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Skyrme-type nuclear interaction as a tool for calculating the finite-nuclear-size correction to atomic
energy levels and the bound-electron g factor
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A state-of-the-art approach for calculating the finite-nuclear-size correction to atomic energy levels and the
bound-electron g factor is introduced and demonstrated for a series of highly charged hydrogenlike ions. First,
self-consistent mean-field calculations based on the Skyrme-type nuclear interaction are employed in order
to produce a realistic nuclear proton distribution. In the second step, the obtained nuclear charge density is
used to construct the potential of an extended nucleus, and the Dirac equation is solved numerically. The
ambiguity in the choice of a Skyrme parametrization is suppressed by fine-tuning of only one parameter of the
Skyrme force in order to accurately reproduce the experimental values of nuclear radii in each particular case.
The homogeneously-charged-sphere approximation, the two-parameter Fermi distribution, and experimental
nuclear charge distributions are used for comparison with our approach, and the uncertainties of the presented
calculations are estimated. In addition, suppression of the finite-nuclear-size effect for the specific differences of
g factors is demonstrated.
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I. INTRODUCTION

Highly charged ions represent one of the simplest and
most well-understood physical systems, and yet they still
continue to provide an extremely rich scope of opportunities
for fundamental research. They have been extensively used in
past years for various high-precision tests of quantum electro-
dynamics, making it one of the most well-tested theories in
physics [1–5]. Such a high accuracy has also been employed
for a precise determination of the electron mass [6] and it
has been proposed to be used for determination of the fine-
structure constant [7–9] and even for search of its hypothetical
variation [10–14]. Moreover, comparison between the exper-
imental and theoretical results can be used to test theories
beyond the standard model by setting bounds on parameters of
new hypothetical forces [15]. Among various achievements in
this field, the most prominent ones include measurements and
calculations of the bound-electron g factor in highly charged
ions to an extraordinary level of precision [16–21]. For all
types of high-precision spectroscopic measurements of highly
charged ions [22–24] the essential and most fundamental
quantities are atomic energy levels and corresponding tran-
sition energies which are needed to be known to a high level
of accuracy from the theoretical side.
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As the experimental precision is being improved, nuclear-
structure effects are also becoming observable and thus have
to be calculated with an increasing accuracy. The largest cor-
rection of this kind is due to the finite-nuclear-size (FNS) ef-
fect. Analytical expressions for the FNS effect were presented
in [25–28]. The FNS correction can also be calculated with a
higher accuracy numerically by using the Fermi distribution
as a model for nuclear charge density [29]. However, even
this model does not describe any fine details of nuclear charge
distributions that are unique for each nucleus. Hence, in order
to perform more precise calculations of the FNS correction,
it is necessary to use a more realistic nuclear-structure de-
scription and go beyond the simple Fermi model. As for
other nuclear-structure corrections, we note that significant
improvements in the evaluation of nuclear deformation and
nuclear polarization effects have been made in recent years
[8,30–33].

In this paper we present calculations of the FNS correction
to atomic energy levels and the bound-electron g factor based
on a more detailed description of nuclear charge distributions.
The nuclear charge densities are calculated in the framework
of the Hartree-Fock method based on the Skyrme-type nu-
clear interaction with adjustable parameters. We employ the
skyrme_rpa program for this purpose [34]. The obtained
data is then used to construct the potential of an extended
nucleus and numerically solve the Dirac equation for an
electron bound in this potential. The theoretically calculated
nuclear charge densities are in a good agreement with the
experimental ones. These results pave the way for a more
accurate description of nuclear-structure effects in atomic
systems.

The paper is organized as follows. After a brief description
of the computational method we discuss the numerical results
and their dependence on the Skyrme parameters. We compare
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our results to the FNS corrections obtained by using experi-
mental nuclear charge distributions as well as simpler charge-
density models, such as the homogeneously-charged-sphere
approximation and the Fermi distribution. Then we estimate
the uncertainties of our calculations and also demonstrate
suppression of the FNS effect for the specific differences
[7,35] of g factors.

Relativistic system of units (h̄ = c = 1) and Heaviside
charge units (α = e2/4π, e < 0) are used throughout the pa-
per. Three-vectors are denoted by bold letters.

II. COMPUTATIONAL METHOD

A. Skyrme interaction and nuclear charge density

In its standard form, the Skyrme interaction between two
nucleons with spatial coordinates r1 and r2 can be expressed
as [36]

V (r1, r2) = t0(1 + χ0Pσ)δ(r)

+ 1
2 t1(1 + χ1Pσ)[P†2δ(r) + δ(r)P2]

+ t2(1 + χ2Pσ)P† · δ(r)P

+ 1

6
t3(1 + χ3Pσ)ρλ(R)δ(r)

+ iW0(σ1 + σ2) · [P† × δ(r)P], (1)

where r = r1 − r2, R = 1
2 (r1 + r2), P = 1

2i (∇1 − ∇2)
(P† acts to the left), Pσ = 1

2 (1 + σ1 · σ2), σi with i ∈ {1, 2, 3}
are the Pauli spin matrices, and ρ is the total nucleon density.
Here we note that t j , χ j ( j ∈ {0, 1, 2, 3}), W0, and λ are
adjustable parameters of the Skyrme force [34].

Next, in order to derive the Hartree-Fock (HF) equations,
single-particle wave functions {φq

i (x)} are introduced, where
x denotes the set of spatial and spin coordinates, and the
superscript q is used to distinguish between the neutron
(q = “n”) and proton (q = “p”) orbitals. The many-body
ground-state wave function is built out of these functions as
a Slater determinant, and then by means of the variational
principle one can obtain the HF equations of the general form

Ĥ
(
x, φq

i (x)
)
φ

q
i (x) = εiφ

q
i (x), (2)

where the Hamiltonian Ĥ itself depends on the single-particle
wave functions. The explicit form of the equations as well as
their detailed derivation can be found in various articles, for
example, in [37]. The HF equations are solved iteratively until
self-consistency to a predefined accuracy is achieved.

The obtained orbitals can then be used to construct point
nucleon densities, in particular, the proton density:

ρp(r) =
∑
i,σ

∣∣φp
i (r,σ)

∣∣2
. (3)

Finally, in order to obtain the nuclear charge distribution, the
proton density is convoluted with the Gaussian form factor
fp(r) to allow for the finite size of the proton [37]:

fp(r) = 1

(r0
√

π )3
e−r2/r2

0 , r0 = 0.65 fm, (4)

ρc(r) =
∫

fp(r − r′)ρp(r′)d3r′. (5)

We note here that in the following we assume spherical
symmetry of nuclear charge distributions.

Other expressions for the nuclear charge density ρc(r) are
used in this paper for comparison purposes, and they include
the following.

(1) The homogeneously-charged-sphere approximation
(“sphere”):

ρc(r) =
⎧⎨⎩ρ

sphere
0 for 0 � r �

√
5

3
〈r2〉,

0 otherwise.
(6)

(2) Fermi distribution (“Fermi”):

ρc(r) = ρFermi
0

1 + e(r−c)/a
, (7)

with the radius parameter c and the diffuseness parameter a =
2.3/(4 ln3) fm [29].

(3) Model-independent analyses of experimental scattering
data [38]: (a) expansion into a sum of spherical Bessel func-
tions j0 of order zero (“Bessel”),

ρc(r) =
{∑

ν

aν j0(νπr/R) for 0 < r � R,

0 otherwise,
(8)

where R is the cutoff radius, and (b) expansion into a sum of
Gaussians (“Gauss”),

ρc(r) =
∑

i

Ai
(
e−[(r−Ri )/γ ]2 + e−[(r+Ri )/γ ]2)

, (9)

Ai = Qi
[
2π3/2γ 3(1 + 2R2

i /γ
2)]−1

,
∑

i

Qi = 1,

where Ri and Qi are the positions and the amplitudes of the
Gaussians, respectively, and the parameter γ is related to
the root-mean-square radius RG of the Gaussians as follows:
RG = γ

√
3/2.

In this paper, the constants ρ
sphere
0 and ρFermi

0 as well as the
coefficients aν and Qi in Eqs. (6)–(9) are chosen to fulfill the
following normalization condition: 4π

∫ ∞
0 ρc(r)r2dr = 1.

B. Dirac equation

Once the nuclear charge density ρc(r) is known, one can
construct the potential describing the interaction between an
electron and the nucleus as follows [39]:

V (r) = −4παZ
∫ ∞

0

ρc(r′)r′2

max(r, r′)
dr′, (10)

where Z is the nuclear charge and α is the fine-structure
constant. This potential then enters the Dirac equation which
determines the energy levels E and the four-component wave
functions ψ (r) of a bound electron [40]:

[α · p + βme + V (r)]ψ (r) = Eψ (r), (11)

where α and β are the usual Dirac matrices and me is the
electron mass.

For an arbitrary central potential the electron wave function
splits into radial and angular parts as

ψnκm(r) = 1

r

(
Gnκ (r)�κm(θ, ϕ)

iFnκ (r)�−κm(θ, ϕ)

)
, (12)
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where n is the principal quantum number, κ is the relativistic
angular momentum quantum number, and m is the total mag-
netic quantum number. The spherical spinors �±κm(θ, ϕ) are
the same for any central potential and are well known [41].
Hence the problem can be reduced to the following set of
radial Dirac equations:

dG

dr
+ κ

r
G(r) − [me − V (r)]F (r) = EF (r),

−dF

dr
+ κ

r
F (r) + [me + V (r)]G(r) = EG(r), (13)

where the radial functions G(r) and F (r) satisfy the normal-
ization condition:

∫ ∞
0 [G2(r) + F 2(r)]dr = 1.

The radial wave functions G(r) and F (r) can then be found
analytically for the Coulomb potential [40] or in general case
numerically, for example, by expanding them in terms of
B splines and solving the resulting generalized matrix eigen-
value equations [41]. In our basis-set numerical calculations
of the radial wave functions we used the dual-kinetic-balance
approach [42].

In order to obtain the FNS correction to atomic energy
levels, the numerically calculated values Eext[nκ] (in the case
of an extended nucleus) are compared to the exact analytical
solution Epoint[nκ] for the Coulomb potential V (r) = −Zα/r
(i.e., pointlike nucleus):

�EFNS[nκ] = Eext[nκ] − Epoint[nκ], (14)

Epoint[nκ] = me

⎡⎢⎣1 + (Zα)2(
n − |κ| +

√
κ2 − (Zα)2

)2

⎤⎥⎦
−1/2

.

C. Bound-electron g factor

Most generally, a g factor relates the electron’s magnetic
moment μ (in units of Bohr magneton μB = |e|/2me) to its
angular momentum M:

μ

μB
= −gM, e.g.,

μl

μB
= −gl l,

μs

μB
= −gss, (15)

where l is the orbital angular momentum and s is the spin an-
gular momentum. In the Dirac theory, i.e., without taking into
account the radiative corrections, gs = 2 for a free electron,
and gl is known to be exactly 1 [43].

Thus the interaction Hamiltonian Ĥint for an electron in an
external homogeneous magnetic field B = (0, 0, Bz ) can be
expressed as

Ĥint = −μtotal · B = μB(gl l + gss) · B. (16)

The corresponding first-order Zeeman splitting �E can then
be written by introducing a new g factor, also called Landé
g factor:

�E = 〈nκm|Ĥint|nκm〉 = gμBBzm. (17)

We note that Eq. (17) is written in such a way as to have the
same form as for the simpler case where l = 0, and it can be
considered as a definition of the Landé g factor of a bound
electron.

On the other hand, the electromagnetic four-potential Aμ

can be chosen in the form (0, A(r) = [B × r]/2), and an

application of the minimal coupling principle to the Dirac
equation (11) implies

Ĥ ′
int = −eα · A(r) = |e|α · A(r). (18)

In this way, first-order perturbation theory gives

�E = |e|
2

〈nκm|α · [B × r]|nκm〉

= |e|
2

Bz〈nκm|[r × α]z|nκm〉. (19)

A calculation of the matrix element in Eq. (19) using the
wave functions of the form (12) [44] and then taking into
account Eq. (17) yields the following general formula for the
g factor:

gext[nκ] = 2κme

j( j + 1)

∫ ∞

0
Gnκ (r)Fnκ (r)r dr, (20)

where j = |κ| − 1/2 is the total angular momentum quantum
number.

In the case of the Coulomb potential V (r) = −Zα/r an
exact analytical calculation can be performed [45], and the
result reads

gpoint[nκ] = κ

j( j + 1)

(
κ

Epoint[nκ]

me
− 1

2

)
. (21)

Finally, the FNS correction to the g factor for a state nκ is
obtained by taking the difference between (20) and (21):

�gFNS[nκ] = gext[nκ] − gpoint[nκ]. (22)

Other contributions to the g factor are summarized, e.g., in
Refs. [5,29,46].

III. RESULTS AND DISCUSSION

A. Choice of Skyrme parametrization

First, let us discuss the influence of the choice of a Skyrme
parameter set on the computational results. For this purpose,
we consider the FNS correction to the ground-state (1s1/2)
energy and g factor for hydrogenlike lead 208

82 Pb81+. In Table I
three different widely used parametrizations (known as LNS,
SLy5, and SKP [34]) are compared. In the first three columns
of Table I some selected Skyrme parameters are presented in
order to illustrate large differences between these parameter
sets. These differences can be seen even more clearly by com-
paring the values of root-mean-square (rms) nuclear radius
obtained by using each of the parameter sets. As a result,
the FNS corrections presented in the last two columns also
vary significantly in such a way that the results can turn out
to be larger or smaller than the FNS corrections obtained in
the homogeneously-charged-sphere approximation (using the
rms radius value of 5.5012 fm for 208

82 Pb [47]).
However, it is well known that the magnitude of the FNS

correction is highly influenced by the value of rms nuclear
radius [25,26]. Hence it is natural to adjust Skyrme parameters
to reproduce the experimental rms radius beforehand and only
then calculate the FNS correction. We found that the rms
radius is most sensitive with respect to varying the Skyrme
parameter t0. In Table II the results of such adjustments in t0
(to obtain

√
〈r2〉 = 5.5012 fm) are shown.
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TABLE I. Comparison between the parameters t1, χ0, and χ3 from the LNS, SLy5, and SKP Skyrme parameter sets as well as the
corresponding calculated values of rms nuclear radius of 208

82 Pb nucleus. The FNS corrections to the ground-state energy �EFNS[1s1/2] (in
units of electron’s rest energy) and g factor �gFNS[1s1/2] for hydrogenlike lead 208

82 Pb81+ are presented in the last two columns. For comparison,
the results for the homogeneously-charged-sphere approximation are also included in the last row.

Parameter set t1 χ0 χ3

√
〈r2〉 (fm) 104�EFNS[1s1/2] 104�gFNS[1s1/2]

LNS 266.735 0.06277 −0.03413 5.3238 1.2483 4.3014
SLy5 483.13 0.778 1.267 5.5072 1.3169 4.5369
SKP 320.62 0.29215 0.18103 5.5242 1.3234 4.5590

Sphere 5.5012 1.3172 4.5380

It can be seen that, once the value of rms radius is fixed, the
calculated magnitudes of the FNS corrections become stable,
despite the significant differences between the parameter sets.
We tested this observation on a wide range of ions and
parametrizations, and we found that the ambiguity in the
choice of a Skyrme parameter set was largely suppressed in all
cases simply by adjusting the rms nuclear radius. We note here
that while such adjustments undoubtedly affect other predic-
tions of the Skyrme model (e.g., binding energies), we expect
these effects to be reasonably small for most applications, as
long as the adjustments lie within the radius tolerance of the
Skyrme-force fitting protocol (0.02 fm for SLy5 [36]).

All the FNS corrections, presented in the following dis-
cussion, were obtained by using the SLy5 parameter set,
one of the most widely used parametrizations of the Skyrme
force, and the parameter t0 was adjusted to reproduce the
experimental values of rms nuclear radii in each particular
case.

B. Energy levels and importance of the rms radius

In Table III we present the FNS corrections �EFNS[1s1/2],
�EFNS[2s1/2], and �EFNS[2p1/2] calculated by using differ-
ent nuclear charge distributions for three hydrogenlike ions:
40
20Ca19+, 116

50 Sn49+, and 208
82 Pb81+. The FNS corrections in the

“Bessel” and “Gauss” rows correspond to experimental charge
densities. Such densities are obtained by expanding ρc(r) into
sums of spherical zero-order Bessel functions or Gaussians
according to Eqs. (8) and (9) and fitting the expansion co-
efficients (as well as any other parameters) to the measured
cross sections. All the values of the fitting parameters used
in this paper were taken from Ref. [38]. We note that for
208
82 Pb nucleus two sets of the “Bessel” coefficients are known
[48,49], and for simplicity we present here the results only
for the parameters from Ref. [49]. The parameters of all the
theoretical charge distributions were adjusted to yield the
following experimental values of rms nuclear radii:

√
〈r2〉 =

3.4776(19), 4.6250(19), and 5.5012(13) fm for 40
20Ca19+,

116
50 Sn49+, and 208

82 Pb81+, respectively [47].
One peculiar feature can be immediately seen from the

results presented in Table III: the values obtained in the
“Fermi” and “Skyrme” models agree with each other much
better than with the “experimental values.” The explanation
for this observation comes from the fact that the value of
rms nuclear radius turns out to be a crucial input parameter,
and the experimental charge distributions do not reproduce
rms radii to the current level of precision (as used in the
“sphere,” “Fermi,” and “Skyrme” calculations). This inter-
esting effect can be seen more clearly from Fig. 1, where
we compare different nuclear charge distributions employed
in the calculations for the 40

20Ca19+ ion. It is instructive to
note that, despite the fact that the Skyrme and experimental
charge distributions are in excellent agreement with each
other, the difference in the corresponding FNS corrections is
larger than even between the “Skyrme” and “sphere” values.
This surprising result simply comes from the fact that the
experimental “Gauss” distribution yields

√
〈r2〉 = 3.4797 fm

instead of 3.4776 fm, and it emphasizes the great influence of
the rms nuclear radius on the magnitude of the FNS effect.

The observation described above suggests a straightfor-
ward way to estimate the calculation uncertainties for the FNS
corrections. Since the rms nuclear radius turns out to be the
main source of uncertainty, one can simply vary the value
of the rms radius within its experimental error bars in the
Skyrme model (by varying the t0 parameter) and calculate the
corresponding variation in �EFNS or �gFNS. The calculation
uncertainties obtained in such a manner are presented in
Tables III and IV.

C. g factor and cancellation of the FNS effect in specific
differences

In general, the same trends as described above for the en-
ergy levels hold true also in the case of the FNS corrections to

TABLE II. Modifications of the t0 Skyrme parameter within the LNS, SLy5, and SKP parametrizations and the corresponding FNS
corrections to the ground-state energy �EFNS[1s1/2] (in units of electron’s rest energy) and g factor �gFNS[1s1/2] for hydrogenlike lead 208

82 Pb81+.

Parameter set Change in t0 104�EFNS[1s1/2] 104�gFNS[1s1/2]

LNS −2484.97 → −2454.60 (1.22%) 1.3148 4.5296
SLy5 −2484.88 → −2486.12 (0.05%) 1.3147 4.5291
SKP −2931.70 → −2935.95 (0.15%) 1.3147 4.5291
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TABLE III. Finite nuclear size (FNS) corrections �EFNS (in units of electron’s rest energy) to the energies of the states 1s1/2, 2s1/2, and
2p1/2 for highly charged hydrogenlike ions 40

20Ca19+, 116
50 Sn49+, and 208

82 Pb81+. Different models of the nuclear charge distributions were used in
the calculations. The presented calculation uncertainties are due to the experimental uncertainties in rms nuclear radii [47]. The names of the
distributions are explained in Sec. II A.

40
20Ca19+ 108�EFNS[1s1/2] 109�EFNS[2s1/2] 1011�EFNS[2p1/2]

Sphere 2.8514 3.6319 1.4696
Fermi 2.8502 3.6304 1.4692

Skyrme 2.8502 3.6303 1.4690
Bessel 2.8057 3.5737 1.4461
Gauss 2.8535 3.6345 1.4708

Skyrme (+radius unc.) 2.850(3) 3.630(4) 1.469(2)
116
50 Sn49+ 106�EFNS[1s1/2] 107�EFNS[2s1/2] 108�EFNS[2p1/2]

Sphere 3.7906 5.3366 1.4456
Fermi 3.7859 5.3299 1.4439

Skyrme 3.7860 5.3301 1.4439
Gauss 3.7884 5.3334 1.4448

Skyrme (+radius unc.) 3.786(3) 5.330(4) 1.444(1)
208
82 Pb81+ 104�EFNS[1s1/2] 105�EFNS[2s1/2] 106�EFNS[2p1/2]

Sphere 1.3172 2.2871 1.9590
Fermi 1.3147 2.2827 1.9554

Skyrme 1.3147 2.2827 1.9554
Bessel 1.3155 2.2842 1.9566
Gauss 1.3155 2.2842 1.9566

Skyrme (+radius unc.) 1.3147(4) 2.2827(9) 1.9554(7)

the bound-electron g factor. In this last section we additionally
consider the specific differences of the g factors in 1s1/2 and
2s1/2 states, as well as in 1s1/2 and 2p1/2 states, for all the
charge distributions mentioned above. These quantities were
introduced [7,35] with the aim of suppressing the FNS effect.
Thus one can expect the specific differences to have more
stable values with respect to the choice of nuclear charge
distribution. The specific differences are defined as follows:

g′
s = g[2s1/2] − ξsg[1s1/2], ξs = �gFNS[2s1/2]

�gFNS[1s1/2]
, (23)

0
 0  1  2  3  4  5  6  7

ρ(
r)

 (a
rb

. u
ni

ts
)

r (fm)

Sphere
Fermi

Skyrme
Experiment

0
 0  1  2  3  4  5  6  7

FIG. 1. Comparison between an experimental (“Gauss”) and dif-
ferent model charge distributions for 40

20Ca nucleus. The names of the
distributions are explained in Sec. II A.

g′
p = g[2p1/2] − ξpg[1s1/2], ξp = �gFNS[2p1/2]

�gFNS[1s1/2]
. (24)

By expanding the analytical (second-order perturbation the-
ory) expression for �gFNS from Ref. [26] in powers of (Zα),
we obtain

ξs = 1
8 + 0.110081(Zα)2 + 0.0615871(Zα)4

+ 0.0302009(Zα)6 + 0.0148406(Zα)8 + {h.o.}, (25)

ξp = 3
128 (Zα)2 + 0.0333355(Zα)4

+ 0.0312421(Zα)6 + 0.0257139(Zα)8 + {h.o.}. (26)

The calculated values of �g′
FNS = g′

ext − g′
point, together

with the FNS corrections to the g factors in 1s1/2, 2s1/2, and
2p1/2 states for 40

20Ca19+, 116
50 Sn49+, and 208

82 Pb81+, are shown in
Table IV. It can be seen that for the specific differences g′

s and
g′

p the FNS effect is indeed suppressed by several orders of
magnitude.

However, we also note here that, instead of using the
analytical expression for �gFNS, one could alternatively eval-
uate ξs and ξp numerically, for example, in the framework
of the homogeneously-charged-sphere approximation. In this
approach, using the new values of ξs and ξp for other nuclear
models leads to an even stronger suppression of the FNS
effect for the specific differences. For example, in the case
of the 208

82 Pb81+ ion, the corrections �g′
FNS[1s1/2, 2s1/2] and

�g′
FNS[1s1/2, 2p1/2] within the Skyrme model become only

−1.1 × 10−9 and 5.4 × 10−10, respectively, which is 2–3
orders of magnitude smaller than the corresponding values
given in Table IV. This shows that in the case of heavy
ions a direct numerical calculation of ξs and ξp (from the
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TABLE IV. Finite nuclear size (FNS) corrections �gFNS to the g factors in 1s1/2, 2s1/2, and 2p1/2 states for highly charged hydrogenlike
ions 40

20Ca19+, 116
50 Sn49+, and 208

82 Pb81+. In the last two columns the magnitudes of the remaining FNS contribution to the specific differences g′
s

and g′
p are presented. Different models of the nuclear charge distributions were used in the calculations. The presented calculation uncertainties

are due to the experimental uncertainties in rms nuclear radii [47]. The names of the distributions are explained in Sec. II A.

40
20Ca19+ 107�gFNS[1s1/2] 108�gFNS[2s1/2] 1011�gFNS[2p1/2] 1013�g′

FNS[1s1/2, 2s1/2] 1013�g′
FNS[1s1/2, 2p1/2]

Sphere 1.1316 1.4413 5.8293 −2.0 0.5
Fermi 1.1311 1.4407 5.7672 −1.0 −5.4

Skyrme 1.1311 1.4406 5.8504 −5.1 5.0
Bessel 1.1134 1.4182 5.7560 1.5 2.5
Gauss 1.1324 1.4423 5.8395 −2.0 1.2

Skyrme 1.131(1) 1.441(1) 5.85(2)
(+radius unc.)

116
50 Sn49+ 105�gFNS[1s1/2] 106�gFNS[2s1/2] 108�gFNS[2p1/2] 1010�g′

FNS[1s1/2, 2s1/2] 1010�g′
FNS[1s1/2, 2p1/2]

Sphere 1.4426 2.0308 5.5116 −7.32 3.87
Fermi 1.4407 2.0282 5.5050 −7.41 3.92

Skyrme 1.4408 2.0282 5.5052 −7.40 3.91
Gauss 1.4417 2.0295 5.5086 −7.41 3.92

Skyrme 1.411(1) 2.028(2) 5.505(5)
(+radius unc.)

208
82 Pb81+ 104�gFNS[1s1/2] 105�gFNS[2s1/2] 106�gFNS[2p1/2] 107�g′

FNS[1s1/2, 2s1/2] 107�g′
FNS[1s1/2, 2p1/2]

Sphere 4.5380 7.8734 6.7814 −2.271 1.138
Fermi 4.5292 7.8579 6.7687 −2.278 1.141

Skyrme 4.5291 7.8579 6.7687 −2.278 1.141
Bessel 4.5321 7.8630 6.7731 −2.280 1.142
Gauss 4.5320 7.8629 6.7730 −2.280 1.142

Skyrme 4.529(2) 7.858(3) 6.769(2)
(+radius unc.)

best available nuclear model) should be preferred over using
analytical formulas.

IV. CONCLUSIONS AND OUTLOOK

We have demonstrated the use of the Skyrme-Hartree-Fock
nuclear-structure method as a tool for calculating the finite-
nuclear-size effect in highly charged ions. We have shown
that, despite the fact that various parametrizations of the
Skyrme force differ from each other drastically, the ambiguity
in the choice of a parameter set can be significantly suppressed
by fixing the value of root-mean-square nuclear radius. For
this purpose, we suggest adjusting a single Skyrme parameter
that has the biggest influence on the value of rms radius,
namely, the parameter t0 in Eq. (1). In this way, the ambi-
guity associated with the choice of a Skyrme parametrization
becomes smaller than the ambiguity stemming from uncer-
tainties in values of nuclear radii.

Our results strongly emphasize the importance of the val-
ues of rms nuclear radii in calculations of FNS corrections. We
have demonstrated that in some cases the value of nuclear ra-

dius can be even more important than the shape of the nuclear
charge distribution. In fact, the FNS corrections obtained by
means of our approach and by simply using the Fermi distri-
bution agree with each other within the uncertainties in values
of nuclear radii. However, it is clear that the Skyrme model
provides a more realistic and thus more reliable description
of nuclear charge distributions, which will become crucial
in the future when the values of nuclear radii are known to
a higher level of accuracy. Our method can be extended to
studying the FNS effect on more sensitive quantities, e.g.,
magnetic-dipole and electric-quadrupole hyperfine-splitting
constants. Hyperfine splitting can be determined with laser
spectroscopy to a high precision, with neutral species as
well as with highly charged ions (see, e.g., Refs. [50,51]).
Furthermore, the Skyrme model may also be used to predict
nuclear magnetization distributions, which may lead to a more
realistic prediction of the Bohr-Weisskopf effect.
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