L W)'( 2m°! l)e

x (Hy — Ep) e * " 611 Vi V|g) + He. + (1 & 2)

e’ ¢ ij i k7
= oo | Gyt wllof v,

[P}, e o) Viv]]ig) + (1 < 2), (89)

We evaluate it as

e d% ii ik-F om
B = —87/ Gy L R ooy (91" V' VLV 1)

+(1 < 2). (90)
After spin averaging, we obtain
o= - 0 [ K ey )
8m* d Q2 k3
+(1 < 2). On

(

The result in momentum representation is

= 202 ot e o
=—o-n|lz-+——=-In2—-1In .
BT \3 0 T 9 o "1)4
9. Ey
The next contribution is the single transverse
photon exchange with one vertex of the form

(ie/16m*) [0/ {A!, p/}, p*]. It is given by

By - / Ch i g1
T Tlemt ] Qny2id SLk)e
% 20'11kk tk T (Hy — Ep) l[ {plz, eiﬂz'?z}, p%]|¢>
+Hec +(1 < 2)
kl Jl ¢ kk ( )
= sam* ! Qr)d k3 o
X (¢|[eik‘r1, [Ho — Eo., [{P5 e}, p3]]]19)
+(1<2)=0. ©3)
Thus H9 =0.
10. Ey

The next term is a double seagull contribution with one
transverse and one Coulomb photon coming from the term
(&2 /2m2)oifE|’iAf in both vertices. In order to derive this
contribution, we start with a general (Feynman) diagram for
the two-photon exchange in the Coulomb gauge:

64 de1 de2 1
E10 = v D> D L 1)
am* | @i ) @il -+ e)k2
. e e 1
ki kY itk +ka) 7y
— ik
X(¢|01 ( 12)9 E()—Ho—a)l—a)2+ie
ol (ikh) e B+ 0y 1 (1 & 2), (94)
Integration over w; and w; is of the form
/ dw] da)z 1 1
2mi 2ni(w%_E%+i5)E0—H0—w1—a)z—i-ie‘
95)

062516-13



PATKOS, YEROKHIN, AND PACHUCKI PHYSICAL REVIEW A 101, 062516 (2020)

Shifting the integration variable in the second expression w, — w; — w;, we get

/da)l 1 dCl)z 1
270 (? — 2 + i) ) 2mi Ey— Hy—an + i€

_/da)l 1 /da)2 1 + 1
B 27 (w2 — k2 +ie) 2 ) 2mi | Eo—Ho— s +ie  Ey—Hy+ ) +ie

1
= —. 96
4k °6)
The term E| is then
et dk A%k . e oL
Ein = §Y (k kkkl ki i(ki+ky)F 1] 1 2
0= Tomt | @it | Gyt bk kislofe oy 1¢) + (1 > 2)
_ & tigh [k A i gl gy ©7)
8m* ' 2 | @m)lky ) @m)dd P '
The result in momentum representation is
Ho= % 2 it g (98)
=—o0 -0l ———+-1n —In .
0= @ 279 T 18 Ty g )4
11. Eyy
The next contribution is due to the correction of the form (¢?/4 m?) E} E, in one of the vertices:
En = / Th_siwe otk )e® L (e R ViV |g) 4 He. + (1 < 2)
4m3 (2m)2k dt t o Ey—Hy—k 2 o
‘ d'k 57 (k) (1P, ¥ [ ph. V1) +Hee. + (1 < 2)
= —— e , .C. RES
8t | Qmyl kot pretp
& dk
— ij ik-F
=8t | On )dk8 T @I P, IV, pi11ERT|) + (1 < 2). 99)
After a straightforward calculation, the result in the momentum representation is
= (22 ity g (100)
=—|—4+——-—=-In2—-In .
=\ T3¢ 7 3 3 1)
12. Eq

We now turn to the double transverse photon contributions coming from the higher-order terms from SprHpw given
by Eq. (32). The first contribution comes from the terms —1/(8m*){ 52, e?A%} and —e?/(2m>) (A - p ). The corresponding
contribution can be evaluated in the nonretardation approximation:

64 ddkl ddkz

En=— d d

Qm)i 2k ) Qm)d 2k,
+Hec. +(1 < 2)

i j ik 4k )T (_1) Sij ikt )T
8t (k)81 (ko) (gl —[——{pg,e ®+i7y

7i%1-72 lkz 2
k] + k2 8 ) 2 e p2 j||¢>

=_6_4/ dk / dk; 1 Sik(kl)Sjk(kz)(qﬁl—ai{pz ei(l?;-f—l:z)?}_pi ki) J|¢)+(]<_>2) (101)
m ] ek | ek + kg sk 4%

Contracting all indices and integrating in the momentum space, we obtain the result

7 . 1P —P) -G 19 T - 4B -PP-G)
Ho=——P —P)Y — - — " + — P —_—
12 18( 1 — P) 3 7 +36q 9 3 7

4 o, 8[P-P)-g* 2, 8. - 16(F -HB-G

(P —P)YP - == —_P . — ] In2
+<3(1 2)+3 7 34 T3P Pt 7 n

5 1 10 . 1

— (P P ——-g>2——_p .P - — 41 . 102
+< 3(1 %) 6‘] 3 2)( 26+an> (102)
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13. Ej3 We contract all indices, use the identity
. The next contr.ibution is due to the correction e2/(8m3)Ei B = l[qz — (ky + k) + 2k ko], (104)
in one of the vertices:
o 4k dlk - - where § = ki + k>, and perform the momentum integration
E; = ! 2 8 (k1)8" (k2) with help of formulas from Appendix C with the result
8m* ) (2Qm)d2ky ) (2m) 2k, o 9 5 4 5
S (-1) S Hyj; = 4<————+—ln2+—lnq)q. (105)
x (¢] oikitka) 7y (—i)zklkz e—i(k1+k2)-?2|¢) m 8 24¢ 3
ki + ko
14. Ey4
tHe+ (1 <2) This correction is due to term —e?/(16m>) BB/ It can be
ot dk, dk, y again evaluated in the nonretardation approximation. Using
= y 7 87 (k)8 (ka) the identity
4m* J Qm)* 2k J 2w)" 2k, N . S

. BB =2[(VIA))? — VIAT VAT, (106)

ag @ A e 103 weger

|
et dk, diky ; oz (=1) o e
Eif — — (Slk k Bjk k i(k1+ky)- 7 2 8” ki - ky) — k] kl —i(k;+ky)-7>
W= 5 | Grya | et LSl k)gle P SURCHCROREHDE )
+He. + (1 < 2)
¢ d, A%, o (8 Ky — k] Kb) o

=— 8% (k1 )87 (k 12 i) 7 1< 2). 107
it | Gy, | Gryon L (k1)é (ko) Py (ple ) + (1 < 2) (107)

Contracting all the indices and integrating in the momentum space, we obtain the following result:

> 13 5 5
Hy=—(-=-=—+=Ing| 108
14 m4( 72 24 T2 )q (108)
15. Ess

The next correction comes from the double seagull with the term &2 /(4 m2) o E i A/ in each vertex. It cannot be calculated
from time-ordered diagrams because it contains two powers of w in the numerator. Such terms, as explained in Ref. [23], shall
be obtained using Feynman diagrams, and it is of the form

2 ; .
E15 _ ( 6’2 ) / del / dez _ 1 _ <8ik k kk> (3]l kéké) (0)1 — w2)2
4m?) | @mPi )] @mPi(w? — R + ie)(w] — K3 + ie) K i3 2

1

ik ko) Ty ] Kl —i(k,+ka)-7> 1 2). 109
x(ple iy ——c #) + (1 < 2) (109)
The w; and w, integration leads to
/da)l /da)2 ((1)1 —0)2)2 1 ~ 1 (110)
2ni ) 2mi 1_]}12+i6)(w%_£§+i6)E0—H0—w1—a)g—i-ie ki + k'
and this correction becomes
4 d d
e d k] d k2 1 _ il
Ei« — l/ k 8 k i(ky k2 )T i(ky+h2) 7 ol 111
5= Tomi | @yt | @yt 8 (k)8 (ko) (@ le P |p) 01" 05 (111)
In momentum representation, the result is
Hy= % L S (112)
= —O01 - _ R — —1n
157037 2\ 216 T 96e 9 ag 1
16. Eq6

Next, there is one more correction to the single seagull diagram. The double vertex is e?/(4m*) o'/ E| A/, whereas the single
interaction vertices are both (—e/m)(p + %0 - B). This correction can also be calculated in the nonretardation approximation.
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‘We thus have
i€4 ddk1 ddkz

Ei« =
T amt | @nyi2k | @r)i2k,

) . ki +k ki —k ky — k
ST(kl)tSin(kz)(— 1+ k2 1 2 2 1 )

ki ky kay(ki + k) ki (ki + ko)

i T i . T ij —i(k k)T
X(¢|<p71" + Eo'lrmk{>elk14r1 (prlt + zalmké)ezkz.rl 02./ e~ itk+ka) 2p) + (1 <> 2)

et ddkl ddk2 (=D im jn m i rmypr\ ik 7 n i snys\ ik 7| _if
8T (k1)dy (k) (@[ (Pr45o1"ky Je™ ", \Pit501 Ky )e™ 7| 0y |9)+(12).

Tomt ) Qnyi2k, ) Qry2k ki+k 2 2
(113)
We calculate it as
et dk, dk, 1 , -
E = 8 (ky)87" (k jmmab o ab 1 1 < 2). 114
' 4m4/(2n)d2kl/(Zn)d2k2kl+k2 ST )1 0 0 1g) + (1 <> 2) (114)
After spin averaging and performing momentum integration, we obtain the result
o? 7 11 4 11
Hg¢=—0, -0 —— 4+ —+-In2— —1 2, 115
167 % 02( sat a9 T nq)q (113)
17. Ey;

Finally, we account for the contribution due to the double seagull correction with the term —e?/(8m°) A’V/B'/ in one of the
vertices. Omitting the part contributing to the fine structure only, we obtain

et d?k, d% N o (K2 kD)
E; = 8" (k8" (k itk Ty 21— 27 4 (] & 2). 116
= /(h)%/(zmmz D0s? )l ®71g) L4 (1 0 2) (116)
We rewrite this as
= e / = / A% i )51 gy B LIS Z2K ke iy (117)
"7 H6mt ] @my | Qryd LV T e (kg + ko) ‘
The result is
2
(25 1 2 1
Hij=—(=-——-Zm2+-1 2, 118
7 m4(72 8 3" +4nq)q (118)
B. Total middle-energy contribution
The total result for the middle-energy contribution is the sum
17
Hy =Y Hy=H)"+H}". (119)
i=1
The two-photon part is given by
19 o o s o 4, TRPP-G ALB-P)-G)
HP =N 2 B — B B ot — L -
i A N LA R R 7 15 pe

7 o 4. - 46 , 4[P—P) )
(P —-P)Y-—_p.p— gt 1 )]
—i—( 15(1 2) PP 54— 3 7 ng

Ir7 - - 7. . 23 2[(P — Py)-G)?
+g|:%(P1—P2)2+§P1-P2+—q2+——[(] 2) q]:|

15 3 q>
4 [(P—P)- G ¢ ¢ T
A T PN (S S SRR O “ost, 120
5 & "Et T3 e T2 M) (120)
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whereas the three-photon part is

o @ 43 4, 12
=—{l-—=-=—- —In —In
Mo s 15 5¢ 15 5 n4)4

A/ 2 14 28 28 q
+[”2*gl (‘ 5 T E““I);
[z G 8 16 32
+[P2’ [‘z’pzu [5 (— EREE Eh‘">

+qiqj 4 4 +81 1
—|-z——+—=1In —t.
2\ 73 15 15 ) g

The result for the two-photon part will be verified in the
next section by an independent calculation of the scattering
amplitude.

(121)

V. SCATTERING AMPLITUDE APPROACH

In this section we apply the scattering amplitude approach
to derive the two-photon part of the middle-energy contribu-
tion and the complete high-energy contribution. This part of
the derivation will be performed in the Feynman gauge. In
this section we will use the notations that p; and p3 are the in
and out momenta of the first electron, whereas p, and p4 are
the same for the second electron. We also define P; and P> as

Pr= (it py) and B=(hrt B (122)
The conservation of the total momentum and the kinetic
energy leads to the following conditions:

p1 + Po = P3 + Pa,
P, P

2Tt

The two-photon scattering amplitude is graphically repre-
sented in Fig. 2 and defined as

e dbk 1 1
2] QrPi (k4 gy (k — gy

(123)

1

— M v - v
thnyk+%@ﬁﬁﬁ_myu@o+wmw
X ! Hou( )}

S+ LGitpy—m

— " v — v
X{MUM)V _k+%@2+¢n_qny u(p2) +u(ps)y
X ! Hu( )} (124)
K+ iGhtpn—m’ PV |
v __(47105)2 dPk 1 1
e S N

v v

3, 3., 3.
O——ﬁ——%—gé—

ntps pPitps
B Ttk op o Tk g
BB+ k
P

P p4_k

FIG. 2. Two-photon exchange scattering amplitude.

where u(p) are the free Dirac spinors. We aim to calculate
the scattering amplitude in the middle-energy region (where
o x ma, k o« ma) and in the high-energy range (where @
m, k o« m). External momenta p; are always of the order
mo. To separate out the spin-independent and spin-dependent
parts, we make the following replacements, respectively:

pr+m

yO+1
) (5)
x( p3+m )
V2E,, (Ep, +m)
_(¢1+m><y0+1>(p3+m>
2m 4 2m

3 3
1—252_2%
X( 8171 81’3)

u(p)u(ps) — <

u(p)u(ps) — (

(125)

and

P +m

) (2)(%)
2E, (E, +m) 2 4

()
2E, (E,, +m)
_(PrAm\ (YOI (VN (P +m
—\ 2m 2 4 2m
3. 3.
X (1 - gP% - glﬂg)’
where o'/ = (i/2)[y", y/] and we used the fact that for the

antisymmetric spin-dependent operator Q = Q¢ the fol-
lowing identity holds:

(126)

Q = 1Tr[QA~0"j]a"j.

=1 (127)

For the spin-independent part of the scattering amplitude
we get

3.
gl’i)

8 8

1
T 12
X r[(y it —m’ "

1 M)
y-#+%@ﬁ¢ﬁ—my

)

I
Tr| ( y* v
XI{Q’—#+%@2+W)—mV

v 1 Pr+m\ (v +I\(Ps+m
tr k+§(¢z+¢4)—mw>( 2m )( 4 )( 2m ﬂ (128)
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The spin-dependent part of the scattering amplitude is

VW_Vljllb ]ljo—zab’ (129)
where
iap _ Gme)? [ dPk 1 1 ( 35 3 ?— % _ E—»z)
Vsﬁ - 2 /(27.[)01 (k+%)2 (k_%)z 1 Spl 8 P> 8 8[74
! v ¢1+m)< 1)1 ; .<¢3+m>j|
T " +y yh T
’ r[<y “%%Wa)—my e <¢1+¢3>— )( st
1 y’ F’”’")( 1>1 a b(¢4+m>]
T " Ira
§ r[<y —k+%(¢2+¢4)—m k+ (¢2+¢4)_ )( S[V v'] m

We now perform traces and then rescale the photon and
fermion momenta for either middle-energy or high-energy
contributions. Then we expand the expression in « and pick
up the contribution of the order a’. After performing the
trivial @ integration, the remaining integrals are handled using
formulas from Appendix C. After the angular averaging using
relations from Appendix B, we obtain the following result in
the momentum representation for the middle-energy contribu-
tion:

062 7q q2 q2
W—wK5§—@ﬁﬁmO

s 5 4 7P - PP - )
PY—_p .p— g2 < 1
2) PP =54 =3 7

4. . 46
) ?Pl P——q

—(Pl

15
(131)

This result agrees with the formula (120) obtained within
the NRQED approach in the previous section, with the ex-
ception of terms proportional to (P, —P,)- G1?/q*. This
is because (P, — P,)-§ = %(p% + pi — p} — p5) = 0 for the
scattering amplitude due to the conservation of the kinetic
energy. Therefore, the corresponding contribution cannot be
derived from the two-photon amplitude. This contribution
can be in principle obtained from the three-photon scattering
amplitude, by transforming it into the three-photon exchange
form by using the Schrodinger equation, as shown in the next
section. However, the calculation of the middle-energy part
from the three-photon exchange scattering amplitude was too
complicated for us to be pursued, in contrast to the NRQED

J

o o? 7 1~ 2
Heen = pl R -4 +—( P —P) + P1 Pz—§q In[(Za)~

27

27 ey )+

+<_Eﬁ 5 5

109 8 8 14 _
— — — —In[(Za) }]+ =In2A) — — Ingq | P, -
53 n[(Za) ]+3 n(22) 3 nq) ]

[
approach, where the corresponding derivation is relatively
simple.

The result for the high-energy contribution is
13 e

b))’ 2P P+ —
2 31 2 10

H_ocz 56(P
H= 4 45"

T P
+E E(PI_P2) —P-P—q |+to-0;

) R Y. Y SR S

X JE— — p— JE—

sqo TR AR R T )
(132)

and there is no three-photon high-energy part.

VI. TOTAL RESULT IN MOMENTUM SPACE

The total result for H (7)h is a sum of the low-energy,
middle-energy, and high-energy contributions [see Eq. (6)]. In
order to obtain the total result, we perform a transformation
of the two-photon term ([(ﬁl — 132) . 5]’]2 f(@)), which is in
coordinate representation

1
(3172 + 7 153 + 3. )

=_€w¢ﬁ+ﬁ4vm>

=—([v. B[P, FP))+ 1 -2)  (133)

and thus can be rewritten as a three-photon contribution.
The two-body part of this contribution is further transformed
using the integration formula with Ing in Eq. (C17) from
Appendix C. Finally, we obtain

]+2 2In(21) + ! 21
— n — n
54 79 Inq

i‘ln(%)—%lnq)(ﬁl—ﬁﬁu(—ﬂ—ﬁl [(Za)” ]+—1n<2x>—ﬁlnq)

450 15 15
_ 31(P 9P )
P— -
15 q
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m3 15

o’ j Z
+ %{((M[Pz, -

225 15

225 15

}<£—31 n[(Za)~ ]+§1n(2x)—§1n2—

wo? 161 8 )
+ — 5+—ln[(Za) ]——ln(2)\)+—ln2+Elnq

81 >q-i
15 qq2

436 32 32 32
+|:[172» ] ][ <—_——1[(Z)2]+—1(2k)—Elnq>

q'q’ 236 n
4> 225 15 15

In order to make the transformation of the above expression
into coordinate space more accessible, we need to express the
momenta Py and P, in terms P, p, and ¢ defined as

P =p + pa, 17=%(131—172) and § = p;" — p;. (135)
We thus have

(P =P =q"+4p-p (136)

B P = i(Pz_qz_w,ﬁ/), (137)

these transformations becomes

exch

739 62
2700 45

wa’ 161
225

A, z /26 8 8
— 2= -—=m[z — In(2x
+m3{[p27 r2](225 35 n[(Za) 7] + 15 n(21) —

Za)?) — 1 @) + = Ing

1
)};I@ + 1 < 2)}.

o (14, 31 i aion (i 87 2\ 1
HY) 2%{?p-p Ing— — P*Ing — —(P'P/ —4p'p”) <qqf——q2>—z

(134)

{
G- B (1. . . \dd -
- 5 = —-P'P/ — p'p” —23__q2
q 4 7 I
p-p. (138)

We also use o7 - 0, =28 - 5, which is valid in d = 3, and
neglect operators P?83(r) and p?é83(r), which vanish for
trlplet states. Furthermore, for tr1 let states we can assume

01 - 6 = 1. The total result for Hmh in momentum space after

3 q

In[(Z )*2]+91 (2,\)—21 ) 2}
n[(Za 15 n 5 nqg|q

+ 8 In[(Za) %] 8 1 (2x)+41 2+ —1
— In — —lIn —In —In
15 Hed 15 5 i

8
15 q

8 8 j
sn2——ng 4
15 q>

i 21 Alsi _@_2 2 %
+[[pz,—r2],pz][6( 735~ 3 IN[Ze) 1+ T2 In2h) lslnq>

L2 + s < Inl(Ze) 2] 8 < In(23) + S mg)|L 1o (139)
—\| — ===+ —In[(Zx — —1In —In — <~ .
# \ " 225 159 g
[
In spite of quite lengthy calculations, this result is relatively start with the master integral formula in d dimensions:
simple. We expect that it will be further simplified after adding
the radiative contribution. L edem)
. —d/29m m r d+m
u/ﬁ — q q 7 ( ) — ( 2 ) (1110)

VII. TOTAL RESULT IN COORDINATE SPACE

We now transform the obtained formulas for He( ch into the
coordinate representation in atomic units, which is needed
for the numerical evaluation of the matrix element with the
nonrelativistic wave function. All momenta are rescaled, p —
o p, soIn % — Ina + Ing, and the overall factor o is pulled

out of Hex In order to perform the Fourier transform, we

From the above formula, we derive the following results for
the d = 3 Fourier transforms of various operators:

d? -4 1
44 igr T _ -, (141)
ety @
d*q ;47 y+Inr
T — , 142
eyt g e r (14
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q

ey e T .
%8474”;1_; Ing = i:—;(l —y —Inr), (144)
(32%3 i 4 19 q—z%’iqz _ e ;53””, (145)

=V VI[ (— 3+2y—|—21nr)]

|
= lin}) d*r e"f"|:—39(r — &)+ 4n8*(r)(y +In 5)]
E—>
:]in})Zn/ dx/ e + 47 (y +1Ine)
=4n(1 —Ing). (149)

The operator (1/r*), is defined by

s o (1
Jerro(z)

= lim / d’*r f(7) |:l49(r —&)—4n8(r) 1] (150)
e—0 r £

Its Fourier transform is

e
. 3. igr
17852 = 3pipi Syp2 — pipi [d re (—)
Y il Gl rr)(2y+21nr).(147) /.
4 r r { {
: 3. iGT 3
The right-hand sides of the above formulas for the Fourier = lli% d’re |:ﬁ9 (r—e)—4ns°(r) E:|
transforms are well-defined functions. However, there are |
. (7) . © dr 4
some operators in M, that require more careful treatme(?)t — lim 27 / dx / _; Sarx _ T —x2q. (151)
We now take into account that the matrix element of H_ e=>0 -1 e T €
is calculated with the antisymmetric wave function, which
satisfies the condition ¢ (7, F») = —@(#», 7). Therefore, the Similarly, (Inr/ ), is defined by
wave function behaves as ¢(¥) ~ 7 - (#; + 7») for small |r|
Under this condition, matrix elements of all operators in Hexch P ln r
in momentum representation are finite and well defined. Their rf() .
transformation in the coordinate space, however, may require -
special definitions. — hm / d%rf( ) |:—9(r —g)— 4].[53( ) n8i|
We now define the coordmate-space representation of all
singular operators in Hexch We start with the well-known (152)
operator (1/r%),, which is defined by the integral with an
arbitrary smooth function f(7) as follows: Its Fourier transform is
&r f(7) 1 - (Inr
/. /d3re’q" (—4>
1 e
=lim | &*r f(7) | =00 — &) +4n8(r —|—ln8:|. __[n 1+1
HOf a )[r3 e M : =lim | d’re7 [_G(r—e)—4718 (- ng}
(148) 0
. . . .. ) 1  dr . l1+Ine
The Dirac delta function in the above definition appears — lim 27 dx o lnréir — 4x
because the (1/r3), operator is assumed to be sandwiched e—>0 —1 . 1P €
between two momenta operators, p(1/r%), p. The Fourier 3
transform of (1/r%), is evaluated as = 7T2< -3 +y+In q) q (153)
1
3. g7t
Jore (),
The operator (1/7°), is defined by
1 1 1 2
Eri@E) =) =lim | ErfF)| =00 —e) 278 (r) = + V28 () (y +1Ing) |, (154)
rs . 0 r &2 3
with the corresponding Fourier transform evaluated as
3 g 1 : 3 | 1 3 1 2 o
d’re — ) =lim [ &re?| <=0 —¢e)—278(r) =+ =aVE8(r)(y +1In¢)
rd R e—0 r g2 3
2 fld/oodr w_or L 2a(y ey L 2ing) e (155)
=27 X — " 27 — — —m ne)g =n( ——+=-In
Sl 2 3"V 4 g T3]
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Using the above formulas, the final result for H, e(z C)h

in the coordinate representations is obtained as

@ (15409 124 L, 124 36 3y 33
D = (W + 5 @) = = In22) + ?lna> P8P — 15—
7 1 7 51 31, 8Ur? —3riri ; 31 jSijr2—3rirj
I T R I S = A VT =
8 (— D §1n2+ln(2k) —In[(Za) ] —Ina +y +1nr)
157 r# 120 2
{ — Z—ZE<— 4T 3In2 +In(2A) — In[(Za) ?] —lna +y —I—Inr)
157 r13r3 60
Z (30 =3 (l +1In2A) — In[(Za) ] —Ina + ¥ +In r)
157 o 15 4
88 4, .1 193 5
+528 (rl);< = 1g5 T 1n@H —In[Ze) ]~ Inar +y +lnr> +(1 < 2)}, (156)

where p = (B, — p2)/2, P = p1 + p. Terms with Ina are
obtained from the transformation into atomic units Ing —
Ing + Inw. We stress that this form of He(zc)h is valid only
for antisymmetric states. Equation (156) is the main result of
this paper. Despite the very complicated derivation, the final
result for H”) has a very simple form consisting of just a few

exch
operators.

VIII. SUMMARY

In this paper we calculated the QED effects of the order
o«’m to the Lamb shift, which originate from the virtual
photon exchange between the electrons and the nucleus and
are represented by two- and three-photon exchange diagrams.
The central problem was the derivation of the effective Hamil-
tonian He()zc)h in coordinate space. The corresponding result
valid for the antisymmetric (triplet) states of two-electron
atoms is given by Eq. (156). The obtained expression is free
from any singularities (provided that the expectation value
is calculated with wave functions of antisymmetric states).
The final expression was obtained after delicate cancellations
of numerous divergences present in individual operators in
momentum space. It is finite but still depends on the photon-
momentum cutoff parameter A. This dependence will disap-
pear when He(zc)h is combined together with the radiative and
low-energy contributions in Eq. (5).

The numerical evaluation of the expectation value of He(zc)h
would be straightforward, because many operators have al-
ready been encountered in our previous studies [18,19] and
other operators are of a similar complexity. However, the
numerical value of (He(zc)h) would not be useful for a com-
parison with experimental results, because of dependence on
the cutoff parameter A. For this reason we have postponed
the numerical evaluation until the radiative corrections are
calculated, which we plan to accomplish in a forthcoming
investigation.

Calculations of the remaining part, namely, the radiative
om effects, will be greatly simplified by the fact that these
effects are known for the hydrogenic atoms. Specifically, the
one-loop a’ m correction (the so-called Ag coefficient) was
derived in Ref. [33]. The corresponding two-loop contribution

(the so-called Bsq coefficient) was calculated in Refs. [34,35],

(

whereas the three-loop contribution Cyy was completed in
Ref. [36]. The two- and three-loop corrections are propor-
tional to the electron charge density on the nucleus, so only
the one-loop radiative contribution needs to be rederived for
the helium atom.

In the present paper we performed our derivation for the
triplet states of helium only. The restriction to these states
was made because their wave function is antisymmetric with
respect to exchange of spatial electron coordinates and van-
ishes at 7| = 7», which greatly simplifies the derivation. An
extension of the present derivation to the singlet states of
helium might be possible but would involve a calculation
of four-photon exchange diagrams, the feasibility of which
is not clear at present. Finally, the derivation of this paper
can be extended to many other bound systems, particularly
to positronium, where a calculation of the o’ m QED effects
has been required for a long time but has not yet been
accomplished.
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APPENDIX A: FOLDY-WOUTHUYSEN
TRANSFORMATION

The discussion in this section is based on our previous
work [37]. The FW transformation is a widely used method to
derive the nonrelativistic expansion of the Dirac Hamiltonian
in an external electromagnetic field:

H=a-7+Bm+eA’, (AD)

where 7 = p — ¢ A. The idea of the FW transformation is to
apply a unitary transformation to the Dirac Hamiltonian that
decouples the upper and lower components of the Dirac wave
function up to a specified order in the 1/m expansion. The
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result is the FW Hamiltonian Hgw defined as
Hpw =€ (H—id)e", (A2)

where § is the operator that needs to be determined. In this
paper we calculate the FW Hamiltonian up to terms that

where Y is some odd operator {8, Y} = 0 which satisfies the
condition [Y, e A — id,] ~ [Y, (@ - #)°] =~ 0. We will fix the
explicit form of Y in the very end; this choice will allow
us to cancel the unwanted higher-order odd terms. The FW
Hamiltonian is expanded in a power series in S:

6
contribute tp the order a7'mt0 the energy. Hpw = ZH(J') T, (Ad)
The choice of the unitary transformation operator S, and ey
therefore the resulting FW Hamiltonian, is not unique. We use
an approach that is somewhat different from the one described ~ Where
in standard textbooks. Specifically, we use the single operator HO = H, HD =1[iS,H” —ia],
S defined as 1
HD = Z[iS, HY D) for j > 1, (A5)
[ ie L
S=——[,3& f-——5B@ 7P +-—a-E /
2Zm m m and terms with j > 6 are neglected. The calculations of subse-
Be _ quent commutators are straightforward but rather tedious. For
4 m? the reader’s convenience we present separate results for each
HD:
|
(1)_ﬁ_,_,2,3_,ﬁ4 ieﬁﬁﬁ_,eﬂ_,_,_,_'.iqq
H —m(a-ﬂf) 3 (@-7) ——4m2[ , E]——8m3{a T, E}+2 [Y,a-7]
Lo | I B . . ) iBe _ =
—@ T s @) = BY = @) A’ —i9] - o5 d - E, (A6)
(2)_£~_.2 L B~ ie . . _ = L S o ie S o3 s R
H gy @A+ s @R - s (@A) + g la R a - El - o Y@ 7] - g (@)L @ E
ie . _ _ % L L3 0o . B (. - . &
t3,a @7 @Bl gl 7 (@ 7)) eA” =i 1]+ 1 la-#, a E}
| S =5 ipe . _ . _ _ = ife . _o_ a2 - &, -u
T 7T)+37( )_W[ 7, e 7T E]]—W[(Ol z)ya-E4+a-E@- 7)], (AT)
1= — P Garsr L@+ L aaa-wa 70 B+ — (@7 @7 a-E+a-E@-7)
6m3 6m° 96 m* ’ ’ ’ 48 m* ’
P @G Bl @A) — @R (a7 [ .0 B
24 m* ’ 2 6m* 48 m3 ' ’
iﬂe = >\3 > 7l = o= =\3
tsl@-a)ya-E+a-E@- 7)1, (A8)
24 m3
o=l @ayr- L @ay-Laaaaaia - —— (@7 @ 10aE+a E@ iy
24 m3 18md 384 ’ ’ ’ 192 m* '
" @ 7).a-El+ —— @ 7y (A9)
— —— a. (x. — N
96 m* ’ 24 m*
K=~ ' Gaye PGy (A10)
120 m* 120 m? ’
B
5O — _ g-7)° All
720ms @) (Al

At this stage the operator Hgw still depends on Y. Following the idea of the FW transformation, Y is now chosen to cancel all
the higher-order odd terms from Hgw:
ie
m3

ie
24 m?3

It can be seen that ¥ fulfills the condition that commutators [Y, e A° — i §,] and [Y, (& - 77)°] are of higher orders and thus can be
neglected. The resulting FW Hamiltonian is

@-7,[a- 7,6 E]l - (@ 7)a E+a-E@- 7).

_ > =15

H, A0+(6'ﬁ)2 (a'ﬁ)4+(6'ﬁ)6 ie [6-7.6F] € 5.7, 6 E}+ ie 6-7. 6 E]

= e — — o -7T,0 — o-mT, 0 o-mT, 0 -

W 2m S m? 16m  8m? 16m3 32 m3
—— (G706 706 7.6 ENl+ ——{(G -7 - 7.6 -E|+[6 - 7.6 - E1 (3 - 7)), (Al3)
128 m# 16 m*
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where we used the following commutator identity to simplify
the expression:

[(5-;?)3,6-5]=—§[a-ﬁ,[a-ﬁ,[a.ﬁ,6-ﬁ]]]
—i—%{(&ﬁ) 6 -7,6 E]
+[6-7#,6-E]@ 7)) (A14)

Due to nonuniqueness in the operator S, the FW Hamilto-
nian Hpw given by Eq. (A13) differs from the one that can
be obtained by the standard textbook approach (relying on the
subsequent use of the FW transformations) by the transfor-
mation S with some additional even operator. However, all
variants of the FW Hamiltonian have to be equivalent at the
level of matrix elements between the states that satisfy the
Schrodinger equation.

For the purpose of calculation of the o’ m contribution we
use the following FW Hamiltonian:

(@-7#? @-7)* @-7)°
Hpw = eA° —
Fw = eA 2m 8m3 16m5
. L e . . . =
—@[ 7, E]—16m3{0'7T,0'E} (A15)

where we omitted the higher-order terms from (A13), which
do not contribute at the a’m order. A further transformation,
e

gives the correction to the Hamiltonian of the form
e . o . oA €
The transformed FW Hamiltonian is now
G- -7)Y (G- -7) o
Hpw = €A + — -— E
v 2m 8m3 sz[ ]
e -,
—F°. Al8
+ 8m3 (A1)
It can be further simplified using the identities
il6 76 -El=V-E+c/{E 7},
G-7Y=7>-%05.B,
= =4 4 2 1o
(6-7)y =a"—=-eo-B7 —En eo-B
&2
+ (0 -BY, (A19)

where BY = 9/ Al — 9/ Al.
Hamiltonian takes the form

With these reductions, the FW

2 e 4 ’
Hpw =eA’+ — - —o0-B— — B, #
W =€ +2m am T I
2
i i i € =
sz(v Ej+o{E[ +E ) + g sE
62 2
5o (o - B, (A20)

where we separated E into the parallel and perpendicular
parts, E = E; + E ;. Now we apply the third transformation,

which allows us to get rid of £ , with

§S= -2 GU{Al 7). (A21)
8m?
The correction to the Hamiltonian is
2
€ i j € ij oAl
(SszUJ{E ,ﬂj}—mO’jAEj
+ | i i, iy, e p . (A22)
8m? ’ 2m  4m
where
[ A", 7/}, o B = S [, oI ({A", 7). B)
| S
+ = {o¥, o} [{A", 7/}, B
(A23)

The first term contributes only to the fine structure and thus
will be neglected here, while the second term is angular
averaged to obtain
[c7{A!, 77}, o B ~ 2 [{A, —4iA'V/BY,
(A24)

ni}, BV] =

Furthermore, omitting terms contributing to the fine structure,
we can rewrite

(0 -B)*> =2BYBY. (A25)

The final result for the FW Hamiltonian is
o 72 e !
Hpw = eA — — —0-B— —
Fw = oAt 2m am’ 8m?

—— (o -B#*+#%0 -B)

16 3
2
. e N
(V Ej JFU”{E”,JT’})JrFE2
m
2 2
¢ _Biipi _
 16m3
ie
16m3

—GA'ET

_l.

2
[o/{Al i}, 2] — %Ai V/BU. (A26)

APPENDIX B: SPIN ALGEBRA IN d DIMENSIONS

The following basic formulas for Pauli matrices in d di-
mensions are extensively used throughout the paper:

{o!, 6/} = 2687, andthus %> =dlI, (B1)
ol = % lof, 0’1, (B2)
ool = o.0=d(d-1)I, (B3)

[0, 6™ = 2i(§™a/" + §/"g™ — §ingim — §Imgim),
(B4)

The following two formulas are valid after averaging with
respect to all directions:

1 k _nl g- ki I ok
_ m , n — 8””18 5m 8 n , BS
5 {le™. ™) d(d_l)< ). (BS)
ij 01 i ilgj
(0)/05") = d(d_l)(aksﬂ sisiky, (B6)
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APPENDIX C: MOMENTUM INTEGRATION

We describe below the evaluation of basic integrals in
momentum space and d dimensions. The angular average is
performed with help of trivial identities (for odd powers of k'
the angular average vanishes):

Ay v 81
— k' = Cl1
[ St = 1)
de 8[/8}”}1 + BimSjn + Sinajm
— Lk = C2
/ Qg d(d +2) ()

Once all indices are contracted, one can perform scalar inte-
grals starting from the simplest one, namely,

d’k 1 1
Q) k* (k — q)P
I IO TR TR

fale, B) = g~4+e+P

= = . (C3)
[47]5 T —SHTTE)
We now consider a more complicated basic integral:
" dk 1 1
i, .,l = —d+i+j+l1 : i .
sat- 30 =a @) (k+ 1k =gl KTk —qf
(o))

For i = 0, this integral reduces to Eq. (C3), so g4(0, j, 1) =
fa(j, I). For negative i, g, can be expressed as a combination
of fy’s, specifically,

ga(=1.j. )= fa(G =1L D+ fa(j, 1 = 1), (C5)
ga(=2.j. )= fa(G=2.D+2fu(G=1.1-1)
+a(G. 1 =2), (Co)

84(=3,j, )= fa(j—=3.D+3fa(j—2,1-1)
+3fa(G— L1 =2)+ fa(j, 1 —3).(CT)
For positive i, we use the following identities,

ga(i, j, 1) = ga(i, 1, ), (C8)

gd(lvj_lvl)+gd(l’]9l_1)=gd(l_lajrl)y (C9)

to reduce the calculation to the single case of j =/, g;(i, j) =
g4(i, j, j). Using the obvious formula

- 0
k— ga(i, j) =0, (C10)
ok

we obtain the following recurrence relation:

4d—=2))gali, j)+ G —2j)gali, j+1)
=jgi—4j+2)+(—-4)gai—=2,j+1)
—J8ali—=2,j+2). (C11)

In order to use this equation for calculation of g;, we need
initial values. First of all, we note that

dk 1 1

Ji@2D= | o = qp

[ af 'k/dx 1 1
) oyt ) 2a k24 a2 (k- q)t 42

_1/ d'k 1 1
2 ) @uydtk 4|k —ql klk— gl

1
== gai—1(1, 1) (C12)

2
and, therefore,
gd(lv 1) = 2fd+1(21 2)

For even values of i, we choose j = i/2 to get the result for
g(i, i/2) directly from the recursion. Specifically,

(C13)

ga(2, 1) = [ga(=2,3) —284(0,2) — 2a(0, 3)].

(C14)

4(d—2)

Next, we obtain g4(3, 2) by transforming the integral repre-
sentation for f;(4, 4):

dk 1 1

MED= | Goi e t=ar

_ d¢ 'k/dx 1 1
) @rydt ) 2m (k24 x2)2 [(k — ¢)* + x2)?

_1/ d'~'k ( 1 1
4 ) QoI+ Tk —g)? K (k — )

1 1
+
k+ 1k —ql k3(k—q)3)

1
=7 [8a—1(3,2) + ga—1(1, 3)]. (C15)

Therefore,

84(3,2) =4 fay1(4,4) — ga(l1, 3).

We now consider the integral with Ink. After taking the

derivative of Eq. (C3) with respect to & we obtain
dk 1 1
Q)T ke (k — g)P
—d

(=) (45%)

(C16)

Ink

zqdfafﬂ 2 F(d%ﬂ)
21412 D(5)0(5)T(d = 57)
Lmev(G)+(557) (5)

fo-=2)

where ¥ (x) =TI'"(x)/T'(x) is a digamma function. These
are all integrals in the momentum space, which were used
throughout this paper.

(C17)

APPENDIX D: APPENDIX D: DERIVATION OF H®

exch

The Hamiltonian HexCh is split into the low-energy, middle-
energy, and high-energy contributions:

HS

exch ™

=HY +H, +HY +HY. (D1)
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The low-energy term Ej* = (H; )y can be written as

A el [ d%k ij i J
E = ﬁ/A Gy 2oL 1 P (Ho = Eo) pA1g)

+(1 < 2)
et d—1 * d%k . i
T am d /A )k <¢|[P17 [V’ Pz]]|¢)

+ (1 < 2). (D2)

Performing the momentum integration we get
R (D3)

= — N —In c X

L 2\ 3

The middle-energy contribution consists of two parts, the
retardation correction to the single transverse photon ex-
change H, 15,15 ) and the double seagull with no retardation HS(S).
The former is

| -
f(z Y203 L lj(k)(¢|< +5.-01 k’V{‘)d’”‘

J

1 ) .-
x (Hy — E@(Q + —Uzljvé)e'k"@) + (1<« 2)
m 2m

&2 dik -
=2 | GoEtl©@l[p. [V p]le i)
+ (1 < 2). (D4)
Thus,
H, —“—2(—f—i+§1 2+§1 ) (D5)
M=\ T3 3 T3 ety

J

A e [ dk ij i ikF
EL3:E A m«h(k)&(zwlple (Ho

The contribution due to the double seagull diagram is

‘34/ ] / U 14157 k)
2 | Quyi2k, ) Qu)yd2k, LOLNE

X (] BTy 4 (1 2),

Es =

(D6)
(ki + k)
After performing the momentum integrations we obtain
o> (5 1 8
H=—|-—-—= In2+2Ingqg ). (D7)
m\3 € 3

The high-energy part can be evaluated using the scattering
amplitude approach, with the result

H a’ (2 n 1 1 08
=—|z+-—z01-02]).
H=m\3 e 27077
The total result in momentum representation is
2
) _ o 29 8 s 8
Hexch - ﬁ(? + g ll’l[(ZO{) ] — g 11’1(2)\,)
14 o
t3Ing—61-6) (D9)

Transforming it into coordinate representation and atomic
units, we obtain

5 = - )
He(xc)h__?(4n.r3>+(—01'02+3+§1n[(za) 1

8 14 s
— 3 @A) + e ) 5. (D10)

APPENDIX E: APPENDIX E: LOW-ENERGY
RETARDATION CORRECTION

In this section we present our derivation for the low-energy
retardation correction Ef. It is given by

— Ep)’ phe ™ g) + (1 > 2)

2 [ ik o i
:W/A Qn )dksé’(k)8k2(¢|[ i . Hy — Eo|, [Ho — Eo, [Hy — Eo. p) J ik 1]Ie) + (1 < 2)

=) (T,

i=1

where 8,2 is the k> term in the Taylor expansion at k = 0. The evaluation of E

described in Appendix F. For 7} and 7, we have

et [ d%
Ii= g ), ot ®©o%e(ly

. 62 fw ddk l](k)(s
=0 ), st ®el ||

Q

Next,

&2 ©  gdk
h=—0 | S
} 4m3/A 21 )kS

(EL)

A is in many respects similar to that for E/"

V] [V [V phe ™ )] + (< 2) (E2)
p2 . oo T
?1} [V, [v, P el’”zﬂ ) +(1<2)=0. (E3)
" 2 =]
aif'(k)akz([[pq eik'?‘,V:|, [v, [% phekn ﬂ) + (1 < 2). (E4)
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We perform further transformation

- 2 . L N T =
[[pl] eik.?]’ V:|, |:V, [%’ pé e—zk-r2:|:|:| — |:|:pt] ezk-r|,Vi| [V p2]|:p22’ —ik- r2:| +p2 |:V [1722, e—zk-rz:|:|i|' (ES)

The first V potential in the last equation contributes only with the electron-electron part, whereas the second may contribute with
either the electron-electron or electron-nucleus parts. We will thus have both two-body and three-body parts in the 73 term. The
k integration is separated from the matrix element—its radial is

A\ [* dlk Ay
4 — — Yk =a(2+1nA —=58"(k),
”<4>/A Gyt L =2+ 6)/ g, +®)

where €2, is the surface area of a d-dimensional unit sphere—while the angular integration is performed using Egs. (C1) and
(C2). The result for T3 in the momentum space is

reo 2 2 wa) [ -[2] ]2 2)+0‘3 Lo LA+ 22— 2 (E7)
=—Jl-=——-——=In =1 = RES 7—(=—=—+—=1In n2— —In .
T\ 225 T ) P T e g 225 15 5 15 9)1

The term T} is

(E6)

62 o0 ddk ii . P 2 2 . P
Ti= e /A R 1(k>5kz([[p’, e’k"',v}, [% +2. [v, v} e"k”ﬂD +(1 ¢ 2). (ES)
These double commutators can be rewritten to
. o p2 p2 . 3 = . . 7 o
Hp’l etn, v], [7‘ + 5 [v, P e"k"zm +(1e2)=2vH Hp’z, Vel“], pé] +(1 < 2). (E9)

where Vi = [ pi., [V, p}]], and the result in the momentum space is
o? 28 4 ‘ Z7 ¢’
== - —<-hAd)|ph—|=| |5
) m3{< 55 6)[1)2 [rz}jqz
i Z i (184 4 qiqj 436 16 1
=12 A=+ —=mA )+ L (-2 A )=+ (o2
+|:p2|: |:r2:|5 p2i|:||: (225+15 n €>+ 2( 225 15 n €>:|q2 +( <> )}

+ 28 21A 412—{—41 (E10)
—(=——-—1In n — In
25 150 15 154
This concludes the evaluation of the three-photon terms. Now we move to the two-photon terms, starting with 7s:
e’ © gk . Pl p ~
Ts = ———8 (k) 82 PR ELI Ly | 22, pl ek 1 < 2). Ell
5= i |, n )dksL()k(H:P 21||: [2 pie + (1< 2) (ELD)
The result for this term is
o>~ (48 4 (PP - §) 4
Ts=—1{P -P| =+ =-InA, ————+4+—InA E12
: m4{1 2(25+5Il )+ 7 <225+15 )} (E12)
Term Tg is given by
6‘2 00 ddk - p2 p
T = —— 811 k) § i lk~7']’V , _2’ 2’ j —lkr7 1 2 E13
‘ 4m4/A e ()kz([[ple Hz [2 ple +(1o2) E13)
and after evaluation we get
o’ (248 8 [ T | LB —P)-G? (PP §)
To=—(—=+—InA ||-P =P+ =P - P+ —¢*+ = i El4
6 4<225+15n e)[4(l 2)+21 2t g4 3 p + 7 j| (E14)
Finally, the term 77 is
e (* dk 1 »” S
Th=— | ——=87(k)s A I I A 1 < 2). E15
1= [, st (|| BB+ 5 [V rte e (19
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The result for this term is

o (248 8 1. . 1. - 1 P - (P> §) 14 2 (P, — P) - g1
=2 —InA )| -P =PV +=-P P+ g+ ———F — 4+ -InA, | ——— .
7 {(225-1-15 >|:4(1 2)+21 2+ 3q + 7 }+<25+5n ) p }

(E16)

The last term Ty vanishes,

62 e ddk B - p2 p2 p2 p =
Ty = — —— (k) s pekr L1 PL P2 4 P2 ik 1< 2)=0, El17
8= gt | st ® “([[p‘e > 12 T2 2 Pre +lo2) (E17)

otherwise it would correspond to the one-photon exchange. The total result for Hfy = Y% | T; is

o’ 254 14 ; Z7 ¢/
Hy = ={| - == — —=WA)|ph, | = | |5
L3 m3{( 25 15 " )[p2 [@qu
5i 184+41A +q"qf 436 161A 1+(1 %)
— + —InA, — | — === n — <~
225 15 q> 225 15 q>
1 A ) (P = B)? +1 + 136 41 A P
n n
1 — 2 q 45 3 2
0 2 (P —P)-qP (112 4 (P - §)(P> - §)
ZIn — 4+ -—InA, | ———F
+(9+3 ) : +(45+3n é) e
29 2 —In2+ 2 1 (E18)
n — In
25 15 15 15 4

APPENDIX F: SPIN-INDEPENDENT TRIPLE RETARDATION E}"

The spin-independent part of E; is the most complicated term to evaluate. We write it as

m ¢ d'k '12-?. P% P3 —lk-?z
B = 5w | Gyt L M"H ’ﬂw} [2 +ﬁ+v[2 T m'¢>

_ < A% i T, P
= | Gt ()Z¢| 6) + (1 < 2)
= (H"\ + H"}). (F1)

where H{"| involved three-body and H{") two-body terms.
Individual 7; are evaluated as follows

1 =[[p e V] [V, [V phe 2] =0, (F2)
in Pl ik
T = |:|:pt] ek %:|’ [V, [V, pjz e ~r2]]i| =0. (F3)

The term 73 is

17 7. . 2 - . o 2 2 .
_ a|:ezk.r| [pll’ V], [&’ e—zk.rz:|[v7 Pé] +e—lk-rz [% + &’ v, pé]:|i|

2 2
vk ik7 i Ykl ok
= p19 e pl p29 e vpz ’
—([[ £, ve™ ] il + [[ 72, V'] P5]) )
where VI = [ pi, [V, pj1.
The term T} is
1 i 5
= 2flne o]
1 . 2 ) 2o
= ([P VIE A1V + [ VI [ V). )

062516-27



PATKOS, YEROKHIN, AND PACHUCKI PHYSICAL REVIEW A 101, 062516 (2020)

The sum of terms 73 and 7y provides the complete three-photon part H"| and is

nn o ddk ij
Hih =g | Gyt ®

AV (v e ]+ [V e D) + [ VIR, PV 4 [ V] 7, 4] V)
+(1 < 2)

wa’ 2 n 1 4 | n o’ j Z 2 n 14 281 ) 281 q’
=—|-=4+-———1In — B — ——4+-——-"In2-=—Ing )=
m \ "5 15e 15 )T P\ ). 15" 15¢ 15 15 7))

Al Z i [ i 4 4 +812+81 +qiqf 16+16 3212 321 1
-1 | N—=——+—1In —In ——=4+——-——In2——1In —
P\ 75 ) |2 5 15 15 59T 2 \15 T 156 T 15 59| ¢
+(1 < 2)}. (F6)
The terms T5—77 involve two-photon contributions. The first term 75 is

1 i ik P% P% j o —ikF
Ts—ﬁ[[ple ,?], AENY . (F7)

Defining 75 as its corresponding contribution in the momentum representation, we get

L d’k ST + (1 < 2)

=— | —— <~

T am? | QuydistET
2[4~ - 160 -HP-q) 1 6. -~ 8P -PB-§)

—— .- — LT 4n241 ——p B+ LT F8
m4{15‘ 2T p +< 2e T +nq)( AR T R >} E8)

The term T is

1 i kT P% P% i ik
TGZ%[I:IHE ‘,V},[?, Sopet"

1 A ' 2 2 ' A 2 >
- ﬁ{pé [[p’p v]. [% [%ekm + [P [V, Pl [% [%e"m (F9)

The corresponding result in the momentum representation is

L P2, Lo 14 45 o RE-HP-§  16[(P —P) g
Ts = —1{— (P — P —¢+ —P B — = - —
6 m4{45(] ) 57 Tt P 7 15 7
1 4.5 o 8 5, 8. o 16(P-PWP-§) 8 [(P—P) g
— — +In2+1 — (P - PB) — — —P P+ — — . (F10
+< 5; T +nq><15(1 ) AT R kT 7 + 13 7 (F10)
The term 75 is
1 - 2 2 2 .
el B 5o g et
1 i| ikF P% i P% —ikF P% 1’% i —ikF
o LR N1 ] B e U | B (F1)
Evaluating this term in the momentum representation, we get
. o* 2, .o 14 45 o RE-HP-§  20P —P) g
Th=—1—(P—P —¢+—h-P—-= - =
7 m4{45(1 ) 50 Tt P pe 3 7
1 4 o o 8 , 8. o 16(P-HWP-§ AP —P)-GP
— — +In2+1 — (P - B) — — —P P+ — - . (F12
+< 2c Tt nq><15( e R S TR e *3 e 12
The last term vanishes:
1 o2 2 2 2
f= ol [ e 22 2 [ Bt )] o (F13)
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The total two-photon contribution H}" = Y"_s 7' and is given by

H" = @ i(131 —-B)’ + §q2 + P -P
27 m4 | 45 45 9

1 8 - .
—— 4+In2+1 — (P —P) —
+< 26+n +Hq>(15(1 2)

16 ,
Eq

45 B, — 16 (PL-)(Py-§)  26[(P —Py)- g

q2 15 q2

8(P-g)(P,-§) 4P —P)- g
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and the total spin-independent part of H; is the sum of the two-photon and three-photon contributions:

nn __ pyhn nn
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(F15)
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