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First-order truncated simplex lattices have been used as interesting data structures to explore the properties of
quantum search such as the effect of connectivity on search speed [D. A. Meyer and T. G. Wong, Phys. Rev. Lett.
114, 110503 (2015)]. In this paper, we further discuss quantum search algorithms for truncated simplex lattices.
We first propose a multistage quantum algorithm for an rth-order truncated simplex lattice with N vertices
based on the numerical calculation up to the fifth-order lattice, which requires an (r + 1)-stage search process
and consumes a run time �(N (2r+1)/(2r+2) ) in general. Furthermore, with edge weights suitably adjusted (which
increases the connectivity according to certain definitions), we merge the multistage search process into a single
stage and achieve a fast quantum search algorithm with an optimal run time �(

√
N ) for first-order truncated

simplex lattices, which we conjecture is generally true for any-order lattice. Under small noise of the lattice
structure, both our multistage and our single-stage search algorithms are quite robust.
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I. INTRODUCTION

As one of the first examples of lattices with effectively non-
integral dimensionality [1], truncated simplex lattices are of
great interest in several fields. Self-avoiding walks, which are
classical random walks with the constraint that any lattice ver-
tices cannot be visited more than once, on truncated simplex
lattices are discussed to model several problems [2–7]: some
solvable cases of self-avoiding random walks on truncated
simplex lattices [2], the collapse transition of linear polymers
on truncated simplex lattices [3], two interacting chemically
different linear polymer chains on a truncated simplex lattice,
to study critical behavior [4], and the effect of interpenetration
of chains [5–7]. Space-time of noninteger dimensionality on
truncated simplex lattices is discussed [8]. Quantum search on
the truncated simplex lattice has also attracted a lot of interest
recently [9–13].

The spatial search problem aims at searching for one of the
marked vertices on a graph, which is equivalent to searching
for one of the marked items in a structured database. Clas-
sically, this problem could be solved by applying the random
walk repeatedly until reaching one of the marked vertices. The
quantum walk, the analog of the classical random walk, has
been proposed as a tool in many fields of science [14–16].
Several aspects of the discussion related to quantum walks
are listed: computational universality of the quantum walk
[17–19], the quantum walk as a tool to design a quantum
algorithm [20,21], simulation of photosynthetic processes
based on the quantum walk [22], exploration of the foundation
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of quantum theory [23,24], and topological properties of the
system [25,26]. Using the continuous-time quantum walk
(CTQW), Childs and Goldstone solved the spatial search
problem on complete graph, hypercube, and d-dimensional
periodic lattices [9]. Compared to the well-known Grover’s al-
gorithm for search in an unstructured database [27], quantum
search via CTQW is intended for search in a physical database
that has structures.

Since the scheme was first proposed, quantum search
via CTQW has been discussed for several types of graphs:
strongly regular graphs [28], first-order truncated M-simplex
lattices [10], balanced trees [29], Erdös-Renyi random graphs
[30], complete bipartite graphs, star graphs [31], Johnson
graphs [32], dual Sierpinski gaskets, T fractals, and Cayley
trees [33]. The properties of quantum search via CTQW have
been further investigated. Connectivity, global symmetry, and
regularity are shown to be poor and unnecessary indicators
for faster search [10,28,31]. The importance of topological
arrangements of graphs is pointed out [33]. Quantum walks
on weighted graphs have been discussed for several topics
[11,12,34–36]. In particular, it is shown that by engineering
the weight of edges of a graph, one can speed up the search
process [12] and increase the success probability [11].

We focus on quantum search via CTQW on truncated
simplex lattices. The zeroth-order truncated simplex lattice is
just the complete graph, which has been discussed in Ref. [9].
The first-order truncated simplex lattice has been used to
provide a counterintuitive example to show that connectivity
is a poor indicator for faster search [10], explore quantum
search with multiple walk steps per oracle query [37] and with
multiple marked vertices [13], and discuss quantum search on
weighted graphs [11,12]. Despite the rich properties exhibited
on truncated simplex lattices so far, a general theory of the
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FIG. 1. Zeroth-order, first-order, and second-order truncated
three-simplex lattices.

quantum search on truncated simplex lattices of any order is
still missing. Quantum search on truncated simplex lattices of
higher than first order has never been solved. Furthermore, an
optimal search has never been achieved in truncated simplex
lattices of higher than zeroth order.

We mount this challenge in this paper. By numerically
calculating the spectrum of the Hamiltonian, we present a
comprehensive study of quantum search on truncated simplex
lattices of any order exploiting a multistage search process and
numerically give the required number of stages, the critical
jumping rate, and the run time for the multistage process.
Furthermore, we numerically show that when we increase
the weights of some edges, the two-stage search process can
be merged into one stage for first-order truncated simplex
lattices, which provides a substantial speedup and achieves an
optimal run time proportional to the square root of the number
of vertices. Thus, an optimal search on the first-order trun-
cated simplex lattice is achieved by our scheme. This paper
also serves as another important example of quantum search
via CTQW on hierarchical graphs, exhibiting the requirement
for a multistage search process and merging of stages which
we proposed to be the possible common properties of quantum
search on hierarchical graphs in Ref. [38].

The structure of the paper is as follows. We discuss any-
order truncated simplex lattices and propose a multistage
search process in Sec. II. Next, we discuss the merging of
stages and optimal search algorithm in Sec. III. We then
discuss the robustness of our results in Sec. IV and, finally,
give our discussion and conclusion in Sec. V.

II. MULTISTAGE QUANTUM SEARCH ON TRUNCATED
SIMPLEX LATTICES

We first briefly introduce the structure of truncated M-
simplex lattices on which the quantum search is performed
in our discussion, following the notations in [1]. The zeroth-
order truncated M-simplex lattice is a complete graph with
(M + 1) vertices. To get an (r + 1)th-order truncated M-
simplex lattice, we replace every vertex in the rth-order
truncated M-simplex lattice with a complete graph of M
vertices each of which is connected to a different cluster.
Therefore, the number of vertices in the rth-order truncated
M-simplex lattice is N = (M + 1)Mr . Several examples of
truncated M-simplex lattices are shown in Fig. 1. Existing
discussion about quantum search on the truncated M-simplex
lattice is limited to the zeroth and first orders [9,10,12,13,37].
Especially, Ref. [10] gives a novel two-stage search algorithm
on the first-order M-simplex lattice. We would like to explore

FIG. 2. Second-order truncated five-simplex lattice with identi-
cally evolving vertices labeled with the same letter. The blue vertex
is the marked vertex a.

the quantum search via CTQW on any-order truncated M-
simplex lattices in this section. It turns out that a multistage
searching scheme is required to achieve a success probability
close to 100%.

As the first example to illustrate our quantum search
scheme on this type of graph, we focus on the second-order
truncated M-simplex lattice. The case for M = 5 is explicitly
shown in Fig. 2 for illustration, but M should be large enough
to get a success probability close to 100% in our quantum
search scheme. The results below hold for any M which is
large enough.

Following Childs and Goldstone [9], the basis states
{|1〉, |2〉, . . . , |N〉} of an N-dimensional Hilbert space corre-
sponds to the N vertices of a given graph. Since we have no
information on the position of the marked state, the initial
state is chosen as the equal superposition of all vertices of the
graph |s〉 = 1√

N

∑N
i=1 |i〉. After the evolution of the system,

we expect to accumulate probability amplitude at the marked
vertex a. The Hamiltonian is chosen as

H = −γ L − |a〉〈a|, (1)

where γ is the jumping rate, |a〉〈a| is a quantum oracle,
L = A − D is the graph Laplacian, A is the adjacency matrix
of the graph, whose element Ai j indicates the weight of the
edge between vertex i and vertex j, and D is a diagonal matrix
whose ith diagonal term is the total weight of edges connected
to vertex i. D can be dropped by rezeroing the ground-state
energy for truncated M-simplex lattices since they are regular
graphs, i.e., each vertex has the same number of neighbors.
For convenience, we choose a dimensionless Hamiltonian H
and time.

The marked vertex can have two nonequivalent positions,
either connected to an outside vertex or connected only to
vertices in the same level. We discuss the former one first, and
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suppose the marked vertex is a. We can group together the
nonmarked vertices which evolve identically to simplify the
calculation by working in an invariant subspace of the Hamil-
tonian. From the symmetry of the graph, we find that there are
20 different types of vertices, labeled with 20 different letters
in Fig. 2. The labels run from a to v except for the letters i and
s, with i reserved for the index in summation and s reserved
for the initial symmetric state. Hence, the dimension of the
invariant subspace is 20, which is independent of M. Each
basis state of the invariant subspace corresponds to an equal
superposition of the original vertex states in a particular type.
Let |x〉 denote the normalized basis state corresponding to the
x type of vertices. For example, |b〉 = 1√

M−1

∑
i∈b |i〉, |e〉 =

1√
(M−2)(M−1)

∑
i∈e |i〉, |v〉 = 1√

(M−3)(M−2)(M−1)

∑
i∈v |i〉, and so

on. The Hamiltonian H = −γ A − |a〉〈a| can be expressed
in the invariant subspace. The adjacency matrix A in this
subspace is shown in Table I in Appendix A.

We now describe our three-stage searching scheme on a
second-order truncated M-simplex lattice. Following Refs.
[9] and [10], to see why a multistage searching process is
required, we should first analyze the squared overlaps between
eigenstates |ψ0〉, |ψ1〉, . . . , |ψn〉, where |ψi〉 is the ith eigen-
state of Hamiltonian H , and the basis states or the initial state
|s〉, which is shown in Fig. 3. The obvious crossing points at
γ = 1/M, 2/M, and 3/M, respectively, in the figure indicate
that the eigenstates are dominated by more than one basis
state. These values of γ where crossings occur are the critical
jumping rates. To transfer the probability between vertices,
these crossings are necessary. Because when γ deviates from
the crossing points, the basis states are almost eigenstates and
the amplitude of each basis state will only gain a phase during
the evolution of the system, while at these crossing points, the
probability amplitude will oscillate between two basis states.
For example, at γ = 3/M we obtain numerically two of the
eigenstates of H as |ψ0,1〉 ≈ (|s〉 ± |e〉)/

√
2. The deviation of

eigenstates from this relation is shown in Fig. 4. Therefore,
when γ = 3/M we have |s〉 ≈ (|ψ0〉 + |ψ1〉)/

√
2 and

|ψ (t )〉 = e−iHt |s〉 ≈ 1√
2

(e−iE0t |ψ0〉 + e−iE1t |ψ1〉), (2)

with the state of the system oscillating between |s〉 and
|e〉, i.e., |〈e|ψ (t )〉|2 ≈ 1

2 (1 − cos �E10t ), |〈s|ψ (t )〉|2 ≈ 1
2 (1 +

cos �E10t ). The oscillation period is given by the energy
gap �E10 = E1 − E0. After time t = π/�E10, almost all of
the probability amplitude is accumulated in basis state |e〉.
Exploiting this oscillation, we can transfer the probability
amplitude from the initial state |s〉 to state |e〉 at γ = 3/M with
time t = π/(E1 − E0), from state |e〉 to state |b〉 at γ = 2/M
with time t = π/(E3 − E0), and from state |b〉 to state |a〉
at γ = 1/M with time t = π/(E7 − E0). After most of the
probability amplitude is accumulated at the marked vertex a,
we only need a simple vertex measurement to locate it. Thus, a
three-stage searching process is required for our purpose. This
actually also gives strong constraints on the choice of initial
states. The overlap of the initial states should be dominated
by at least two eigenstates at some values of the jumping rate
γ so that the probability amplitude can be transferred through
the oscillation between two basis states. Combined with the
fact that we have no information about the initial states, |s〉 is
a proper choice as the initial state.

FIG. 3. Squared overlaps of basis states with the eigenstates of
H on a second-order truncated M-simplex lattice. |ψi〉 is the ith
eigenstate of the Hamiltonian H . M = 100.

The energy gap is derived numerically and the searching
time in each stage is chosen accordingly. For the first stage,
with γ = 3/M, we find that E1 − E0 = 6M− 5

2 − 14.25M− 7
2 +

o(M− 7
2 ), and we choose the searching time in this stage

as T1 = π/(E1 − E0) = πM
5
2 /6. For the second stage, with

γ = 2/M, we find E3 − E0 = 4M− 3
2 − 11.5M− 5

2 + o(M− 5
2 ),

and we choose the searching time in this stage as T2 =
πM

3
2 /4. For the third stage, with γ = 1/M, we find E7 −

E0 = 2M− 1
2 + 0M− 3

2 + o(M− 3
2 ), and we choose the search-

ing time in this stage as T3 = πM
1
2 /2. When M is large

enough (for example, M = 1000), the success probability
|〈a|ψ (t = T1 + T2 + T3)〉|2 is larger than 99%. The influence
of M on the success probability is shown in Fig. 5. The
dominant term of the run time in the search process is t ∝
M

5
2 ∝ N

5
6 .

So far, we have considered just one possible position of the
marked vertex and have not discussed the other inequivalent
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FIG. 4. Deviation from the approximated relation |ψ0,1〉 ≈
(|s〉 ± |e〉)/

√
2. The line labeled ’S1’ is |〈s|ψ0〉|2 − 0.5, the line

labeled ’S2’ is |〈s|ψ1〉|2 − 0.5, the line labeled ’e1’ is |〈e|ψ0〉|2 −
0.5, and the line labeled ’e2’ is |〈e|ψ1〉|2 − 0.5.

case where the marked vertex is only connected to the vertices
in the same level (for example, one of the vertices labeled b is
the marked one). For the other case (for the second-order lat-
tice, there are only two possible inequivalent positions), even
though the dimension of the invariant subspace is different, we
find that the number of stages, the critical jumping rate, and
the proper searching time in each stage are almost the same.
We have verified numerically that the three-stage algorithm
with the same jumping rate and searching time in each stage
achieves a success probability higher than 99%, when M is
large enough (for example, M = 1000).

We have pointed out the necessity for a three-stage search-
ing process on a second-order truncated M-simplex lattice
from the perspective of crossing points in the overlaps of basis
states with eigenstates in Fig. 3. We want to provide a more
intuitive point of view from the flux of probability amplitude
in each stage. In the first stage, the probability amplitude will
flow from |s〉 to |e〉. Since |s〉 ≈ |v〉, we can regard this as the
flow from |v〉 to |e〉, i.e., the probability amplitude will flow
from the outermost complete graph to the interior complete
graph. In the second stage, the probability amplitude will flow

FIG. 5. Success probability versus M on a second-order trun-
cated M-simplex lattice.

FIG. 6. Evolution of the probability distribution on a second-
order truncated five-simplex lattice.
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from |e〉 to |b〉, hence closer to the interior. In the third stage,
the flow occurs in the innermost complete graph from |b〉
to |a〉. Probability flow into the interior structure has been
pointed out in first-order truncated M-simplex lattices [12].
Our results show that this is true in higher-order cases. We
show the distribution of the dominant part of the probability
amplitude at the end of each stage in Fig. 6. The multistage
probability amplitude flow is closely related to the hierarchi-
cal structure of graphs, which implies a multistage searching
process.

Having revealed that the quantum search scheme on the
second-order truncated M-simplex lattice shows regular rules
for the choice of jumping rate and run time at each stage, one
might expect similar rules for quantum search on rth-order
truncated M-simplex lattices (r = 0, 1, 2, 3, . . . ) in general.
The procedure to express the Hamiltonian of any-order trun-
cated M-simplex lattices in the invariant subspace is similar.
We have further explicitly calculated up to fifth-order trun-
cated M-simplex lattices as explained in Appendix B and
obtained the following results. For an rth-order truncated M-
simplex lattice, the search process requires (r + 1) stages with
different jumping rates γ = r+1

M , r
M , . . . , 2

M , 1
M ; the run time

in each stage is t ∝ M
2r+1

2 , M
2r−1

2 , . . . , M
3
2 , M

1
2 (i.e., t ∝

N
2r+1
2r+2 , N

2r−1
2r+2 , . . . , N

3
2r+2 , N

1
2r+2 ), respectively, and the domi-

nant term of time consumed in the search process is therefore
t ∝ M

2r+1
2 ∝ N

2r+1
2r+2 . The argument about the necessity for a

multistage searching process can also be applied to rth-order
truncated M-simplex lattices in general.

Quantum search on a zeroth-order truncated M-simplex
lattice (complete graph) and a first-order truncated M-simplex
lattice was also discussed in Ref. [9] and Ref. [10], re-
spectively. Here we have discussed any order of truncated
M-simplex lattice, and our numerical results coincide with
the previous references for the two special situations which
have been proved carefully. The equivalent continuous-time
analogy of Grover’s algorithm can be interpreted as quantum
search using a continuous-time quantum walk on a zeroth-
order truncated M-simplex lattice, and it can provide a full√

N speedup [9,39], which is also consistent with our results.
Our results show that a higher order of truncated M-

simplex lattice indicates a slower search compared to Grover’s
algorithm since t ∝ M

2r+1
2 ∝ N

2r+1
2r+2 . This can be understood

because a higher order corresponds to more levels in the
graph, which will introduce more restrictions on the flow of
probability. Therefore, for truncated M-simplex lattices, order
is an important indicator of the graph complexity and the
speed of quantum search. Whether this indicator could be
generalized to other graphs is an interesting topic for further
discussion.

An interesting observation is the shift of the dominant
component of the ground state |ψ0〉 of the Hamiltonian when
γ is changing around the critical jumping rate γc. For quantum
search on a second-order truncated M-simplex lattice, when
γ changes from larger than 3/M to smaller than 1/M, |ψ0〉
is dominated by |s〉, |e〉, |b〉, and |a〉 in turn when γ is not too
close to 1/M, 2/M, and 3/M. Three shifts and an exactly equal
number of stages in the search process suggest to us that the
number of these shifts might indicate the number of stages in
general.

FIG. 7. A truncated first-order five-simplex lattice. Solid edges
have weight 1 and dotted edges have weight ω.

III. MERGING OF STAGES IN QUANTUM SEARCH

It has been argued that although the first-order truncated
simplex lattice is well connected, it does not support an
optimal quantum search [10]. We have seen that for higher-
order truncated M-simplex lattices, the multistage searching
process required to achieve a high success probability be-
comes even slower. However, in this section we show that
we can accelerate this process. It is shown in Ref. [12] that
a faster quantum search using CTQW can be achieved on the
first-order truncated M-simplex lattice by changing the weight
of edges, but the optimal search speed is not achieved, as
only the case with ω = o(

√
M ) is considered. As suggested

by Ref. [12], we further show that for the first-order truncated
M-simplex lattice higher edge weights can lead to the merging
of stages in the sense that only one stage is required to achieve
a high success probability, combined with the realization of
the optimal search speed.

The case of first-order truncated M-simplex lattices with
M = 5 is shown in Fig. 7, but the discussion below holds for
any large enough M. We set the weight of dotted edges as
ω. The Hamiltonian can be written in the seven-dimensional
invariant subspace as

H = −γ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
γ

√
M1 ω 0 0 0 0√

M1 M2 0 0 ω 0 0
ω 0 0

√
M1 0 0 0

0 0
√

M1 M2 0 ω 0
0 ω 0 0 0 1

√
M2

0 0 0 ω 1 0
√

M2

0 0 0 0
√

M2
√

M2 M3 + ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Ml = M − l . Numerically, we find that when ω is larger
than roughly M

3
4 , the two stages are merged into one.

From the perturbation theory perspective, we can dis-
cuss the quantum search using CTQW analytically [40]. The
basic idea is to separate the Hamiltonian into leading and
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higher-order terms, then calculate the eigenstates of leading
terms of the Hamiltonian. Let two eigenstates of the lead-
ing terms of the Hamiltonian be degenerate by controlling
γ and then consider the higher-order Hamiltonian to split
degeneracy and find the energy gap. Assuming that ω scales
over M more rapidly than M

3
4 , and dropping all terms of the

Hamiltonian which scale less than M
3
4 , we have the leading

terms of the Hamiltonian

H (0) = −γ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
γ

0 ω 0 0 0 0
0 M 0 0 ω 0 0
ω 0 0 0 0 0 0
0 0 0 M 0 ω 0
0 ω 0 0 0 0 0
0 0 0 ω 0 0 0
0 0 0 0 0 0 M + ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

We know that |s〉 = 1√
N

∑N
i=1 |i〉 ≈ |g〉, and we want the

probability to be accumulated at the marked vertex a. The
eigenstates that need to be degenerate are |g〉 with en-
ergy Eg = −γ M − γω and |u〉 = −γω/(− 1

2

√
4γ 2ω2 + 1 +

1
2 )|a〉 + |c〉 with energy Eu = − 1

2 − 1
2

√
4γ 2ω2 + 1. Making

the two eigenstates degenerate, i.e., Eg = Eu, we obtain the
critical jumping rate: γc = 1+ω/M

1+2ω/M
1
M .

For the special case where ω = M, we have γc = 2
3

1
M .

Following Ref. [9], we plot the overlaps between the ba-
sis states and the eigenstates explicitly in Fig. 8. We can
observe an obvious crossing point at about γ M = 2/3 as
predicted previously. Numerically, we find that E1 − E0 =
8
3 M−1 + o(M−1). Choosing the searching time as t = 3

8πM,
we find that the success probability is roughly 36%. But
one could actually read from Fig. 8 that the probability
which can oscillate between |s〉 and |a〉 is roughly 75%.
So the higher-order terms ignored in the discussion using
perturbation theory [40] are important in this problem. The
success probability could be higher with a slightly different
γ . We thus fine-tune γ to find a higher achievable success
probability. Numerically, we find that when γ = 2

3
1
M + 2

M2 ,
E1 − E0 = 1.83M−1 + o(M−1), choosing the searching time
as t = πM/1.83, the success probability is roughly 75%.
Fixing the γ and the searching time, the variation of the
success probability versus M is shown in Fig. 9. This might
inspire us to further develop the method in Ref. [40] by
treating the high-order terms more carefully in order to find
a more proper γ ; this is, however, beyond the purpose of this
paper.

One might worry whether the numerical results for the
energy gap deviate slightly from the scaling E1 − E0 ∝ M−1,
which is not captured by the numerical calculation. For exam-
ple, E1 − E0 ∝ M−1−ε for some small ε. However, we want
to point out that the numerical result for the energy gap is
only used to design the search scheme. After the scheme
is designed, we keep the searching strategy (including the
searching time and critical jumping rate) fixed for any number
of vertices. Whether the energy gap is properly calculated
should be tested by the scheme’s success probability for
different numbers of vertices, which are exactly the results
shown in Fig. 9. Since the success probability of the scheme
tends to a large constant value as M increases, all the higher-

FIG. 8. Overlaps between basis states and eigenstates of the
Hamiltonian for a weighted first-order truncated M-simplex lattice
when ω = M = 100.

order terms of the energy gap we dropped should be neg-
ligible. This argument is also true for the multistage search
scheme discussed in the previous section.

Here we numerically demonstrate the optimal run time on a
first-order truncated simplex lattice. However, we should note
that upon increasing the weight of edges, the connectivity does
increase. An equally weighted first-order truncated simplex
lattice has an algebraic connectivity of 1 and a normalized
algebraic connectivity of �(1/

√
N ). A weighted first-order

truncated simplex lattice with ω = M has an algebraic con-

FIG. 9. Success probability versus M on a weighted first-order
truncated M-simplex lattice where ω = M, γ = 2

3
1
M + 2

M2 , and the
run time is chosen as t = πM/1.83.
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nectivity of roughly 0.38
√

N and a normalized algebraic
connectivity of roughly 0.38.

We want to point out that when a large enough gap exists
between the largest two eigenvalues of the graph Laplacian
L, the optimal quantum search should be able to be achieved
according to a sufficient condition proposed in Ref. [30].
In Sec. II, the gap between the largest two eigenvalues of
the Laplacian of the truncated M-simplex lattice is not large
enough. An optimal search is not achieved. In Sec. III, with
adjusted edge weights, the Laplacian of the first-order trun-
cated M-simplex lattice when ω = M does have a sufficiently
large gap between the largest two eigenvalues of the Lapla-
cian, and an optimal quantum search with run time O(

√
N )

is indeed achieved. These conclusions are consistent with the
condition.

Furthermore, from our discussion it seems that increasing
the weights of edges between poorly connected parts of the
graph may provide a possible way to increase the gap between
the largest two eigenvalues of the graph Laplacian L. This
observation may be useful for other types of graphs as well.

IV. ROBUSTNESS OF THE QUANTUM SEARCH

In this section, we discuss how noise affects the quantum
search on a truncated M-simplex lattice. For simplicity, the
noise is introduced, as the weight of some edges in the graph
varies from its ideal value, and we only consider the case
where M is large enough. We directly apply the algorithms
proposed for unweighted and weighted graphs in the previous
sections to the corresponding graphs with varied weights
(i.e., in the presence of noise), and we calculate the success
probability and show how it is affected by the noise. In other
words, we choose the same number of stages, jumping rate,
and run time of each stage as proposed before and show how
the presence of noise will decrease the success probability.
The following situations are considered.

(i) We first consider a two-stage quantum search on an
unweighted first-order truncated simplex lattice, and we find
that a small variation of the weight of a single edge between
two vertices in the same group (for example, in group b) does

FIG. 10. Success probability versus a variation δω of the weight
of a single edge between two vertices in different groups for a first-
order truncated M-simplex lattice with M = 100.

FIG. 11. Influence of Gaussian noise on the success probability
for a first-order truncated M-simplex lattice with M = 50.

not affect the two-stage search process considerably. This can
be easily observed when we find the corresponding matrix of
the Hamiltonian in the invariant subspace. Assume that the
weight of the edge between two vertices b1 and b2 in group
b is changed to be an arbitrary value ω. Now the state is still
evolving in a subspace which is spanned by {|a〉, |b′〉, |b′′〉,
|c〉, |d〉, |e〉, | f 〉, |g〉}, where |b′〉 = 1√

2
(|b1〉 + |b2〉) and |b′′〉 =

1√
M−3

∑
i 	=1,2,i∈b |bi〉. The only matrix of elements of the effec-

tive Hamiltonian affected by the perturbation is 〈b′|H |b′〉 =
−γ 〈b′|L|b′〉 = γ [−M − (ω − 1) + ω] = γ (−M + 1), which
is actually independent of ω. This means that any perturbation
on a single edge between the vertices in the same group will
not affect the search process. [But the further perturbation on
edges between vertices in different groups could affect the
search process as discussed in paragraph (ii).] This means
that if we have groups with a large number of vertices, which
require more symmetries of the graphs, there is more room
to tolerate noise on the edges. The symmetries of the graphs
are only used to reduce the matrix size of the Hamiltonian in
all previous discussion. But in this discussion, we suggest that

FIG. 12. Influence of Gaussian noise on the success probability
for a second-order truncated M-simplex lattice with M = 15.
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FIG. 13. Influence of Gaussian noise on the success probability
for a weighted first-order truncated M-simplex lattice with M = ω =
50.

the symmetries of the graphs might play a very important role
when we include the error in the discussion.

(ii) On an unweighted first-order truncated simplex lattice
with the unperturbed weight of all edges being 1, an increase
in the weight of a single edge δω between two vertices (with
one from group a and the other from group b) up to the amount
scaling more slowly than roughly M

1
2 does not affect the

two-stage search considerably as shown in Fig. 10. When the
variation of this weight δω is scaling more rapidly than M

1
2 ,

we observe a considerable decrease in the success probability.
(iii) We add Gaussian noise to every edge weight of an un-

weighted first-order truncated M-simplex lattice; the influence
of noise on the success probability is shown in Fig. 11. We
find that the success probability does not change much when
the standard deviation σ is smaller than 10−2.

FIG. 14. Influence on the success probability of modifying the
edge weight to be ω = 2 with probability p for a first-order truncated
M-simplex lattice with M = 50.

(iv) We add Gaussian noise to every edge weight of an
unweighted second-order truncated M-simplex lattice; the
influence of noise on the success probability is shown in
Fig. 12. Assuming that the marked vertex is in the outermost
layer of the graph as shown in Fig. 2, we find that the success
probability does not change much when the standard deviation
σ is smaller than 10−2.

(v) Starting from an ideal weighted first-order truncated
M-simplex lattice as shown in Fig. 7, with dotted edges having
weight M, we add Gaussian noise to every edge weight; the
influence of noise on the success probability is shown in
Fig. 13. When the standard deviation σ is smaller than 10−2,
no influence is observed.

(vi) On an unweighted first-order truncated simplex lattice,
assume that each edge weight is modified to be ω = 2 with
probability p. We show how the probability of modifying the
weight of edges affects the success probability in Fig. 14.

TABLE I. Adjacency matrix A of a second-order truncated M-simplex lattice in the invariant subspace, where Ml = M − l .

0
√

M1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0√
M1 M2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
√

M2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 1 0

√
M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
√

M2
√

M2 M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0

√
M1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
√

M1 M2 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

√
M2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0
√

M2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

√
M2

√
M2 M2 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1
√

M2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

√
M2 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
√

M2
√

M2 M3 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

√
M2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
√

M2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

√
M2

√
M2 M3 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
√

M3

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
√

M3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
√

M3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

M3
√

M3
√

M3 M3
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When p > 10−2, the success probability is obviously sup-
pressed.

Therefore, our quantum algorithms are quite robust against
the presence of noise that causes a small variation of the
weight of some edges. However, a large variation in edge
weight could destroy the search process.

V. CONCLUSION AND DISCUSSION

In summary, we have studied multistage quantum search on
truncated simplex lattices of up to fifth order when the edges
are equally weighted. The search process requires r + 1 stages
and the dominant term of the proper searching time in the
search process is �(N (2r+1)/(2r+2)). We have studied quantum
search on the first-order truncated simplex lattice when the
edge weight is adjustable. We show that the different stages
can be merged into a single stage, leading to a substantial
speedup and realization of an optimal search with run time
�(

√
N ). We have checked the quantum search on first-order

and second-order truncated simplex lattices to show that the
schemes are quite robust under several types of small noise.
We conjecture that these conclusions are generally true for
truncated simplex lattices of any order.

The merging of stages is achieved by adjusting the edge
weights of the graph, which might cause more energy usage.
The operator norm of the Hamiltonian indicates the energy
consumed in the search [12]. For the first-order truncated
M-simplex lattice, the operator norm is γ (M + ω − 1). When
one sets ω = M to merge the two stages into a single one,
more energy is consumed, but it is of the same magnitude.
So the optimal search is not simply achieved by adding
more energy into the system. Actually, one can prove that
the average energy is a constant regardless of whether the
edges are weighted, 〈E (t )〉 = 〈ψ (t )|H |ψ (t )〉 = −〈s|γ L|s〉 −
〈s|a〉〈a|s〉 = −1/N . Whether some alternative modification of
the structure or other methods could cause this merging also
deserves further discussion since this could provide a faster
and easier search.

The quantum search schemes for truncated simplex lat-
tices in this paper, together with those for balanced trees in
Ref. [38], clearly indicate that quantum search via CTQW on
hierarchical graphs, in general, requires a multistage scheme
when the edge weights are not adjustable, but an optimal
single-stage scheme can also be designed when the edge
weights are controllable.
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APPENDIX A: THE ADJACENCY MATRIX IN
THE SUBSPACE

The adjacency matrix A of the second-order truncated M-
simplex lattice in the invariant subspace is given in Table I.

FIG. 15. Success probability versus M for high-order truncated
M-simplex lattices. (a) Success probability with a four-stage search
process on a third-order truncated M-simplex lattice. (b) Success
probability with a five-stage search process on a fourth-order trun-
cated M-simplex lattice. (c) Success probability with a six-stage
search process on a fifth-order truncated M-simplex lattice.

From this, the Hamiltonian in the invariant subspace can be
written down straightforwardly.

APPENDIX B: SUCCESS PROBABILITY OF A SEARCH ON
A HIGHER-ORDER M-TRUNCATED SIMPLEX LATTICE

We recursively write the adjacency matrix in the sub-
space for a higher-order truncated M-simplex lattice. The
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calculation in this Appendix is based on the assumption
that the marked vertex is in the outermost layer of the
graph. Since different locations of the marked vertex will
not affect the algorithm for a second-order truncated sim-
plex lattice as mentioned in the text, we conjecture that
similar results could be obtained even if the marked ver-
tex is in other locations for higher-order cases. With the
search scheme proposed in Sec. II, for an rth-order truncated
M-simplex lattice, we now consider the success probabil-
ity of the search scheme with (r + 1) stages. The jump-
ing rates are chosen as γ = r+1

M , r
M , . . . , 2

M , 1
M , and the

run time in each stage is chosen as t = πM
2r+1

2 /(2r +
2), πM

2r−1
2 /(2r), . . . , πM

3
2 /4, πM

1
2 /2 from stage 1 to stage

r + 1. We explicitly calculate the resulting success probability
of the scheme on third-, fourth-, and fifth-order truncated

M-simplex lattices. The results are shown in Fig. 15. As the
size of the matrix representing the Hamiltonian increases very
rapidly even in the subspace, the numerical process of directly
calculating the evolution operators e−iHt and applying them
to the initial states becomes difficult for orders higher than
the fifth. Actually even for a fifth-order lattice, the matrix
size is larger than 1000 × 1000. And the largest and smallest
matrix elements exhibit a very high ratio, which easily makes
the numerical calculation unstable. (Our code is no longer
stable for M > 300 on the fifth-order lattice. Especially, e−iHt

numerically calculated by our code is no longer unitary for
the Hermitian Hamiltonian considered in our discussion.) But
we believe that a high success probability should still be
achievable on a truncated simplex latticeof higher than fifth
order with our scheme.
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