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Stability of the closed-shell atomic configurations with respect to variations in nuclear charge
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In this paper we systematically investigate the stability of the restricted Hartree-Fock (RHF) solutions for all
closed-shell atoms and ions up to xenon-like systems by means of a symmetry-adapted Thouless stability matrix.
We express the RHF solution and the lowest eigenvalue of the stability matrix in the form of a series in 1/Z; Z is
the nuclear charge. Using Padé and Weniger sequence transformations, we first determine the onset of the pure
singlet instability, i.e., the instability preserving all the symmetries of the underlying Hamiltonian, and identify
it with the critical charge Zc, i.e., the smallest charge supporting a bound-state RHF solution. This thus finally
gives a physical meaning to the pure singlet instability. Consequently, we find that no basis-set-independent RHF
solution for any doubly charged anion exists. Second, we determine the onset of instabilities associated with the
breaking one of the symmetries of the Hamiltonian and give a simple qualitative criterion for their appearance.
In particular, we find that once the shells are no longer filled according to the Aufbau principle for hydrogenic
energy levels, cations are generally unstable with respect to monoexcitations violating the spherical symmetry.
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I. INTRODUCTION

The independent particle model (IPM) [1] is a starting
point of the vast majority of ab initio calculations of the
atomic and molecular electronic structure. Depending on
whether the IPM wave function does or does not satisfy all the
symmetries of the underlying Hamiltonian, one generally dis-
tinguishes a restricted Hartree-Fock (RHF) or an unrestricted
HF (UHF) model. RHF equations yield a symmetry-adapted
solution (SAS). UHF equations lead generally to a broken-
symmetry solution (BSS), but, of course, the SAS solves the
UHF equations as well.

The question of whether the SAS lies above or below
a BSS can can be investigated by calculating the lowest
eigenvalue of the stability matrix, first introduced by Thouless
[2]. The advantage of this approach is that the stability of
the found SAS can be investigated without actual calculation
of a BSS: If the eigenvalue is negative (positive), the SAS
is unstable (stable). The stability matrix is constructed using
monoexcitations from the SAS. These monoexcitations can
be symmetry adapted according to the symmetries of the
underlying Hamiltonian, and consequently the stability matrix
factorizes into a block-diagonal form. This was noted for the
first time by Čížek and Paldus [3,4], who considered spin-
preserving (singlet) and spin-violating (triplet or nonsinglet)
types of instabilities. The physical meaning of the instabilities
has been assigned as follows: besides a SAS there is a BSS
of lower energy that violates the spin symmetry in the triplet
case and the spatial symmetry of the fixed nuclear framework
in the singlet case; cf. [5]. The difficult, and still not fully
resolved, question is whether the HF symmetry breaking is
real or artifactual, i.e., whether symmetry breaking does or
does not survive when electronic correlation is taken into

account; cf. [5,6]. The symmetry adaptation of the stability
matrix was later extended to include also discrete symmetries
for a generic molecular Hamiltonian in [7–10].

In the case of an atomic Hamiltonian, there are in gen-
eral five operators commuting with the Hamiltonian, namely,
Ŝ2, Ŝz, L̂2, L̂z, Π̂, where Ŝ, L̂, and Π̂ stand for the total spin, to-
tal angular momentum, and parity operators, respectively. The
monoexcitations generally conserve Sz and Lz [11], but not
S(S + 1), L(L + 1), and �. When using symmetry-adapted
monoexcitations, one of the blocks of the stability matrix
preserves all the symmetries of the Hamiltonian. This block
will be termed as a pure singlet stability matrix, to distinguish
it from the above-mentioned molecular case, where the singlet
stability matrix consists of a mixture of a pure stability matrix
and a stability matrix violating other than spin symmetry
(usually spatial).

The purpose of this paper is twofold. First we would like
to elucidate the physical meaning of pure singlet instability,
which has been still generally unclear. Second, we would like
to systematically search for onsets of instabilities of RHF
solutions for closed-shell atomic systems [12] associated with
the breaking one of the symmetries of the Hamiltonian. In the
forthcoming papers we would like to explore consequences of
this phenomenon for calculation of the correlation energy.

To achieve these goals we first show that a SAS can be
obtained via a perturbative expansion of the RHF equations
in the form of the series in 1/Z [13]. We then determine radii
of convergence of the series, which correspond to so-called
critical charges Zc. For Z < Zc the electronic correlation is
so strong that no bound-state SA HF solution for the given
atom exists. Next, we construct an expansion in the powers
of 1/Z for the lowest eigenvalues λS,L,�(Z ) of the blocks
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of the symmetry-adapted stability matrix. We need to sum
this expansion outside its radius of convergence; therefore
we use Padé and Weniger sequence transformations, see,
e.g., [14,15], to search for the onset of instabilities. That is,
we search for values of the charges Zi(S, L,�) such that
λS,L,�(Z = Zi(S, L,�)) = 0. At this point, the stable SAS
becomes unstable or vice versa. The main advantage of this
perturbative approach is that we can obtain information about
the behavior of the SAS in the region of strong electron corre-
lation where the usual self-consistent (SC) method fails. Also,
the onset of instabilities is obtained much more efficiently
within the perturbative approach developed here than via the
SC method. We present numerical evidence that Zi(0, 0) = Zc

[16], i.e., that the pure singlet instability corresponds to the
case when no bound-state SA HF solution exists. This gives a
physical meaning to the pure singlet instability.

While there are works focusing on RHF instabilities for
atoms, see for example [17], no systematic study of the entire
Mendeleev periodic table (up to Xe) has been carried out.
Also while there have been several suggestions for alternative
numerical algorithms to the SC procedure, see, e.g., [18],
some of them even with a mathematical level of rigor [19,20],
they are limited to specific cases and none of them allows one
to draw a clear demarcation line between the cases where RHF
does not exist at all and where it does exist, but is difficult
to obtain.

The paper is organized as follows. In Sec. II we recapitulate
briefly RHF equations and criteria for the stability of their
solutions. In Sec. III we present and discuss our results. Our
findings are summarized in Sec. IV.

II. THEORY

A. Restricted Hartree-Fock equations

The RHF model is a well-known approximation; see, e.g.,
[21]. Therefore we restrict ourselves here to the bare mini-
mum needed for a coherent presentation.

We put successively 2N electrons into ν shells labeled by
a; in a given shell a there are 2(2la + 1) states of the form
φna,la (r)Yla,ma (n)|sa〉, where Yl,m(n) are spherical harmonics
and magnetic quantum number ma runs from −la to la by
1 and |sa〉 = | 1

2 ,± 1
2 〉 are the spin states. This is commonly

referred to as the central field or shell model; the spin and
angular parts of the one-electron functions are held fixed; the
radial parts are optimized.

Using by now standard methods (see, e.g., [21]) one easily
derives that the nonrelativistic RHF equations for a closed-
shell atom with 2N occupied spin orbitals read (we rescaled
the electronic coordinates r(i) → r(i)/Z)

f̂a|a〉 = εa|a〉, f̂a|a〉1 = ĥla
0 |a〉1

+ 1

Z

ν∑
b=1

2lb + 1

〈b|b〉 〈b|2(2v̂c|a〉1|b〉2 − v̂e|b〉1|a〉2), (1)

where the one-electron energies εa are related to the total
energy via the relation

E

Z2
=

ν∑
a=1

(2la + 1)

(
εa + 〈a|ĥla

0 |a〉
〈a|a〉

)
. (2)

Here, |a〉 are the radial orbitals in the abstract notation; their
projections onto the coordinate basis are the radial functions
〈r|a〉 = φna,la (r). Furthermore, ĥl

0 is the radial part of the
hydrogenic Hamiltonian,

ĥl
0 = 1

2

[
p̂2

r + l (l + 1)

r2

]
− 1

r
, p̂r = −i

(
∂

∂r
+ 1

r

)
, (3)

and the radial operators of the Coulomb and exchange inter-
action read

v̂c = r−1
> , v̂e =

la+lb∑
l=|la−lb|

rl
<

rl+1
>

(la, 0, lb, 0|l, 0)2

2l + 1
, (4)

where r< = r1, r> = r2 if r1 < r2 and r< = r2, r> = r1 if r1 >

r2; (l1, i, l2, m − i|l, m) are Clebsch-Gordan coefficients.
Equations (1) are most easily solved by expanding the

sought radial functions into the scaled Sturmian basis set, see,
e.g., [22–24],

φna,la (r) =
la+N∑

j=la+1

c j,a

na
R j,la (r/na). (5)

The Sturmian functions are solutions of the eigenvalue
problem{

r

2

[
p̂2

r + l (l + 1)

r2

]
+ r

2

}
Rn,l (r) = nRn,l (r), (6)

where n is natural number. They are related to hydrogenic
functions Rh

n,l by the simple relation Rh
n,l (r) = 1

n2 Rn,l (r/n).
Projecting the RHF equations (1) onto the Sturmian basis

set we transform these equations into algebraic RHF equa-
tions. These equations have the form of a pseudoeigenvalue
problem; the eigenstates comprise the coefficients c j,a and
the eigenvalues are the one-particle energies εa. The pertinent
matrix elements are calculated using a numerically stable
method developed in [23]. The algebraic RHF equations are
usually solved by the SC method. Alternatively, one can solve
algebraic RHF equations by expanding the energy εa and the
coefficients ci,a into a perturbation series in the inverse powers
of the nuclear charge Z ,

εa =
∞∑

r=0

zrε (r)
a , ci,a =

∞∑
r=0

zrc(r)
i,a , z = 1/Z, (7)

where

ε (0)
a = − 1

2n2
a

, c(0)
i,a = δi,na√

na
. (8)

Note that the generation of the terms of the perturbation
series is enormously simplified by imposing the normalization
condition 〈b|b〉 = 1.

B. Symmetry-adapted stability matrix

The HF equations arise from the requirement that the first
variation of energy in the space of monoexcitations vanishes.
However, this requirement does not ensure that the found
solution is indeed a local minimum, for δ(1)E = 0 leads to any
extremal point, i.e., also to (local) maxima and saddle points.
Therefore, only if the second variation of energy is positive,
δ(2)E > 0, the found solution, corresponding indeed to a local

062504-2



STABILITY OF THE CLOSED-SHELL ATOMIC … PHYSICAL REVIEW A 101, 062504 (2020)

minimum, is said to be stable. Thus we construct the matrix
	 of the second variations in the space of monoexcitations;
see Eqs. (9) and (11) below. As is well known, the sufficient
condition for an extreme to be a local minimum is that the
lowest eigenvalue of the corresponding Hessian matrix is
positive. Therefore the sign of the lowest eigenvalue of the
matrix 	, see Eq. (13) below, determines the (in)stability of
the found RHF solution.

For closed-shell systems the spin-adapted stability matri-
ces read for a real basis [3,4]

ΛS
a,b = δoa,ob[ foa,ob − δoa,obεa]

+ 1

Z

{
2
(
r−1

12

)
oaob,oaob

[1 + (−1)S]

− (
r−1

12

)
oaob,oboa

− (
r−1

12

)
oaob,oboa

}
. (9)

The stability matrix is expressed here in the basis of
monoexcitations labeled by a and b. Each monoexcitation a
is determined by the occupied and virtual orbitals labeled
by oa and oa, respectively. These orbitals are eigenstates
of the Fock operator. Finally, S = 0 and S = 1 correspond
to spin-conserving (singlet) and spin-violating (triplet) sta-
bility matrices, respectively. The Fock matrix in Eq. (9) is
defined as

foa,ob = (ĥ0)oa,ob + 1

Z

∑
oc

[
2
(
r−1

12

)
oaoc,oboc

− (
r−1

12

)
oaoc,ocob

]
,

(10)
where the summation in the last equation runs through all
occupied orbitals, ĥ0 is a one-electron Hamiltonian for the
kinetic energy of the electron and its potential energy in
the Coulomb field of the nucleus, ĥ0 = −∇2

2 − 1
r , and r−1

12 is
the inverse distance between two electrons.

In the case of atoms the occupied and virtual orbitals in
(9), oa and ob, are uniquely defined by the triples of quantum
numbers (na, la, ma) and (na, la, ma), respectively. The matrix
(9) can thus be further factorized according to the total angular
momentum L and parity � of the monoexcitations,

ΛS,L,�
a,b =

la∑
ma=−la

lb∑
mb=−lb

(la, ma, la,−ma|L, 0)

× (lb, mb, lb,−mb|L, 0)(−1)ma+mbΛS
a,b, (11)

where the parity of the monoexcitation is defined as

(−1)� = (−1)la+la = (−1)lb+lb . (12)

Note that with this symmetry adaptation, each monoexcitation
a is characterized by quantum numbers (na, la, na, la), where
na, la and na, la are principal, orbital quantum numbers of the
occupied and virtual orbitals, respectively.

To investigate the stability of the RHF solution we solve the
eigenvalue problem (we suppress the superscripts S, L,�),

Λ̂|λ〉 = λ|λ〉. (13)

According to the sign of the lowest eigenvalue λ, the RHF
solution is stable (if λ > 0) or unstable (if λ < 0). The cor-
responding eigenvector gives the direction of the steepest
descent (λ < 0) or the slowest ascent (λ > 0) on the mean
energy hypersurface [3,4].

We found that for obtaining global insight about stability of
the given electron configuration in the field of the nucleus with
respect to variation of the nuclear charge, it is advantageous
to search again for the solution of Eq. (13) in the form of the
series in inverse powers of nuclear charge Z:

|λ〉 =
∞∑

r=0

|λr〉zr, λ =
∞∑

r=0

λrzr, z = 1/Z, (14)

where the zeroth-order solution reads, cf. Eqs. (9) and (10) in
the limit of Z → ∞,

λ0 = 1

2

(
1

n2
HO

− 1

n2
LU

)
, 〈r|λ0〉 = 1

n2
LU

RnLU,lHO (r/nLU),

(15)
where the radial functions R are defined by Eq. (6). Further,
nHO denotes the principal quantum number of the occupied
orbital with the highest hydrogenic energy and nLU and lHO

denote the principal and orbital quantum numbers of the
virtual orbital with the lowest hydrogenic energy, respectively.
For example, in the case of neon-like systems, there are two
occupied orbitals with the highest hydrogenic energy (2s and
2p) and three virtual orbitals with the lowest hydrogenic
energy (3s, 3p, and 3d). Thus, in general, one has to employ
the degenerate perturbation method; see [25].

The physical reasoning behind the choice of the zeroth-
order solution is the following: As the nuclear charge Z
increases, the role of the electron-electron interaction di-
minishes; cf. Eq. (1). In the limit Z → ∞, the one-particle
energies εa become that of the hydrogen, εa = −(2na)−2. In
this limit, the lowest eigenvalue of the stability matrix is
then simply the difference between the lowest unoccupied hy-
drogenic orbital and the highest occupied hydrogenic orbital
[26]. It turns out, see next section, that the stability of the
given electronic configuration with respect to variation of the
nuclear charge can be classified according to the sign of λ0

(see Fig. 1 for illustration):
(i) nLU > nHO. This is the only possible case when all

hydrogenic shells with different orbital quantum numbers l for
a given n are occupied. The only such systems are helium-like
and neon-like; otherwise we have to consider also the other
possibilities listed below.

(ii) nLU = nHO. This is the most complex case and appears
whenever not all of the shells with different l for a given n are
occupied; cf. [27]. The first such case appears for beryllium-
like atoms, where the 2s shell is occupied, but not the 2p shell;
the pertinent hydrogenic monoexcitation is (2, 0; 2, 1).

(iii) nLU < nHO. This appears whenever the atomic shells
are not filled in accordance with the Aufbau principle for
hydrogenic levels. The first such case appears for calcium-like
atoms where the 4s orbital is filled earlier than the 3d or-
bital; the pertinent L = 2,� = 0 hydrogenic monoexcitation
is (4, 0; 3, 2) (see Fig. 1). The next case is a strontium-like
system where the 5s orbital is filled earlier than the 4d and
4 f orbitals; the pertinent L = 2,� = 0 and L = 3,� = 1
hydrogenic monoexcitations are (5, 0; 4, 2) and (5, 0; 4, 3),
respectively.

The calculation of the higher-order terms of the series
(7) and (14) is relatively straightforward, albeit somewhat
laborious; for details see [25].
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FIG. 1. Illustration of the three types of monoexcitations, see
Sec. II B, for Ca-like atoms. The black dots represent occupied
orbitals that do not participate in the monoexcitation. The gray
dots mark the shell from which we excite and the red dots mark
the virtual orbital to which we excite. Case (a): L = 0. The lowest
unoccupied (LU) hydrogenic orbital lies above the highest occupied
(HO) hydrogenic orbital, i.e., nLU > nHO; the shown monoexci-
tation is (4, 0; 5, 0). Hence λ0 > 0. Case (b): L = 1, � = 1. The
LU hydrogenic orbital has the same energy as the HO hydrogenic
orbital, i.e., nLU = nHO; the shown monoexcitations are (4, 0; 4, 1)
and (3, 1; 3, 2). Hence λ0 = 0. Case (c): L = 2, � = 0. The LU
hydrogenic orbital lies below the HO hydrogenic orbital, i.e., nLU <

nHO; the shown monoexcitation is (4, 0; 3, 2). Hence λ0 < 0.

III. RESULTS AND DISCUSSION

Standard analytic HF calculations [28] are, in practice,
plagued by the limitations of a finite basis size. In calculations
such as those in this study the basis size proved to play a
crucial role and very large bases had to be used to eliminate
their effect on the results. Specifically, we observed strong

TABLE I. Values of the nuclear charge Zi(S, L, �) for which the
first zero root appears among the eigenvalues of the singlet (S =
0, L = 0, � = 0) and spin triplet (S = 1, L = 0, � = 0) stability
matrices. The results were obtained using Weniger (w) or Padé (p).
Zc is the radius of convergence of the perturbative series for total
energy.

Zc Zi(0, 0) Zi(1, 0)

He-like 0.82 0.8(2)p 1.06p

Be-like 2.87(3) 2.84w 3.04w

Ne-like 8.5(1) 8.6p 8.5(2)w

Mg-like 10.8(3) 10.9(2)p 11.03p

Ar-like 16.6(3) 16.60w 16.29w

Ca-like 18.9(1)p 19.0p

Zn-like 28.9p 29.0p

Kr-like 34.57w 34.27w

Sr-like 37.0(1)w 37.2(1)p

Cd-like 46.9w 47.1(2)p

Xe-like 52.4(4)w 52.3(1)w

basis-size dependence up to bases of 30 functions per radial
orbital. The stabilized results were obtained for bases of 40–
60 functions per radial orbital.

We studied all closed-shell (CS) atomic systems up to
xenon-like systems. For heavier atoms, it is better to account
for the relativistic effects from the very beginning. Given the
extensiveness of the data, we do not present the coefficients
for the series (7) and (14) here. Nevertheless, they are avail-
able on request. We note that the results obtained from the
series (7) are in an excellent agreement with the best results
available in the literature [29–31].

The obtained perturbative energies (7) were analyzed by
the method described in [32]. We obtained critical nuclear
charges that correspond to the lowest value of nuclear charge
Zc (for a given electronic configuration) for which a SAS
can still exist. We observed that, within numerical errors, the
radii of convergence of total and all orbital energies are the
same. However, this method yielded reasonable results only
for systems up to Ar-like systems. Even for these systems,
the convergence of the method was not impressive, though.
This suggests that the assumption on the nature of the closest
singularity to the expansion point, which is the basis of the
method, is not completely correct; for details see [25].

Next, we constructed the stability matrix, see Sec. II B,
for S = 0, 1; L = 0, 1, 2, 3; and � = 0, 1. We then found
perturbative series (in 1/Z) of the lowest eigenvalues λS,L,� of
the blocks of the symmetry-adapted stability matrix. We need
to sum these series outside their radius of convergence; thus
the series were resummed using Padé or Weniger sequence
transformations to yield onsets of instabilities Zi(S, L,�),
λS,L,�(Z = Zi ) = 0.

A summary of the results displayed in Tables I–IV follows.
For illustration, see Fig. 2, where λS,L,� is plotted as a
function of Z for Ca-like systems for S = 1 and L = 1, 2, 3
monoexcitations.

(i) Pure singlet instability: The found onsets of pure sin-
glet Zi(0, 0) and pure spin Zi(1, 0) instabilities are listed in
Table I. Note, though, that the performance of the Weniger or
Padé sequence transformations is not always impressive. First,
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TABLE II. Onsets of general instabilities Zi(1, L, �) for sys-
tems isoelectronic with rare-earth metals for L = 1, 2, 3; only
Zi(1, L,�) > Zi(0, 0) are listed. The superscripts w and p denote
whether Weniger or Padé summation was used, respectively. The
superscripts and subscripts +, − denote the sign of λS,L,�(Z ) for Z
above or below Zi(S, L,�), respectively. − means that no solution
above Zi(0, 0) was found.

Zi(1, 1, 1) Zi(1, 2, 0) Zi(1, 3, 1)

Be-like +
−4.50w +

−2.93w +
−2.88p

Mg-like +
−11.61p +

−11.39w +
−10.94p

Ca-like +
−20.19p −

+20.60p −
+
−19.4p

Sr-like +
−38.3(1)w −

+38.65p −
+49.49w

+
−38.72w

we would like to draw attention to the coincidence (within
numerical error) of Zi(0, 0) and Zc, i.e.,

Zi(0, 0) = Zc. (16)

Unlike when determining Zc, we were able to find Zi(0, 0)
for all studied systems. We can see that indeed in all cases
(with the possible exception of Sr-like and Xe-like systems,
but here we could be still within the error of the sequence
transformation), Zi(0, 0) lies in the interval (Zn − 2, Zn − 1);
Zn denotes the nuclear charge for which a given atom is
electrically neutral. This means that isolated cations, neutral
atoms, and once negatively charged ions do exist in the HF
approximation, while doubly negative anions do not. We
conclude that the results obtained in [33–35] for O2− (and
S2−) are artifacts of finite basis sets [36]. Hence these results
are of no relevance to the experimental finding of possible res-
onances in O2− [37]; cf. [38]. Further, for helium-like atoms,
Zexact

c � 0.911 [39]; hence ZHF
c = 0.82 < Zexact

c . From this
example we see that electronic correlation has a destabilizing
effect and ZHF

c is a lower bound to Zexact
c . Although we are not

aware of any proof that this indeed holds in general, we find
it very likely. Thus probably no bound-state solution of the
exact Schrödinger equation exists for any double and more
negative isolated atomic anions. The nonisolated anions are
another story, however; see, e.g., [40–42]. Nevertheless, the
double negative anions, even when isolated, can still support
resonances. This seems to be the case of O2− and S2− as
there is both experimental [37,38,43] and theoretical [44,45]

TABLE III. Onsets of general instabilities Zi(1, L,�) for sys-
tems isoelectronic with noble gases for L = 1, 2, 3 and � = 0, 1;
only Zi(1, L, �) > Zi(0, 0) are listed. Meaning of the superscripts w

and p, the superscripts and subscripts +, −, and − is the same as in
Table II.

Zi(1,1,0) Zi(1,1,1) Zi(1,2,0) Zi(1,2,1) Zi(1,3,0) Zi(1,3,1)

He-like +
−0.93w +

−0.84p +
−0.83p

Ne-like +
−8.84p +

−8.38w +
−8.5w +

−8.93w +
−8.61p +

−8.79w

Ar-like +
−16.30w +

−17.0(4)p − +
−17.5(2)p +

−17.18w +
−17.0(5)p

Kr-like +
−34.29w +

−35.0(2)p − +
−34.83p +

−35.80w +
−34.5(4)p

Xe-like +
−52.16p − −

+59.7(1)p − −
+60.07p −

+62.83p

TABLE IV. Onsets of general instabilities Zi(1, L, �) for
systems isoelectronic with Zn and Cd for L = 1, 2, 3; only
Zi(1, L, �) > Zi(0, 0) are listed. Meaning of the superscripts w and
p and the superscripts and subscripts +, − is the same as in Table II.

Zi(1, 1, 1) Zi(1, 2, 0) Zi(1, 3, 1)

Zn-like +
−29.45w +

−28.95w +
−30.49w

Cd-like +
−47.56w +

−46.8(2)p −
+59.64p

evidence for it. Another alternative to the methods used in
[44,45] would be an extensive configuration interaction ac-
companied by complex scaling [46]. We would like to return
to this question in the future.

(ii) Pure spin instability: We found the pure spin instabil-
ities Zi(1, 0) to lie in the interval (Zn − 1, Zn) in the case of
rare-earth-metal-, He-, Zn-, and Cd-like systems. This means
that for once negative anions of these systems, which still
can exist as shown above, a spin BSS lies below the SAS.
In the cases of H− and Li−, the presence of the BSS manifests
itself through a nonconvergence of the SC method for RHF
equations. In the case of systems isoelectronic with noble
gases, the pure spin instability lies below Zi(0, 0). That is, the
systems cease to exist before a spin instability can appear.

(iii) Orbital instabilities: We found that pure orbital in-
stabilities Zi(0, L,�) are less likely than general instabilities
Zi(1, L,�); we will therefore present and discuss results only
for the latter (see Tables II, III, and IV).

FIG. 2. Dependence of the eigenvalues λS,L,� on the nuclear
charge Z for Ca-like systems. The dashed horizontal line high-
lights λ = 0. The dashed vertical lines mark where the three curves
λS,L,� change their sign and are at Z = Zi(1, 1, 1) � 20.19, Z =
Zi(1, 2, 0) � 20.60, and Z = Z ′

i (1, 2, 0) � 19.4; cf. Table II. Con-
sider the particular case of a neutral calcium atom (Z = 20), for
instance. The green (the top one for large Z) and blue (the bottom
one for large Z) curves lie above λ = 0; thus we see that the atom
is (1,2,0)- and (1,3,1)-stable. The red line (the middle one for large
Z) lies below λ = 0, showing that the atom is (1,1,1)-unstable. By
the (1,1,1) instability we mean that the SA HF solution is unstable
with respect to the monoexcitations that violate spin (S = 1) and
orbital (L = 1, � = 1) symmetry. Similarly, we see that all cations
are (1,1,1)- and (1,3,1)-stable, but (1,2,0)-unstable.
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T. UHLÍŘOVÁ AND J. ZAMASTIL PHYSICAL REVIEW A 101, 062504 (2020)

The best way is to summarize the behavior of general
instabilities according to the sign of λ0.

First, for λ0 > 0 we found that in all studied cases the
highest Zi(1, L,�) lies in the interval (Zn − 2, Zn − 1) and
there are no other roots above Zn − 2.

Second, if λ0 < 0, the highest Zi(1, L,�) appears above
Zn, and cations with Z > Zi(1, L,�) are unstable, while sys-
tems with Z < Zi(1, L,�) are stable. In addition, there may
be another root Z ′

i (1, L,�); Z ′
i (1, L,�) < Zi(1, L,�). De-

pending on the exact position of Z ′
i (1, L,�), the neutral atom

may be stable (e.g., Ca with respect to S = 1, L = 2,� = 0)
or unstable (e.g., Sr with respect to S = 1, L = 3,� = 1);
see Fig. 2.

The last case, λ0 = 0, is the one showing the least char-
acteristic behavior. Generally, Zi(1, L,�) lies in the interval
(Zn − 1, Zn) and there are no other solutions for Z > Zi(0, 0).
There are a few exceptions, though. In the case of Be-,Ca-,
and Sr-like systems, Zi(1, 1, 1) > Zn, which thus yields the
neutral Be, Ca, and Sr atoms (1,1,1)-unstable.

We note that our results for Be-like systems are in agree-
ment with those obtained in [17]. Note, though, that the
authors investigated the instability of RHF solution only in
the region Z = 3–5 and they did not adapt the stability matrix
to orbital symmetry.

IV. CONCLUSIONS

Starting with the methodological point of view, the major
result of this work is that the onset of the pure singlet insta-
bility, i.e., the instability preserving all the symmetries of the
underlying Hamiltonian, coincides with the critical charge Zc,
i.e., the smallest charge that still supports a bound-state RHF
solution. This gives a physical meaning to the pure singlet
instability.

Note, in addition, that the perturbative treatment developed
in this paper provides global information about the solution
of the HF equations. Indeed, when using the SC method,
one can never be sure whether the found solution is truly
a global minimum. In contrast to it, when we are in the
domain of analyticity, i.e., for Z > Zc, and when the stability
matrix is positive definite, the RHF solution is clearly a
global minimum; cf. [47]. Note, though, that atoms are clearly
extremely simple in this respect as the isoelectronic species
are characterized by a single parameter Z . Also, note that in
the case of other than pure singlet instability, the HF energy
is an analytic function of nuclear charge Z in the vicinity of
the onset of instability Zi(S, L,�); the symmetry breaking is
not accompanied by any singular behavior of the energy; cf.
[48]. Finally, let us note that we established the existence and
uniqueness of RHF solutions for closed-shell atoms that are
much stronger than those proved rigorously in [49]. It would
be interesting to see whether the results of this paper can be
put on the same rigorous footing.

On the side of the actual stability of the RHF solutions for
closed-shell atoms, the situation is the following.

The critical charge Zc lies in the interval (Zn − 2, Zn − 1);
Zn is the value for which the atom is electrically neutral.
This means that no basis-set-independent bound-state RHF

solution for any isolated doubly negative atomic anions exists;
however, there can be still resonance solutions.

The onset of the pure spin instability Zi(1, 0) lies in the
interval (Zn − 1, Zn) in the case of closed shells of s and d
elements and of He-like systems, but it is smaller than Zn − 1
for noble-gas-like systems (except for He).

For the onset of general instability Zi(S, L,�) the fol-
lowing qualitative picture holds. First, not surprisingly, the
pure orbital instability appears less likely than the general
instability Zi(0, L,�) < Zi(1, L,�). Next, depending on the
type of the lowest monoexcitation, we can distinguish three
cases. Recall that nHO and nLU denote the principal quantum
numbers of the occupied orbital with the highest and the vir-
tual orbital with the lowest hydrogenic energies, respectively.
First, if nLU > nHO, Zi(S, L,�) < Zn − 1 and all existing
systems are stable. Second, if nLU = nHO, Zi(S, L,�) lies
in the interval (Zn − 1, Zn + 1) and there are no other roots
above Zc. Third, if nLU < nHO, Zi(S, L,�) > Zn and cations
with Z > Zi(S, L,�) are unstable. There is usually another
root Z ′

i (S, L,�) < Zi(S, L,�) and depending on its position,
the corresponding neutral atom is (un)stable.

Generally speaking, as long as the shells are filled accord-
ing to hydrogenic energies, electronic correlation is likely to
destabilize the system. However, once this ceases to hold, for
instance the 4s orbital is filled before the 3d orbital, electronic
correlation has a tendency to stabilize the system.

There are several loose ends that we would like to inves-
tigate in the future. The most interesting are the following.
The first and foremost is to answer the question of obtaining
a BSS from a SAS; see, e.g., [3,4,7,50,51]. The second is to
resolve the question of how to best account for the electronic
correlation in the case when HF symmetry breaking takes
place. It has long been recognized, see, e.g., [4], that in
the case of open-shell systems the spin instability is always
present. When dealing with open shells, one usually starts
with closed-shell cations to avoid spin contamination; see,
e.g., [52]. However, in atoms the situation is not so sim-
ple since, as we have shown, moderately heavy cations are
not spherically symmetric on the IPM level. The third is
to investigate whether factorization of the singlet stability
matrix into the pure singlet instability and the instability
violating some other than spin symmetry of the Hamiltonian
can shed the light on the question of real versus artifactual
symmetry breaking on the IPM level. Comparison of the exact
and HF critical charges for helium illustrates that, from all
the instabilities found, the pure singlet instability is the one
that persists even when the electron correlation is taken into
account exactly.
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