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QED corrections to the g factor of Li- and B-like ions
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QED corrections to the g factor of Li-like and B-like ions in a wide range of nuclear charges are presented.
Many-electron contributions as well as radiative effects on the one-loop level are calculated. Contributions
resulting from the interelectronic interaction, the self-energy effect, and most of the terms of the vacuum-
polarization effect are evaluated to all orders in the nuclear coupling strength Zα. Uncertainties resulting from
nuclear size effects, numerical computations, and uncalculated effects are discussed.
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I. INTRODUCTION

Precision studies of g factors of highly charged ions
(HCI) provide a unique possibility for testing fundamental
theories. Penning-trap experiments employing the continuous
Stern-Gerlach effect achieve high precision nowadays, and
are advancing towards heavy ions, in which the effects of
quantum electrodynamics (QED) are most relevant. The g
factor of hydrogenlike silicon (Z = 14) has been determined
with a 5 × 10−10 fractional uncertainty [1,2], allowing one
to scrutinize the bound-state QED theory (see, e.g., [3–11]).
Recently, the evaluation of two-loop terms of order (Zα)5

(with Z being the atomic number and α the fine-structure
constant) has been finalized [12] (see also [13]), increasing
the theoretical accuracy especially in the low-Z regime. First
milestones have been reached in the calculation of two-loop
corrections for nonperturbative Coulomb fields, i.e., for larger
values of Zα [14,15].

The high accuracy which can be achieved on the
experimental as well as theoretical side also enables the
determination of fundamental physical constants such as the
electron mass [16–18]. However, QED tests as well as the
extraction of fundamental constants may be limited by nuclear
effects [11,19–21]. Since the nuclear parameters entering the
nuclear corrections are not always sufficiently well known,
these corrections may be associated with large uncertainties,
and thus set a natural limit to the accuracy of the theoretical
g factor.

The extension of experiments to the heaviest ions, includ-
ing Pb81+ and U91+, is expected in the forthcoming years by
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the use of the ALPHATRAP Penning-trap setup [22] and the
HITRAP facility [23,24]. Measurements with these systems
are anticipated to provide an alternative determination of the
value of α [25–27]. In Ref. [25], a specific (or weighted)
difference of the g factors of heavy H- and B-like ions with
the same nuclear species was put forward. It was demonstrated
that the theoretical uncertainty of the nuclear finite size effects
in this difference can be suppressed down to 4 × 10−10 for
very heavy ions such as Pb, which was several times smaller
than the theoretical uncertainty of the g factor due to α at that
time. In Refs. [26,27] a specific difference of the g factors of
low-Z H- and Li-like ions was proposed, for which an even
stronger suppression of nuclear effects and their uncertainties
can be achieved, leading to an accuracy competitive with the
current value of α. A calculation of the nuclear polarization
effect extended to Li- and B-like ions showed that these
terms can also be largely suppressed in a specific difference
of the g factors for two different charge states of the same
element [28].

Motivated by these prospects, in the current paper, we
calculate the ground-state g factor of Li- and B-like HCI. Our
results for Li-like ions confirm previous calculations. We ex-
tend the computations for B-like Ar13+ presented in [29] for a
range of elements across the periodic table, and describe them
in detail in the current paper. The one-electron self-energy
term is calculated with an improved numerical accuracy. The
vacuum polarization screening diagrams are evaluated, and
self-energy screening is estimated using effective screening
potentials. Electron correlation effects are taken into account
by exact QED methods up to order 1/Z , and higher-order
terms are extracted from large-scale relativistic configuration
interaction calculations.

This paper is organized as follows. In Sec. II, we dis-
cuss relativistic and electron-correlation contributions to the
bound-electron g factor. In Secs. III and IV, we describe
our computations of the self-energy and vacuum-polarization
contributions, respectively. In Sec. VI, we tabulate and discuss
our computations of the contributions to the bound-electron
g factor and provide concluding remarks. We use relativistic
units (h̄ = c = me = 1) and the Heaviside charge unit (α =
e2/(4π ), e < 0).
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FIG. 1. The Feynman diagram representing the leading contribu-
tion to the bound-electron g factor. Double lines represent electrons
in the electric field of the nucleus and a wavy line with a triangle
represents an interaction with the external magnetic field.

II. RELATIVISTIC g FACTOR

The Zeeman shift linear in the magnetic field of an energy
level of an atom with a spinless nucleus is parametrized in
terms of the g factor of the atom by the equation

�E = gμB〈J · B〉, (1)

where �E is the energy shift, J is the operator of the total an-
gular momentum, B is the external magnetic field, μB = |e|/2
denotes the Bohr magneton, and g is the g factor. The g factor
is determined by computing the Zeeman energy splitting and
solving Eq. (1) for g.

The relativistic interaction of an electron with the homoge-
neous external magnetic field is given by

Vmag(r) = −eα · A(r), (2)

where α denotes the vector of Dirac matrices and A is the vec-
tor potential A(r) = (B × r)/2. Assuming that the magnetic
field is directed along the z axis, Vmag reduces to

Vmag(r) = |e|Bz

2
(r × α)z. (3)

An ab initio QED theory of the g factor of an atom can
be formulated, e.g., within the two-time Green’s function
formalism [30]. Within this formalism, the Zeeman energy
splitting is calculated.

A. Dirac value and nuclear size contribution

The leading contribution to the g factor of an alkali-like
atom arises through the interaction of the valence electron
with the external magnetic field. The corresponding Feynman
diagram is depicted in Fig. 1. Within the approximation
of noninteracting electrons, contributions resulting from the
interaction of the closed-shell core electrons with the exter-
nal magnetic field cancel in the final sum, since electrons
with opposite spin projections induce contributions of the
same magnitude but of opposite sign. Therefore, only the
contribution of the valence electron remains. For this reason,
the g factor of the whole alkali-like atom is often termed
as the bound-electron g factor (assuming that of the valence
electron).

The leading (Dirac) contribution to the bound-electron g
factor of an alkali-like atom with the valence state character-
ized by the quantum numbers n and κ is

gD = 2κ

j( j + 1)

∫ ∞

0
dr rGnκ (r)Fnκ (r), (4)

where j = |κ| − 1/2 is the total angular momentum quan-
tum number, and the functions Gnκ and Fnκ are the radial

FIG. 2. A typical Feynman diagram representing the one-photon
interelectronic-interaction contribution to the bound-electron g fac-
tor. Only diagrams where one of the electrons is the valence electron
and the other one a core electron contribute.

components of the electronic wave function

ψnκm(r) = 1

r

(
Gnκ (r)�κm(n)

iFnκ (r)�−κm(n)

)
, (5)

where �κm(n) are spherical spinors.
For a pointlike (pnt) nucleus, the integral in Eq. (4) can be

evaluated analytically, with the result [31,32]

gD(pnt) = κ

2 j( j + 1)
(2κεnκ − 1), (6)

where εnκ is the Dirac energy of the reference state. In
particular, for the 2s and 2p1/2 states relevant for this work,
they are

ε2s = ε2p1/2 =
√

1 + γ

2
, (7)

where γ =
√

1 − (Zα)2.
The nuclear size correction to the point-nucleus Dirac

value is determined as the difference of Eq. (4) evaluated
numerically for an extended nuclear charge distribution and
the point-nucleus result of Eq. (6). We use the homogeneously
charged sphere as the model for an extended nucleus with the
rms radii taken from Ref. [33]. We estimate the dependence on
the model by also using the two-parameter Fermi distribution
and find it to be insignificant compared to the uncertainties
associated with other contributions.

B. First-order interelectronic interaction

Interactions among the electrons in a multielectron ion
result in a contribution to the bound-electron g factor. These
interactions can be classified according to the number of
exchanged photons and the associated perturbation parameter
is 1/Z .

We compute the leading one-photon exchange contribu-
tion, which corresponds to the first-order perturbation cor-
rection in the parameter 1/Z . A typical contributing diagram
is depicted in Fig. 2. As seen in the figure, the computation
of the one-photon exchange contribution reduces the many-
electron problem to a two-electron one, where one of the core
electrons interacts with the valence electron in addition to the
interaction with the external magnetic field. Analogous con-
tributions from the exchange between core electrons vanish,
again, identically after summing over the spin projections of
the closed-shell core states.

The one-photon exchange contribution to the Zeeman
shift of an energy level can be expressed as the sum of an
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irreducible and a reducible part; the corresponding formulas
were derived in Ref. [34]. The irreducible part arises from the
first-order perturbative correction to the bound-electron wave
function,

|δa〉 =
εn �=εa∑

n

〈n|Vmag|a〉
εa − εn

|n〉, (8)

where a is either a core-electron state c or a valence-electron
state v and the summation label n runs over the whole elec-
tronic spectrum including all bound states except the reference
state a. The irreducible contribution is then given by

�E (1)
int,irr = 2

∑
c

(〈vc|I (0)|δvc〉 − 〈cv|I (�vc)|δvc〉

+ 〈vc|I (0)|vδc〉 − 〈cv|I (�vc)|vδc〉) , (9)

where the summation is carried out over all core states, �vc =
εv − εc is the difference between the Dirac energy levels of the
valence and core electrons, I is the operator of the electron-
electron interaction,

I (ω, r1, r2) = e2α
μ
1 αν

2 Dμν (ω, r12), (10)

αμ = (1,α) are the Dirac matrices, Dμν is the photon propa-
gator, and r12 = r1 − r2.

The reducible contribution arises from first-order perturba-
tions of the energies of the core and valence electrons by the
magnetic interaction, εa �→ εa + 〈a|Vmag|a〉. It is given by

�E (1)
int,red =

∑
c

〈cv|I ′(�vc)|vc〉(〈c|Vmag|c〉 − 〈v|Vmag|v〉),

(11)

where the prime on I ′(ω) denotes the derivative with respect
to ω.

For the numerical computation of the one-photon exchange
correction we solve the radial Dirac equation using basis sets
constructed from B splines within the dual kinetic balance
approach [35,36]. This approach is particularly suited for the
computation of spectral sums as in Eq. (8). In our numerical
treatment of the radial Dirac equation we take the nuclear size
into account by using a homogeneously charged sphere as a
nucleus with rms radii taken from Ref. [33]. The contributions
are calculated using the Feynman and Coulomb gauges in
order to estimate the numerical uncertainty. We present our
result in Table I. Our calculations of the one-photon exchange
correction reproduce previous results obtained in Ref. [34] for
Li-like ions and Refs. [37,38] for B-like ions.

C. Higher-order interelectronic interaction

Electron correlation effects beyond the first-order approx-
imation in 1/Z , described in the previous section, were
taken into account by means of a relativistic configuration
interaction Dirac-Fock-Sturm (CI-DFS) approach, employing
Dirac-Hartree-Fock orbitals for the occupied states and rela-
tivistic Sturmian orbitals for the virtual electronic states as in
Ref. [39]. The contribution of the negative-energy part of the
Dirac spectrum, which was found to be relevant in the case
of g factors of Li-like ions in Ref. [40], is also significant in
the case of B-like ions, and the corresponding states were also
described with Sturmian orbitals.

TABLE I. First-order interelectronic-interaction contribution to
the bound-electron g factor of the ground state of Li- and B-like ions.
The uncertainties account for uncertainties in the nuclear rms radii
and numerical errors.

Electron correlation, (1/Z )1

Z Li-like B-like

18 0.000 414 450 489 (3) 0.000 657 531 117 (1)
20 0.000 461 147 896 (3) 0.000 731 996 913 (1)
24 0.000 555 185 23 (1) 0.000 882 350 695 (5)
32 0.000 746 458 66 (1) 0.001 190 274 990 (5)
54 0.001 306 216 8 (4) 0.002 118 178 3 (3)
82 0.002 148 290 (1) 0.003 654 888 (2)
92 0.002 509 828 (7) 0.004 393 71 (1)

The one-photon exchange correction results in the Breit
approximation were used to monitor the convergence of the
CI calculations when systematically extending the Sturmian
basis set in the latter. The configurations obtained by sin-
gle, double, and triple excitations of the ground state were
included in the calculation. The one-electron functions up to
n = 10 and 
 = 5 were included, leading to the total number
of over 100 000 configurations. The theoretical uncertainty
was estimated as twice the difference of the results using the
largest and the second-largest Sturmian basis sets.

III. SELF-ENERGY

A. One-electron self-energy

To the zeroth order in 1/Z , we can ignore the presence of
the core electrons and evaluate the self-energy (SE) correction
assuming the reference state being the hydrogenic Dirac state
of the valence electron v.

The SE contribution to the energy shift of the hydrogenic
state v in the presence of a perturbing potential Vmag is
graphically represented by the Feynman diagrams shown in
Fig. 3. The general expression for the SE correction can be
conveniently split into three parts [30],

�ESE = �ESE,irr + �ESE,red + �ESE,ver, (12)

which are referred to as the irreducible, the reducible, and the
vertex contribution, respectively.

The irreducible contribution is induced by a part of the
diagrams in Figs. 3(a) and 3(b) that can be expressed in terms
of the first-order perturbation of the reference-state wave
function by Vmag given in Eq. (8),

�ESE,irr = 2〈v|γ 0�̃(εv )|δv〉, (13)

(a) (b) (c)

FIG. 3. Feynman diagrams representing the self-energy contri-
bution to the bound-electron g factor.
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where �̃ = � − δm, δm is the one-loop mass counterterm,
and � is the one-loop SE operator,

�(ε, r1, r2) = 2iαγ 0
∫

CF

dω αμG(ε − ω, r1, r2)ανDμν (ω, r12).

(14)

Here, G denotes the Dirac Coulomb Green’s function G(ε) =
[ε − H(1 − i0+)]−1, H is the Dirac Coulomb Hamiltonian,
and CF denotes the standard Feynman integration contour.

The reducible contribution is induced by a part of the
diagrams in Figs. 3(a) and 3(b) that can be expressed in terms
of the first-order perturbation of the reference-state energy. It
reads

�ESE,red = 〈v|γ 0�′(εv )|v〉〈v|Vmag|v〉, (15)

where the prime on �′(ε) denotes the derivative with respect
to ε.

Finally, the vertex contribution is induced by the diagram
in Fig. 3(c). It can be expressed as

�ESE,ver = i

2π

×
∫ +∞

−∞
dω

∑
n1,n2

〈n1|Vmag|n2〉〈vn2|I (ω)|n1v〉
(εv − ω − uεn1 )(εv − ω − uεn2 )

,

(16)

where u = 1 − i0+ and the summations over n1 and n2 involve
both the positive-energy discrete and continuous spectra and
the negative-energy continuous spectrum.

Calculations of the SE correction to the g factor for the
hydrogenic states are rather complicated but well established
by now. For the point-nucleus case, the most accurate compu-
tations were performed in Refs. [8,41,42]. The finite nuclear
size correction was computed in Ref. [43]. In the present
work, we employ the numerical approach developed in those
studies and extend the previous calculations to the case of the
2p1/2 reference state (required for B-like ions) and nuclear
charges Z > 12, which has not been reported in the literature.

B. Screened self-energy

The interaction of the valence electron with the core elec-
trons modifies the SE effect and the resulting energy shift
is known as the screened SE correction. It is suppressed
by a small parameter 1/Z as compared to the leading SE
contribution.

A rigorous QED calculation of the screened SE correction
to the g factor has been performed in Refs. [44,45] for four
Li-like ions (with Z = 14, 20, 82, and 92). This was a very
difficult calculation, which has not been so far extended
to any other ion. Two less sophisticated methods exist in
the literature for an approximate treatment of the screening
of the SE corrections. One method, used in Ref. [46], eval-
uates the one-electron SE correction in the presence of an
additional screening potential resulting from the interaction
with the core electrons. Another method [47] describes the
electron self-energy by the anomalous magnetic moment,
which yields results complete to order (Zα)2 for s states. In
the following, we address these two methods in turn.

1. Screening-potential approximation

Within the screening-potential approximation, we consider
the electron in the combined field of the nucleus and an
additional screening potential Vscr that partly accounts for the
interaction of the valence electron with the core electrons.
The simplest choice of Vscr is the core-Hartree (CH) potential
defined as

VCH(r) = 4πα

∫ ∞

0
dr′ r′2 �core(r′)

r>

, (17)

where r> is the larger one of r and r′, and �core denotes
the combined radial charge density of the core electrons in
units of the elementary charge. In the present work we use
also two other choices of the screening potential, namely, the
Kohn-Sham (KS) potential and the local Dirac-Fock (LDF)
potential, which are described in detail in Ref. [48]. All
screening potentials are constructed with the Dirac-Fock wave
functions.

Within the screening-potential approximation, the screened
SE effect is obtained by evaluating the SE correction ac-
cording to Eqs. (12)–(16) for the valence electron in the
combined field of the nucleus and Vscr and subtracting the
SE correction in the nuclear field. In this calculation, we
generalized the numerical approach of Ref. [8] for computing
the SE correction to the g factor to the case of an arbitrary
binding potential. We used the Green’s-function technique,
with the Green’s function of the Dirac equation in a general
(asymptotically Coulomb) potential being computed by the
method described in the Appendix of Ref. [49].

2. Anomalous magnetic moment approximation

The second method for the approximate treatment of the
SE correction is based on the nonrelativistic expansion. As
demonstrated in Ref. [50], to leading order in Zα, which is
here ∝(Zα)2, the SE correction to the bound-electron g factor
of an s state is induced by the interaction of the anomalous
magnetic moment (amm) of the electron with the electric and
magnetic field in the atom. The interaction can be represented
by the following effective Hamiltonian:

Hamm =
∑

j

[H1( j) + H2( j)] +
∑
j �=k

H3( j, k), (18)

where j and k numerate electrons and

H1( j) = aeμBβ jB · � j, (19)

H2( j) = ae
Zα

2
(−i) β j

α j · r j

r3
j

, (20)

H3( j, k) = ae
α

2

(
iβ j

α j · r jk

r3
jk

− β j� j · αk × r jk

r3
jk

)
. (21)

Here, ae = α/(2π ) + . . . is the amm of the free electron, and

� =
(

σ 0
0 σ

)
.
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TABLE II. Screened SE correction to the g factor of the ground state of Li-like and B-like ions, in units of 10−6 (ppm). “CH,” “KS,”
and “LDF” denote results obtained with the core-Hartree, Kohn-Sham, and localized Dirac-Fock potentials, respectively. “AV” denotes the
averaged result. For Li-like ions, results obtained by two different methods are presented, namely, the screening-potential approximation
(labeled by “scr”) and the combined screening-potential-and-amm approximation (labeled by “scr+amm”). For B-like ions, results obtained
by the screening-potential approximation are listed.

Z Method CH KS LDF AV

Li-like:
14 scr −0.240 −0.258 −0.257 (4) −0.257 (27)

scr+amm −0.250 −0.254 −0.262 (4) −0.258 (17)
18 scr −0.326 −0.349 −0.356 (4) −0.352 (45)

scr+amm −0.340 −0.344 −0.363 (4) −0.354 (35)
20 scr −0.371 −0.395 −0.409 (4) −0.402 (58)

scr+amm −0.387 −0.390 −0.418 (4) −0.404 (46)
24 scr −0.464 −0.491 −0.523 (3) −0.507 (89)

scr+amm −0.485 −0.487 −0.534 (3) −0.510 (72)
32 scr −0.661 −0.695 −0.776 (1) −0.74 (17)

scr+amm −0.697 −0.697 −0.792 (1) −0.75 (14)
54 scr −1.318 −1.313 (1) −1.689 (1) −1.50 (57)

scr+amm −1.429 −1.395 (1) −1.718 (1) −1.56 (48)
82 scr −3.007 (1) −2.599 (1) −3.897 (1) −3.2 (1.9)

scr+amm −3.249 (1) −3.199 (1) −3.900 (1) −3.6 (1.0)
92 scr −4.168 (6) −3.353 (6) −5.301 (6) −4.3 (2.9)

scr+amm −4.384 (6) −4.537 (6) −5.257 (6) −4.9 (1.3)
B-like:
18 scr −1.042 (4) −0.990 (4) −0.934 (5) −0.96 (16)
20 scr −1.217 (4) −1.150 (4) −1.093 (5) −1.12 (18)
24 scr −1.621 (4) −1.528 (3) −1.467 (5) −1.50 (23)
32 scr −2.670 (3) −2.519 (1) −2.448 (5) −2.48 (33)
54 scr −7.281 (1) −6.923 (2) −6.870 (1) −6.90 (61)
82 scr −17.374 (1) −16.383 (1) −16.843 (1) −16.61 (1.48)
92 scr −23.030 (1) −21.477 (1) −22.554 (1) −22.02 (2.33)

To the first order in 1/Z , the amm correction to the g factor
can be expressed as [47]

�Eamm =
∑

c

[
δH1 (〈vc|IBreit|vc〉 − 〈cv|IBreit|vc〉)

+ δH2δVmag (〈vc|IBreit|vc〉 − 〈cv|IBreit|vc〉)

+ δVmag (〈vc|H3|vc〉 − 〈cv|H3|vc〉)
]
, (22)

where δV (· · · ) denotes the first-order perturbation correction
of (· · · ) induced by V and IBreit is the electron-electron
interaction operator in Eq. (10) in the Breit approximation.

The amm approximation is most suitable for light Li-like
ions, whereas for heavy ions the screening-potential approx-
imation becomes preferable. It should be mentioned that for
B-like ions, the valence electron is in the 2p1/2 state and the
amm approximation is not applicable at all since it yields only
a part of the (Zα)2 contribution, and not a dominant one.

In the present work, we developed a way to combine both
the screening-potential and amm approximations (for Li-like
ions). To this end, we evaluate the amm correction in Eq. (22)
within the screening-potential approximation,

�Eamm(scr) = δH1〈v|Vscr|v〉 + δH2δVmag〈v|Vscr|v〉
+ δVmag〈v|H3,scr|v〉, (23)

where

H3,scr = −iae
α

2
βα · ∇Vscr (r). (24)

The difference of Eqs. (23) and (22) gives the amm correction
that is beyond the screening-potential approximation, which
can be added to the results obtained in Sec. III B 1.

C. Self-energy results

The results of our numerical calculations of the screened
SE correction for the ground state of Li-like and B-like ions
are presented in Table II. For Li-like ions, we present data
obtained with two approaches: the screening-potential ap-
proximation and the combined screening-potential-and-amm
approximation. With each of the two methods, we employed
three different screening potentials: the CH, KS, and LDF
potentials. The final result was obtained as a half-sum of the
KS and LDF values, with the error taken as the maximal
difference between the three (CH, KS, and LDF) values,
multiplied by a factor of 1.5. This error estimate is sup-
posed to account for uncalculated effects that are beyond
the screening-potential approximation. We observe that the
combined screening-potential-and-amm approach yields re-
sults with a smaller dependence on the choice of the potential
and, as a consequence, to smaller error bars. For B-like ions,
we present results obtained only with the screening-potential
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TABLE III. Comparison of different calculations of the screened
SE corrections to the g factor of the ground state of Li-like ions, in
ppm.

Full QED Screening potential AMM
Z This work [45] [46] [47]

14 −0.258 (17) −0.242 (5) −0.22 (5)
18 −0.354 (35) −0.24 (8) −0.29 (8)
20 −0.404 (46) −0.387 (7) −0.27 (10) −0.33 (10)
32 −0.75 (14) −0.49 (14) −0.62 (27)
82 −3.6 (1.0) −3.44 (2) −3.7 (1.3) −5.6 (2.0)
92 −4.9 (1.3) −4.73 (2) −3.3 (1.2) −9.2 (2.6)

approximation, since the amm approach is not applicable in
this case.

Table III presents a comparison of the results obtained in
this work for the screened SE correction for Li-like ions with
results of previous calculations [45–47]. We observe good
agreement of our data with the results of full QED calcula-
tions [45] and some deviations from the results obtained by
approximate methods. Our final results for all available SE
corrections to the g factor of the ground state of Li-like and
B-like ions are listed in Table IV.

IV. VACUUM POLARIZATION

A. One-electron vacuum polarization

In the independent electron approximation, i.e., without
taking into account the interactions among the electrons, only
the valence electron gives a vacuum polarization (VP) contri-
bution to the Zeeman splitting. The corresponding diagrams
are shown in Fig. 4. These diagrams are divided into two
groups. The first group comprises the diagrams in Figs. 4(a)
and 4(b). They arise due to perturbations of the external
wave functions in the tadpole diagram. We call this group

(a) (b) (c)

FIG. 4. Feynman diagrams corresponding to the vacuum po-
larization contributions arising from the interaction of the valence
electron.

the electric loop (EL) contributions. The remaining diagram
in Fig. 4(c) arises due to a loop correction to the propagator of
the photon mediating the magnetic interaction. Accordingly,
it is called the magnetic loop (ML) contribution. The total VP
contribution to the Zeeman splitting can thus be written as

�EVP = �EVP,EL + �EVP,ML. (25)

For the computation of the EL contribution, we note that
the tadpole part of the EL diagrams is equivalent to the
insertion of a potential function UEL called EL potential. A
detailed derivation of the formal expression for UEL is given
in Ref. [51]. It reads

UEL(x) = iα

2π

∫
d3y

1

|x − y|
∫

CF

dω tr[G(ω, y, y)], (26)

where, again, G denotes the Dirac Coulomb Green’s function
and CF is the usual Feynman integration contour. The contri-
bution to the energy shift is then

�EVP,EL = 2〈v|UEL|δv〉, (27)

where the first-order perturbation |δv〉 of the reference state is
given by Eq. (8).

TABLE IV. SE corrections to the g factor of the ground state of Li-like and B-like ions, in ppm. Labeling is as follows: “One-electron
(pnt)” denotes hydrogenic point-nucleus SE correction (for the 2s state, the results are taken from Ref. [8]), “One-electron (fns)” denotes the
finite nuclear size SE correction, and “Screening” denotes the screened SE correction.

Z One-electron (pnt) One-electron (fns) Screening Total

Li-like:
14 2324.074 (3) −0.258 (17) 2323.816 (18)
18 2325.052 (5) −0.354 (35) 2324.698 (35)
20 2325.674 (5) −0.404 (46) 2325.270 (47)
24 2327.225 (5) −0.510 (72) 2326.714 (73)
32 2331.726 (6) −0.001 −0.75 (14) 2330.98 (14)
54 2358.184 (9) −0.040 −1.56 (48) 2356.59 (48)
82 2456.245 (9) −1.540 (1) −3.55 (1.05) 2451.16 (1.05)
92 2532.207 (9) −5.488 (6) −4.90 (1.31) 2521.82 (1.31)
B-like:
18 −768.3723 (1) −0.96 (16) −769.34 (16)
20 −766.7594 (1) −1.12 (18) −767.88 (18)
24 −762.7517 (1) −1.50 (23) −764.25 (23)
32 −751.0481 (1) −0.001 −2.48 (33) −753.53 (33)
54 −683.2643 (1) −0.012 −6.90 (62) −690.17 (62)
82 −474.4496 (4) −0.301 −16.61 (1.49) −491.36 (1.49)
92 −344.1780 (3) −1.059 (1) −22.02 (2.33) −367.25 (2.33)
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The expression in Eq. (26) is divergent and needs to be
renormalized. To this end, the potential UEL is expanded in
powers of the nuclear coupling strength Zα. This corresponds
to an expansion of the loop in Figs. 4(a) and in Fig. 4(b) in
terms of the free-electron propagator and interactions with
the nucleus. Due to Furry’s theorem, only odd powers of Zα

contribute.
The leading term is of order Zα and is called the Uehling

contribution. This term is charge divergent. After renormaliza-
tion, it results in a finite potential called the Uehling potential
and is given by [52]

UUe(x) = −2

3

α

π
Zα

∫
d3y

�(y)

|x − y|K1(2|x − y|), (28)

where � denotes the nuclear charge distribution normalized to
one and where

K1(x) =
∫ ∞

1
dt e−xt

(
1 + 1

2t2

)√
t2 − 1

t2
. (29)

For our computations of the Uehling potential, we use analyt-
ical formulas resulting from a homogeneously charged sphere
as nucleus which have been derived in Ref. [53].

The contribution of higher order in Zα to the EL potential
is called the Wichmann-Kroll potential UWK [54]. We use the
expressions in Ref. [51] to obtain a partial-wave expansion
for the contributions to the g factor from the partial-wave
expansion of the Wichmann-Kroll potential given by

UWK(x) =
∞∑

|κ|=1

U |κ|
WK(x). (30)

We truncate the partial-wave expansion of the g factor at a
finite value of |κ|, typically |κ| = 11, and estimate the remain-
der by fitting polynomials in 1/|κ| to the tail of the partial-
wave contributions. In Ref. [51] the nucleus is taken to be a
spherical shell and analytical solutions for the Dirac-Coulomb
Green’s function are used in the calculations. We, however,
use a homogeneously charged sphere as a nucleus and, thus,
compute the Dirac-Coulomb Green’s function numerically,
much in the spirit of Refs. [43,49]. The numerical calculation
is performed using the method of Refs. [55,56] for solving the
stationary Dirac equation. We also use approximate expres-
sions for this potential derived in Ref. [57] for pointlike nuclei
to check our numerical calculations. The total EL potential is
then

UEL = UUe + UWK. (31)

In the case of the ML contribution, the effect of the loop
can be expressed as a modification of the vector potential of
the external magnetic field. This results in a modification of
Vmag to VML and the contribution to the Zeeman splitting is
given by

�EVP,ML = 〈v|VML|v〉, (32)

where VML = −eα · AML and AML is the modified vector
potential.

In order to compute the modified vector potential, the loop
is, again, expanded in terms of the free-electron propagator
and interactions with the nuclear field. The leading order term
for a pointlike nucleus is ∝ (Zα)2 and has been derived in

Refs. [6,58]. We call this term the Delbrück contribution. We
only take this leading order term into account and neglect
higher-order contributions as we expect them to be small
compared to the uncertainties of other contributions to the g
factor. We obtain

AML(r) = A(r)�De(|r|), (33)

where the polarization function �De is given by

�De(x) = α

π
(Zα)2 4

x2

∫ ∞

0
dq FDe(q) j1(qx)qx. (34)

In this formula, j1 is the spherical Bessel function of order one
and the function FDe is taken from Ref. [58]. In Tables VII
and VIII we estimate the uncertainty of the ML contribu-
tion due to higher-order contributions conservatively to be
(Zα)2 ln[(Zα)−2] times the Delbrück contribution and include
this into the calculation of the uncertainty of the one-electron
VP contribution.

B. First-order screened vacuum polarization

Apart from single-electron VP contributions to the
bound-electron g factor, we calculated the leading order
interelectronic-interaction correction to the VP effect. Typ-
ical examples of the corresponding Feynman diagrams are
depicted in Fig. 5. Each of these diagrams represents one of
four groups of contributions.

The first group of contributions is again called electric
loop contributions. The diagram in Fig. 5(a) depicts one of
the diagrams belonging to this group. These EL contributions
arise due to first-order perturbative corrections to the wave
functions of the external and the intermediate states and to
the energy levels of the electronic states. Again, there are
reducible and irreducible contributions to the Zeeman split-
ting. Expressions for these contributions have been derived
for Li-like systems in Ref. [59] using the two-time Green’s
function formalism [30], which can be readily generalized to
the B-like case. Alternatively, one can start from Eqs. (9) and
(11) and systematically consider the perturbations of each of
the matrix elements. This approach has the additional advan-
tage that it also provides a numerical algorithm to evaluate
the contributions. We used this second approach to verify
the formulas of Ref. [59] and to compute these contributions.

The second group of contributions, represented by the
diagram in Fig. 5(b) with a loop on the photon mediating the
magnetic interaction, is correspondingly called the magnetic
loop contributions. To compute these contributions, we need
to substitute the magnetic potential Vmag in Eq. (8) by the
magnetic loop potential VML which arises from the modified
vector potential in Eq. (33).

The third group of contributions, represented by Fig. 5(c),
arises from a loop correction to the photon propagator medi-
ating the interaction between the electrons. Accordingly, we
call it the electric loop propagator (ELP) contributions. We
expand the loop in terms of the free-electron propagator and
interactions with the nuclear potential. We take again only
the leading order term into account, which is just the free-
electron loop, since higher-order contributions are expected
to be smaller than the uncertainties of other contributions.
This modifies the photon interaction operator I from Eq. (10)
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(a) (b) (c) (d)

FIG. 5. Vacuum polarization contributions to the two-electron interaction. Each of the diagrams shown represents one type of contribution.
Contributions represented by the first diagram are called electric loop (EL), by the second diagram magnetic loop (ML), by the third diagram
electric loop propagator (ELP), and by the fourth magnetic loop propagator (MLP) contributions.

into [60,61]

Ĩ (ε, r1, r2) = 2

3

α

π

∫ ∞

1
dt

(
1 + 1

2t2

)√
t2 − 1

t2

× I (
√

ε2 − (2t )2, r1, r2). (35)

The contribution is then obtained by using Ĩ instead of I in
Eqs. (9) and (11).

The fourth group of contributions is called magnetic loop
propagator (MLP) contributions. The diagram in Fig. 5(d)
represents one of the contributing diagrams. If we expand
this diagram in terms of the free-electron propagator and
interactions with the nuclear field, then, due to Furry’s
theorem, the leading-order contribution will have four ver-
tices. As such, its leading contribution is of higher order
than the ELP contribution. Thus, we neglect these terms
anticipating that their contribution will be small.

Higher-order interaction effects (i.e., of order 1/Z2 or
higher) have been estimated and given as uncertainty of
the first-order screened vacuum polarization result. For Li-
like ions, this effect has been calculated using a screening-
potential approach. For B-like ions, we expect these terms of
higher order to be too small to be visible compared to the
uncertainties of the other contributions for most of the ions
considered in this work. Thus, we estimate the uncertainty
due to higher-order contributions to be 10% of the first-order
contributions.

C. Vacuum polarization results

We present our results of the single-electron VP correction
for the ground state of Li-like and B-like ions in Table V. The
contributions are divided into EL and ML contributions ac-
cording to our discussion above. The Uehling and Wichmann-
Kroll contributions to the EL term are listed separately. Both
contributions are calculated taking the nuclear size into ac-
count. The uncertainties result from the quoted uncertainties
of the rms radii in Ref. [33]. Compared to the uncertainties
of the other contributions to the g factor, we expect the
dependence on the nuclear model of higher-order corrections
to be of no relevance. In the case of the Wichmann-Kroll
contributions, the uncertainties additionally include the un-
certainties from the truncation of the partial-wave expansion.
The Delbrück contribution has been calculated for a pointlike
nucleus using the formulas of Refs. [6,58]. We observe that

the Uehling terms are the largest contributions in magnitude
for both the Li-like and the B-like case. In the Li-like case,
we see that while the Delbrück contribution is larger than the
Wichmann-Kroll contribution for low nuclear charges, this
changes for higher nuclear charges. We also observe that in
the B-like case the Uehling and Delbrück contributions cancel
each other to a significant degree for low nuclear charges.

In addition, we compared our numerical results for the
Uehling VP correction with the Zα expansion. In Ref. [62], a
Zα expansion formula for the Uehling correction was derived
up to order (Zα)7 for the 1s state only. We derived an approxi-
mation formula for the Uehling correction in the 2p1/2 state
using nonrelativistic expansions of both the bound-electron
wave functions and the wave functions perturbed linearly by a
magnetic field (see Ref. [63] for the derivation of the perturbed
wave function). The formula for the Uehling correction is

gUe,2p = 8

3

∫
dr UUe(r)

[
G2p(r)X2p(r) + F2p(r)Y2p(r)

]
,

(36)
with the radial components of the bound-electron wave func-
tion G2p and F2p and the magnetic wave function X2p and
Y2p. For the 2p1/2 state, we find the following nonrelativistic
expansions of the wave functions:

G2p(r) ≈ −
(

Zα

2

)1/2 (Zαr)2

2
√

3
exp

(
−Zαr

2

)
, (37)

F2p(r) ≈ −
(

Zα

2

)3/2 3Zαr

2
√

3
exp

(
−Zαr

2

)
. (38)

For the radial components of the magnetic wave function, we
find

X2p(r) ≈ 3
2 rF2p(r) − 1

2 G2p(r) , (39)

Y2p(r) ≈ 1
2 rG2p(r) + 3

2 F2p(r), (40)

using E2p = 1 + O[(Zα)2]. With these nonrelativistic wave
functions, the radial integration in Eq. (36) as well as the
remaining integration in the representation of the Uehling
potential [64] were carried out analytically to obtain

gUe,2p ≈ − 31

840

α

π
(Zα)6. (41)

We would like to point out that one has to employ the exact
representation of the Uehling potential in the derivation of this
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TABLE V. Single-electron VP corrections to the g factor of the ground state of Li-like and B-like ions, in units of ppm. The uncertainty
of the Uehling contribution results from the uncertainty of the nuclear rms taken from Ref. [33]. The uncertainty of the Wichmann-Kroll
contribution is the combined uncertainty due to the nuclear rms and the extrapolation of the partial-wave series.

Z EL, Uehling EL, Wichmann-Kroll ML, Delbrück

Li-like:
18 −0.080 041 83 (2) 0.000 244 93 (4) 0.001 102 6
20 −0.120 944 51 (3) 0.000 448 74 (4) 0.001 850 7
24 −0.247 384 1 (2) 0.001 275 7 (1) 0.004 524 6
32 −0.771 498 4 (4) 0.006 605 (4) 0.018 438
54 −6.622 35 (5) 0.134 88 (1) 0.234 30
82 −46.814 5 (4) 1.754 1(1) 1.796 6
92 −87.661 (4) 3.796 7(3) 3.168
B-like:
18 −0.000 418 694 19 (2) 0.000 002 44 (3) 0.000 413 11
20 −0.000 789 094 95 (4) 0.000 005 49 (5) 0.000 706 75
24 −0.002 372 519 (1) 0.000 022 4 (1) 0.001 797 2
32 −0.013 710 925 (2) 0.000 209 (3) 0.007 950 5
54 −0.376 778 (1) 0.012 93 (2) 0.128 97
82 −7.250 91 (4) 0.444 58(5) 1.410 8
92 −18.394 5 (3) 1.289 7(1) 2.881 5

formula since we would obtain the incomplete result

gUe,2p,incomplete ≈ − 1

40

α

π
(Zα)6 (42)

by using the δ function approximation of the Uehling poten-
tial. For the 1s state, however, the δ function approximation
of the Uehling potential is sufficient to derive the well-
known lowest-order contribution to the Uehling correction
(e.g., [62]),

gUe,1s ≈ −16

15

α

π
(Zα)4. (43)

Our numerical all-order results for the Uehling correction
were found to be in good agreement with the approximation
formula in Eq. (41) for low Z .

The results for the first-order screened VP corrections
for the ground state of Li-like and B-like ions are listed in
Table VI. The contributions are divided according to the
groups of diagrams discussed above. Compared to the single-
electron case, we have additionally the ELP contribution. This
has been calculated using the leading free-electron contribu-
tion.

V. OTHER EFFECTS

A. Nuclear recoil

In Furry picture calculations, the nucleus is taken to be
a source of a classical background electric field. This cor-
responds to taking the nuclear mass M to be infinite. While
this often gives a reasonably accurate first approximation, one
needs to take the finite mass of the nucleus into account for
more precise computations of the bound-electron g factor.
This is done in a perturbative expansion in the small parameter
1/M.

In this paper, we include for completeness results for the
nuclear-recoil effect to order 1/M calculated and tabulated in
Ref. [65] for Li-like ions, and in Refs. [66,67] for B-like ions.

We note that the calculations of the nuclear recoil effect for
B-like ions have been improved very recently in Ref. [68].
No values were tabulated for Li-like Xe51+ and B-like Cr19+,
Ge27+, and Xe49+ in the given references. For these ions,
we obtained values and corresponding uncertainties by fitting
functions to the tabulated values, as explained in the follow-
ing.

For Li- as well as B-like ions, the nuclear recoil correction
to the g factor is written as the sum of a Breit term �gBreit

and a QED term �gQED. For Li-like ions, the Breit term is
parametrized in Ref. [65] as

�grec,Breit = (Zα)2

M

[
A(Zα) + B(Zα)

Z
+ C(Zα, Z )

Z2

]
, (44)

where the coefficients A(Zα) and B(Zα) denote contributions
of zeroth and first order in 1/Z , respectively, and C(Zα, Z )
denotes contributions of second and higher order in 1/Z . The
coefficient A(Zα) was calculated analytically while B(Zα)
and C(Zα, Z ) were calculated and tabulated numerically in
the given reference. The QED part is parametrized as

�grec,QED = 1

M

(Zα)5

8
P(Zα). (45)

Interelectronic interaction corrections were included using
screening-potential approximations. To obtain values for
Xe51+, we proceeded as follows: We calculated A(Zα) using
the analytical formula given in Ref. [65]. For B(Zα) and
C(Zα, Z ), we fitted polynomials in Zα to the tabulated values
in the reference. We use the a + b(Zα)2 + c(Zα)4 to fit B(Zα)
and a + b(Zα) + c(Zα)2 + d (Zα)3 to fit ZαC(Zα, Z ). For
the QED part, given by ZαP(Zα), we used the function
a ln(Zα) + b + c(Zα) + d (Zα)5.

For B-like ions, the Breit term is parametrized in
Refs. [66,67] as

�grec,Breit = 1

M

[
AL(Zα) + B(Zα)

Z

]
, (46)
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TABLE VI. First-order VP screening correction to the g factor of the ground state of Li-like and B-like ions, in units of ppm. The uncertainty
of the Uehling contribution results from the uncertainty of the nuclear rms taken from Ref. [33]. The uncertainty of the Wichmann-Kroll
contribution is the combined uncertainty due to the nuclear rms and the extrapolation of the partial-wave series.

Z EL, Uehling EL, Wichmann-Kroll ELP, Uehling ML, Delbrück

Li-like:
18 0.012 746 390(3) −0.000 038 987 (5) −0.000 085 6 −0.000 163 3
20 0.017 346 904(4) −0.000 064 318 (7) −0.000 118 −0.000 246 8
24 0.029 614 54(3) −0.000 152 52 (1) −0.000 205 −0.000 503 0
32 0.069 500 41(3) −0.000 593 2 (3) −0.000 499 −0.001 537
54 0.356 946(3) −0.007 203 3(5) −0.002 71 −0.011 5
82 1.676 36(2) −0.061 650 (4) −0.014 −0.056
92 2.800 2(2) −0.118 67 (2) −0.024 −0.085
B-like:
18 0.006 522(2) −0.000 021 16 (1) 0.000 003 6 −0.000 134 1
20 0.008 987(2) −0.000 035 59 (2) 0.000 011 −0.000 207
24 0.015 766(2) −0.000 088 00 (7) 0.000 044 −0.000 443
32 0.039 435(5) −0.000 374 (2) 0.000 26 −0.001 499
54 0.257 1(2) −0.006 256 (7) 0.005 0 −0.015 5
82 1.853(2) −0.088 1 (1) 0.059 −0.126
92 3.728(2) −0.206 8 (3) 0.13 −0.24

where the coefficients AL(Zα) and B(Zα) again denote con-
tributions of zeroth and first order in 1/Z , respectively. The
subscript “L” on the coefficient denotes that only lower-order
terms in Zα are included. The QED part is given as

�grec,QED = 1

M

[
A2el

H (Zα) + (Zα)3

8
P(Zα)

]
, (47)

where the subscript H denotes higher-order terms in Zα

and the superscript “2el” denotes two-electron contributions
to the recoil correction. Again, interelectronic interactions
are included using screening-potential approximations. To
obtain the recoil correction for Ca15+, Cr19+, and Xe49+,
we fit the function a + b(Zα)2 + c(Zα)3 + d (Zα)7 to the
data for Zα[AL(Zα) + B(Zα)/Z] tabulated in Refs. [66,67],
the function a + b(Zα)2 + c(Zα)4 + d (Zα)6 to the values for
A2el

H (Zα), and the function a + bZα + c(Zα)2 to the data for
ZαP(Zα) for small values of Z tabulated in Ref. [67].

B. Two-loop effects

For the calculation of two-loop contributions in the in-
dependent electron approximation, we use formulas from
Refs. [34,69]. These formulas assume a pointlike nucleus and
are perturbative in the nuclear-coupling strength Zα.

In the Li-like case, the formula includes terms up to order
(Zα)2 and reads [34]

g2s,two-loop = −2

[
1 + 1

24
(Zα)2

]
C4

(α

π

)2
, (48)

where C4 denotes the coefficient of the (α/π )2 contribution in
the expansion of the free-electron magnetic anomaly ae. The
expansion coefficient is taken from Ref. [70]. Uncertainties
from higher-order contributions are estimated by using the
formula for the (Zα)4 contribution from Ref. [4].

For B-like systems, we have an analytic expression to order
(Zα)0. It is given by [69]

g2p1/2,two-loop = −2

3
C4

(α

π

)2
. (49)

We estimate the uncertainty due to terms of higher order in
Zα following the method of Ref. [4] as

g(2)
h.o. = 2g(1)

h.o.

g(2)[(Zα)0]

g(1)[(Zα)0]
, (50)

where g(n)
h.o. is the n-loop higher-order QED contribution and

g(n)[(Zα)0] is the n-loop (Zα)0 QED contribution. The con-
tribution g(1)

h.o. as well as the contributions of order (Zα)0 are
calculated with the formulas of Ref. [69].

VI. RESULTS AND SUMMARY

In Tables VII and VIII we present numerical results for all
the contributions discussed in this work, for Li-like and B-like
ions, respectively. In Table VII, we include previous results for
the total g factor of Li-like ions from Refs. [45,47] for com-
parison. Our results independently confirm these calculations
within the given uncertainties. Our results feature a smaller
uncertainty for high-Z ions than the results of Ref. [47]
from 2004 due to an improved calculation of the screened
self-energy contributions by the combination of the screening
potential and the amm methods. We also include screened
vacuum-polarization contributions which become visible in
the high-Z regime. Reference [45] treats many-electron QED
effects rigorously by the evaluation of the corresponding
photon exchange QED screening diagrams and two-photon
exchange diagrams, and thus provides the most precise results
for the few atomic numbers considered therein. Our value for
the g factor of 40Ca17+ agrees also with the experimental value

gexpt.(
40Ca17+) = 1.999 202 040 5 (11)

from Ref. [71] within the given uncertainties.
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TABLE VII. Contributions to the bound-electron g factor of lithiumlike ions. The uncertainties given in parentheses indicate the uncertainty
of the last digit(s). If no uncertainty is given, all digits of the quoted value are significant.

Contribution 40Ar15+ 40Ca17+ 52Cr21+ 74Ge29+

Dirac value 1.997 108 8 1.996 426 0 1.994 838 1 1.990 752 3
Finite nuclear size 0.000 000 0 0.000 000 0 0.000 000 0 0.000 000 2
Electron correlation:
one-photon exchange, (1/Z )1 0.000 414 5 0.000 461 1 0.000 555 2 0.000 746 5
(1/Z )2+, CI-DFS −0.000 006 7(2) −0.000 006 7(2) −0.000 006 7(2) −0.000 006 7(3)
Nuclear recoil 0.000 000 1 0.000 000 1 0.000 000 1 0.000 000 1
One-loop QED:
SE, (1/Z )0 0.002 325 1 0.002 325 7 0.002 327 2 0.002 331 7
SE, (1/Z )1+ −0.000 000 4(1) −0.000 000 4(1) −0.000 000 5(1) −0.000 000 8(2)
VP, (1/Z )0 −0.000 000 1 −0.000 000 1 −0.000 000 2 −0.000 000 8
VP, (1/Z )1+ 0.000 000 0 0.000 000 0 0.000 000 0 0.000 000 1
Two-loop QED −0.000 003 5 −0.000 003 5 −0.000 003 5 −0.000 003 6(2)
Total theory 1.999 837 8(2) 1.999 202 2(2) 1.997 709 7(2) 1.993 819 0(4)
Theory, Ref. [47] 1.999 837 75(14) 1.999 202 24(17) 1.997 709 70(26) 1.993 819 14(46)
Theory, Ref. [45] 1.999 202 041(13)

Contribution 132Xe51+ 208Pb79+ 238U89+

Dirac value 1.972 750 2 1.932 002 9 1.910 723
Finite nuclear size 0.000 003 4 0.000 078 7(1) 0.000 242
Electron correlation:
one-photon exchange, (1/Z )1 0.001 306 2 0.002 148 3 0.002 510
(1/Z )2+, CI-DFS −0.000 006 8(3) −0.000 007 6(4) −0.000 008(1)
Nuclear recoil 0.000 000 2 0.000 000 4 0.000 001
One-loop QED:
SE, (1/Z )0 0.002 358 1(1) 0.002 454 7 0.002 527
SE, (1/Z )1+ −0.000 001 6(5) −0.000 003 6(11) −0.000 005(1)
VP, (1/Z )0 −0.000 006 3(1) −0.000 043 2(7) −0.000 081(1)
VP, (1/Z )1+ 0.000 000 3(1) 0.000 001 6(1) 0.000 003(1)
Two-loop QED −0.000 003 6(2) −0.000 003 6(12) −0.000 004(2)
Total theory 1.976 400 1(6) 1.936 628 6(18) 1.915 908(3)
Theory, Ref. [47] 1.976 399 9(14) 1.936 625 3(35) 1.915 900 2(50)
Theory, Ref. [45] 1.936 627 2(6) 1.915 904 8(11)

For low atomic numbers, i.e., lower than those considered
here, the nonrelativistic QED approach employing explic-
itly correlated three-electron wave functions was found to
improve the overall theoretical uncertainty [72]. For Li-like
28Si11+, the most precise experimental and theoretical g-factor
values can be found in the very recent Ref. [73].

In Table VIII, we include previous results for the total g
factor of B-like ions from Refs. [38,39,74,75]. Our results
confirm the calculations of Refs. [38,39] within the uncer-
tainties. We have improved the uncertainties compared to
these works due to an improved treatment of the self-energy
contributions.

Recently, the g factor of B-like 40Ar13+ was measured
by the ALPHATRAP experiment [76] at the Max Planck
Institute for Nuclear Physics [29]. The experiment constitutes
the first high-precision measurement of the bound-electron
g factor of a B-like ion, greatly improving the previous
experimental value [77]. The measured value for 40Ar13+

is [29]

gexpt.(
40Ar13+) = 0.663 648 455 32 (93).

Within the given uncertainty, this value agrees with our
result listed in Table VIII. Our calculation in this work
agrees also with a combined theoretical value g(40Ar13+) =
0.663 648 12 (58) of Ref. [29].

Currently, the main limitation for the calculation of the g
factor of B-like argon stems from the contribution resulting
from the higher-order interelectronic interactions. For heavy
ions (from Xe49+ on), the uncertainties of the screened self-
energy contribution dominate over the other uncertainties.
Also, vacuum-polarization effects become more visible and
need to be taken into account. Accordingly, the results for the
g factors of B-like ions can be improved by calculating two-
photon exchange contributions (as has been done in Ref. [45]
for Li-like ions) and by rigorously calculating the screened
self-energy effects (as has been done in Refs. [45,59] for
Li-like ions). Furthermore, for a significant increase of the
theoretical precision in the case of the heaviest elements such
as Pb77+ and U87+, which are relevant for an improved deter-
mination of the fine-structure constant α, two-loop contribu-
tions need to be calculated nonperturbatively in the nuclear-
coupling strength Zα. First milestones have been achieved for
the 1s ground state of hydrogenlike systems in Refs. [14,15];

062513-11



H. CAKIR et al. PHYSICAL REVIEW A 101, 062513 (2020)

TABLE VIII. Contributions to the bound-electron g factor of boronlike ions. The uncertainties given in parentheses indicate the uncertainty
of the last digit(s). If no uncertainty is given, all digits of the quoted value are significant.

Contribution 40Ar13+ 40Ca15+ 52Cr19+ 74Ge27+

Dirac value 0.663 775 5 0.663 092 7 0.661 504 7 0.657 419 0
Finite nuclear size 0.000 000 0 0.000 000 0 0.000 000 0 0.000 000 0
Electron correlation:
one-photon exchange, (1/Z )1 0.000 657 5 0.000 732 0 0.000 882 4 0.001 190 3
(1/Z )2+, CI-DFS −0.000 007 6(4) −0.000 007 7(4) −0.000 008 2(5) −0.000 011 2(7)
Nuclear recoil −0.000 009 1(2) −0.000 009 3(2) −0.000 007 3 −0.000 005 3
One-loop QED:
SE, (1/Z )0 −0.000 768 4 −0.000 766 8 −0.000 762 8 −0.000 751 1
SE, (1/Z )1+ −0.000 001 0(2) −0.000 001 1(2) −0.000 001 5(2) −0.000 002 5(3)
VP, (1/Z )0 −0.000 000 0 −0.000 000 0 −0.000 000 0 −0.000 000 0
VP, (1/Z )1+ 0.000 000 0 0.000 000 0 0.000 000 0 0.000 000 0
Two-loop QED 0.000 001 2(1) 0.000 001 2(1) 0.000 001 2(1) 0.000 001 2(1)
Total theory 0.663 648 1(5) 0.663 041 0(5) 0.661 608 5(5) 0.657 840 4(8)
Theory, Ref. [38] 0.663 648 8(12) 0.663 041 8(12)
Theory, Ref. [39] 0.663 647 7(7)
Theory, Ref. [74] 0.663 899(2) 0.663 325(56) 0.661 955(68) 0.658 314(93)
Theory, Ref. [75] 0.663 728 0.663 130 0.661 714

Contribution 132Xe49+ 208Pb77+ 238U87+

Dirac value 0.639 416 9 0.598 669 6 0.577 389
Finite nuclear size 0.000 000 1 0.000 006 8 0.000 029
Electron correlation:
one-photon exchange, (1/Z )1 0.002 118 2 0.003 654 9 0.004 394
(1/Z )2+, CI-DFS −0.000 011 0(5) −0.000 019 9(7) −0.000 023
Nuclear recoil −0.000 003 0 −0.000 001 8 −0.000 001
One-loop QED:
SE, (1/Z )0 −0.000 683 3 −0.000 474 8 −0.000 345
SE, (1/Z )1+ −0.000 006 9(6) −0.000 016 6(15) −0.000 022(2)
VP, (1/Z )0 −0.000 000 2(1) −0.000 005 5(5) −0.000 014(1)
VP, (1/Z )1+ 0.000 000 2(1) 0.000 001 7(2) 0.000 003(1)
Two-loop QED 0.000 001 2(1) 0.000 001 2(3) 0.000 001(1)
Total theory 0.640 832 2(8) 0.601 815 6(18) 0.581 411(3)
Theory, Ref. [74] 0.641 61(18) 0.602 86(33) 0.582 48(40)

these calculations need to be extended to the 2p valence
electron of B-like ions.

In summary, we performed a systematic calculation of
interelectronic and radiative effects on the one-loop level to
the ground-state g factor of Li-like and B-like ions. These
calculations for B-like ions have been extended to heavy
elements. The interelectronic interaction on the level of
one-photon exchange has been calculated using perturbation
theory. Many-electron SE effects have been taken into account
through screening potentials while the leading-order screen-
ing effect for VP corrections has been calculated explicitly

using perturbation theory. Estimated theoretical uncertainties
have been supplemented for each value.
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