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Generation of n-qubit W states using spin torque
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The W state is a symmetrically entangled multipartite state where a single excitation is shared by all parties. It
is an important resource for various quantum algorithms and communication systems, and hence, its preparation
is of immense interest to the quantum information community. We examine here a deterministic scheme to
prepare a W state of an n-qubit system with all-to-all pairwise exchange interaction between n qubits. This relies
on sharing superposed excitations of a smaller number of q qubits among others. We present a bound on the
maximal jumps from q to n and formalize a scheme to generate the Wn state in O(log n) stages. We demonstrate
this scheme in the context of spin-torque-based quantum computing architecture that is characterized by repeated
interactions between static and flying qubits.
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I. INTRODUCTION

Quantum entanglement is purely a nonclassical phe-
nomenon that enables many quantum information processing
schemes and systems that exist today [1–3]. Generation of any
arbitrary entangled state is an important problem, but certain
entangled states are more useful. Two particularly inequiva-
lent classes of tripartite entangled states, viz., Greenberger-
Horne-Zeilinger and W , exist [4], and their generalizations
to n qubits has been extensively investigated [5–7]. W states
particularly have garnered interest in recent years because of
their robustness against particle losses and local bit flips [8,9].
Wn states are defined as

Wn = 1√
n

n∑
i=1

|0102 · · · 1i 0i+1 · · · 0n〉. (1)

Applications exploiting these properties are not limited
to just secure quantum communication [10–12] and quan-
tum teleportation [13,14]; ensemble-based quantum memo-
ries have also been proposed using these states [15]. They
have also been used for addressing the leader-election prob-
lem [16], in addition to studying the fundamentals of quan-
tum mechanics [5]. There exists proposals for and some
experimental demonstrations of generating these states in
several current competing noisy intermediate-scale [17] tech-
nologies like superconducting [8,18–21], photonic [22–28],
and trapped ions [29,30] and so on. Implementations based
on a universal-gate set of two-qubit and single-qubit opera-
tions can become complex as the system scales up [31,32].
Faster and simpler methods would involve a smaller number
of architecture-oriented gates and multiqubit entanglement
processes, as shown in [21]. Strategies exploiting lower-order
W states to create higher-order W states can also be use-
ful [26,28,33–35]. In addition, one circuit decomposition of
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an algorithm may not perform equally well for all implemen-
tations. So architecture-aware algorithms and hence circuit-
decomposition strategies are warranted [36].

The realization of qubits using localized spins is a promis-
ing technology [3,37]. Manipulation and control of spins are
therefore very important. “Classical” spin torque has played
a key role in manipulating the magnetization of nanomag-
nets [38,39]. When spin-polarized current is injected into a
ferromagnet (FM), the spin current polarized transverse to the
magnetization direction of the FM is absorbed by it, leading
to a spin torque. This is based on the exchange interaction
between the conduction electrons and localized spins. Various
mechanisms of producing spin-polarized current such as spin
pumping [40], the spin Hall effect [41,42], spin-dependent
thermoelectric effects [43], the spin Nernst effect [44,45],
etc., have been studied in detail. It has been shown that
spin torque in quantum systems can be used for single-
and two-qubit manipulations. This is based on the exchange
interaction between static and flying qubits [46]. There are
many proposals for exploiting this scheme for applications in
quantum information processing [46–50].

We examine here a scheme to generate an n-qubit W
state in a system whose Hamiltonian takes a particular form:
pairwise exchange interaction between all the qubits. We show
that time evolution with this Hamiltonian for a certain time
followed by single-qubit rotations leads to a W state. We
discuss the implementation of such a system in the context of a
system of static and flying qubits where spin torque drives the
evolution. The static qubits are assumed to be noninteracting;
however, repeated interactions with flying qubits can lead to
effective exchange interaction between all pairs of qubits.

II. STATE-PREPARATION SCHEME

Consider a system of n spin-1/2’s, each coupled with
the others via Heisenberg exchange interaction so that the
Hamiltonian can be written as

H = J
∑
i< j

σ i · σ j, (2)
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where σ i = (σx, σy, σz ) denote the respective Pauli opera-
tors. The basis states of each qubit denoted by |0〉 and |1〉
are eigenfunctions of σz with eigenvalues ±1, respectively.
The Hamiltonian is block diagonal in the partitions of the
computational basis Bn where all states with a fixed num-
ber of zeros and ones are considered in one partition. Re-
stricted to an ordered partition of one-hot-encoded states (i.e.,
states where only one spin is in state 1), denoted by Bn

1 =
{|ui〉 ∈ Bn : |ui〉 = |01 · · · 1n+1−i · · · 0n〉}, the Hamiltonian can
be written as

H = J

⎛
⎜⎜⎜⎜⎝

(n − 1)(n − 4)

2
In +

⎡
⎢⎢⎢⎢⎣

0 2 2 . . .

2 0 2 . . .

...
...

. . .
...

2 2 . . . 0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠, (3)

where In denotes the n × n identity matrix.
Starting from an unentangled state, |ψ (0)〉 = |ui〉, an

evolved state at time t can be written as |ψ (t )〉 =
exp(−iHt ) |ψ (0)〉 = a |ui〉 + b

∑
j �=i |u j〉, with

a = exp(iJnt ) − i
2

n
sin(Jnt ), b = −i

2

n
sin(Jnt ), (4)

ignoring global phases (see Appendix A for the derivation).
The coupling is turned off at t = tw when |b|2 = |a|2 = 1/n.
The state thus formed, which we denote by W n, is close to
the desired Wn state with exception of only a relative phase
factor given by exp(iθ ) = a/b between |ui〉 and others states
in superposition. A z-axis rotation Rz(φ) of the excited qubit
in the initial state yields the desired Wn state: a exp(iφ) |ui〉 +
b
∑

j �=i |u j〉 up to a global phase if φ = 2mπ − θ for any
integer m. This idea of sharing a single excited qubit among
the others was previously shown in experiment for a system
of three similarly interacting qubits [21]. We run into a
problem extending this approach to a larger number of qubits.
This can be immediately noted by observing that |b|2 = 1/n
corresponds to the condition sin2(Jntw ) = n/4, which cannot
be satisfied for n > 4 for real t .

On the contrary, if we start from a product state of an
entangled state Wq and n − q qubits all in state |0〉, say,

|ψ (0)〉 = |Wq〉 ⊗ |0〉⊗n−q = 1√
q

q∑
i=1

|un−i+1〉 , (5)

then the evolved state at time t can be written as |ψ (t )〉 =
c
∑q

i=1 |un−i+1〉 + d
∑n

i=q+1 |un−i+1〉, with c = a+(q−1)b√
q and

d = bq√
q = √

qb. It would correspond to a W n state if |d|2 =
1/n. This translates to sin2 (Jnt ) = n

4q and has a real solution
tw iff n � 4q. After reaching this state, the coupling is turned
off, like before at time tw, followed by correction of phase
factors exp(iθ ) = c/d by single-qubit operations Rz(φ) of
either the first q qubits or last n − q qubits to reach the desired
Wn state. The evolution time and z-axis rotation angle can be
obtained from the expressions of a and b.

This paves a deterministic way to generate an arbitrary
Wn state in O(log n) stages. In one possible path, every stage
takes a jump of 4 times, starting from sharing a single excited
state in stage 1 to reach a W41 state, from which a W42 state
can be generated in stage 2 and so on to W4k in the kth

stage assuming a sufficient number of |0〉 polarized qubits are
available in each stage. A maximum of the W4�log4 n� state can
be generated in the �log4 n�th stage, which is sufficient for
the required scheme since n � 4�log4 n�, where �x� indicates
the smallest integer � x. Also, overhead cost of single-qubit
gates at the kth stage for phase correction is 4k , which entails
that the total number of single-qubit gates required would
be O(4�log4 n�) ≈ O(n). Note, however, that these single-qubit
gates are operated in parallel in each stage. A schematic for
the algorithm is shown in Fig. 1.

The feasibility of expansion of Wq by a factor of 4 can
be assessed by noting that the energy of the system, i.e.,
〈H〉, remains conserved during the evolution. Neglecting
the diagonal contributions to the Hamiltonian in Eq. (3),
the energy of the initial state in Eq. (5) is 2J (q − 1).
An evolved state, if it corresponds to W n, can be written
as 1√

n
[exp(iθ )

∑q
i=1 |un−i+1〉 + ∑n

i=q+1 |un−i+1〉], with energy
2J
n [2q(n − q) cos θ + q(q − 1) + (n − q)(n − q − 1)]. Equat-

ing the energies before and after evolution gives n =
4q sin2(θ/2). Clearly, n can be, at most, 4q, which is in
agreement with the previous arguments. This also provides an
expression for the phase correction required to obtain the Wn

state.
Note that the all-coupled Hamiltonian can be written as

H = (J/2)[σ2 − ∑
i σ

2
i ], which commutes with total spin

angular momentum σ = ∑
i σ i, i.e., [H, σ] = 0. This also

entails that 〈σ2〉 should be conserved during the time evolu-
tion. Thus, energy conservation that restricts the expansion
of equally distributed singly excited superpositions can be at-
tributed to the fact that the system is not able to conserve total
angular momentum for an expansion beyond a factor of 4,
as argued previously. On the other hand, the phase-correction
step discussed above requires single-qubit rotations on the first
q qubits (or last n − q qubits) to reach the Wn state. One way
this can be done is by locally applying magnetic induction B
along the z direction to the first q qubits for a certain time,
i.e., time evolving the system under the Hamiltonian given by
H = −γ (B/2)

∑q
i=1 σz,i, where γ is the gyromagnetic ratio.

〈σ2〉 changes during this evolution as it does not commute
with this Hamiltonian. In the following we study a system that
can emulate both Hamiltonians described above for desired
operations under a suitable design.

III. SPIN-TORQUE SETTING

Consider a system of impurity spins embedded in a spin-
coherent channel, equally spaced and placed sufficiently far
apart that there is no direct interaction between them, as
shown in the Fig. 2. There is hard barrier with perfect re-
flection on the left end, next to the first qubit. A barrier
with a tunable transmission coefficient is present between the
last qubit and a spin reservoir on the right end. In addition,
barriers with tunable transmission (either 0 or 1) are present
between the two qubits and between each qubit and a spin
reservoir on top of the qubit. The spin reservoirs are held at
certain spin potentials and are used to inject spin-polarized
electrons into the channel. These itinerant spin carriers (flying
qubits) collide with the immobile impurities (static qubits),
get entangled with them, and finally return back after multiple
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FIG. 1. Wn-state generation protocol. (a) Wq to Wn generator block: n-qubit entangling operation followed by phase-correction operations
(single-qubit gates) on q qubits to generate a Wn state from a Wq state. (b) Circuit to generate the Wn state: Several Wq to Wn generator
blocks are arranged successively in �log4 n� to prepare a Wn state starting from |0〉⊗n with one initial bit-flip gate required to excite a single
qubit.

reflections, thereby affecting a spin-dependent rotation of the
system’s state. This can be seen as a spin-transfer-torque-like
behavior in quantum scale systems.

Specific forms of this system were studied in [48] for
single- and two-qubit gates and were also discussed in [49,50]
for various applications. Ours is an adaptation with a greater
number of qubits between the two barrier gates. While the
states evolve, the role of time is taken up by the number of
flying qubits injected (and eventually extracted) by the reser-
voir. We first consider the case where the barriers between the
qubits are perfectly transmitting and the barriers between the
qubit and the reservoir on the top are completely reflecting.
Thus, we essentially have a system of n equally spaced qubits
with a hard barrier to the left of the first qubit and a spin
reservoir connected to the last qubit via a partially transmitting
barrier (colored burnt umber in Fig. 2). Let’s denote the
density matrix of the static-qubit system after interaction

FIG. 2. Schematic of the system. n static qubits (colored red)
in a spin-coherent channel (shaded yellow). There are barrier gates
(colored black) to facilitate creation of standing waves and a reser-
voir (colored purple) to inject and extract spin-polarized carriers.
Additional barrier gates (shaded light green) between the qubits are
used to isolate the qubits when not in use. The distance between two
successive qubits is d , while that between a qubit and a barrier gate is
d0. Individual qubits act as spin-dependent scatterers with reflection
and transmission denoted by [r] and [t] matrices. Reflection matrices
looking into the cascade of scatterers are also shown. In addition,
each qubit is separately connected to spin reservoirs through trans-
verse channels to enable single-qubit operations.

with m electrons by ρs[m]. When the (m + 1)th electron
is incident, we can write the initial state in the combined
Hilbert space Hf ⊗ H1 ⊗ H2 ⊗ · · · Hn as ρ f ⊗ ρs[m], where
ρ f denotes the density matrix of the flying qubit. The unitary
matrix describing the overall reflection process RB evolves it
into RB(ρ f ⊗ ρs[m])RB

†. The (m + 1)th state of the n-qubit
system can thus be obtained by taking a partial trace over the
flying qubit’s subspace:

ρs[m + 1] = Tr f
{
RB(ρ f ⊗ ρs[m])R†

B

}
. (6)

The procedure to obtain RB is deferred to Appendix. B.
One can obtain Kraus operators {MK} relevant for this evo-
lution. For |0〉 polarized electrons, the (i, j)th element of
the matrix representation in the computational basis is given
by Mi, j

K = 〈K, i|RB |0, j〉, where |i〉 , | j〉 ∈ Bn and K can be
0 or 1. (See Appendix. C for more discussion on Kraus
operators.) With a proper design of system parameters M0

alone can approximately evolve the system state, and its one-
hot partition emulates a unitary evolution corresponding to
the Hamiltonian given in Eq. (3), providing a use case for
implementing the algorithm discussed in the previous section.
The system parameters can be reduced to kd , kd0, 	, and 


(since d j always appears together with k in the expression for
RB, we club them), where k is the wave vector of the injected
electrons, d and d0 are the spacing between static qubits and
the distance of the barriers from static qubits, respectively, and

 and 	 indicate the interaction strength of flying qubits with
the static qubits and barriers. A scheme to probe appropriate
regions in parameter space is also outlined in Appendix. C.
For the purpose of illustrating the expansion scheme, we
choose (kd, kd0) = (π, π/2) and (	,
) = (1000, 0.0001).
One can attribute an effective interaction Jeff between these
noninteracting static spins. Assume that one electron stays
for a time δt in the channel and causes a small rotation
in the Hilbert space. The evolution matrix is thus given by
U (δt ) = exp(−iHδt ) = 1 − iHδt . We indeed checked that
the relation M0 ≈ 1 − iHδt can be satisfied (after correcting
for phase factors) in the one-hot-encoded subspace to good
accuracy. From this comparison we could also get the value
of the effective exchange constant Jeff for unit δt , which is
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FIG. 3. Number of electrons required for evolution. Simulated
number of electrons required for entangling evolution for the W n

state and for phase correction to get the Wn state starting from a
W3 state in the spin-torque setting for 3 < n � 12. Corresponding
estimations shown as data circles match well with the simulations.
Also, variation of Jeffδt as a function of the number of qubits shown
on the right axis.

plotted in Fig. 3 as a function of the number of qubits. One
can see oscillation in Jeff followed by a decay as the number of
qubits increases. This is reminiscent of the Ruderman-Kittel-
Kasuya-Yosida oscillations in exchange coupling between
two spins as a function of distance [51].

The above discussion shows that one can emulate the
Hamiltonian given in Eq. (3) by the proper choice of param-
eters. Using this, once W n is prepared, we raise the barrier
between the last qubit and reservoir for no transmission, pre-
venting further evolution. We also close the barriers between
all the qubits. The next step required is single-qubit rotations
of the appended qubits in the channel to perform the final
phase correction. This is achieved by opening the barriers be-
tween appended qubits and the spin reservoirs on the top (see
Fig. 2). Polarized electrons sequentially interacting with the
qubit cause a rotation in the qubit’s state. The state evolution
is described by an equation [Eq. (B6)] similar to Eq. (6) with
the number of static qubits equal to 1 and 	 = 0 (note that
there is no partially transmitting barrier involved in this case).
The interaction between flying qubits and the static qubit ef-
fectively gives rise to a rotation of the static qubit’s spin along
the polarization direction of the flying qubit. Once the rotation
required for phase correction is achieved, the barrier is again
set to perfect reflection, thereby stopping further evolution.
The single-qubit operations are done simultaneously for all
the qubits to be rotated. An example of how this method can
be used to generate the W3 state from the |0〉 state is described
in Appendix C. Following the procedure for sharing a singly
excited qubit excitation among others to generate a Wn state
with a larger number of qubits in the channel, we observe
that the fidelity obtained decreases considerably beyond ten
qubits, as shown in Fig. 4. This is expected since it works
only until n = 4, as proved in the previous section. We obtain
much better fidelities in preparing the Wn state using another
Wq state appended with |0〉⊗n−q as the initial state. Figure 4

2  4  6  8  10  12

n

 

0.84

 

0.88

 

0.92

 

0.96

 

1

F
id

el
ity

1 Qubit shared
3 Qubits shared

FIG. 4. Fidelity of obtained states. Fidelity of the n-qubit W
state obtained using a single-qubit sharing procedure vs sharing
a superposition of three singly excited qubits (a Wq=3 state) as a
function of n.

also shows fidelities associated with creation of a Wn state
from the Wq=3 state. We see that fidelities remain �99.9%
all the way up to n = 4q = 12 qubits. In this work we have
used F (ρ, |ψ〉) = √〈ψ | ρ |ψ〉 as the definition of fidelity for
a general state described by ρ and a pure state |ψ〉 [1].

The stopping time tw and hence the number of electrons
N required to obtain the W n state starting from Wq are given

by N = tw
δt = 1

n|Jeff (n)|δt sin−1
√

n
4q . As shown in Fig. 3, the

number of electrons obtained from this expression (green
circle) and from complete numerical evolution (green cross)
agree quite well. Also, comparing the Kraus operator M0

for single-qubit rotation with the z-axis rotation operator
Rz(δφ) = exp(−iσzδφ/2) gives the rotation caused by in-
dividual electrons δφ. This is analogous to rotation under
uniform magnetic field Beff for a time δt . The stated com-
parison gives δφ = γ Beffδt = 7.99 × 10−4 rad, where γ is
the gyromagnetic ratio of individual static qubits. The net
rotation required for phase correction φ is determined from
the phase factor exp(iθ ) = c/d of W n and hence the number
of electrons required for single-qubit rotations φ/δφ can also
be estimated. As shown in Fig. 3, this value (blue circle)
agrees well with complete numerical evolution (blue cross).
Note that the number of electrons required increases as q to n
jumps grow steeper. The increase in the number of electrons
is due to the decrease in Jeff for rotation of larger n. Thus,
in this case nonmaximal jumps may be beneficial in terms
of the number of electrons required. However, if a system
can be designed where Jeff does not decrease as fast as Jeff

obtained for this choice of parameters, we could reach Wn

states quicker while taking maximum jumps. It should be
noted that during the transition from the Wq state to the W n

state, the spin angular momentum of the static-qubit system
is conserved. During the transition from the W n state to the
Wn state the single-qubit rotation operations change the spin
angular momentum.
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FIG. 5. Average fidelity obtained and the number of electrons required for preparation (entangling evolution plus phase-correction
evolution) of the W8 state from the W2 state on introduction of nonidealities. Nonidealities are introduced assuming a normal distribution
with mean μ and standard deviation σ . For each x data point, i.e., the (μ, σ ) pair, 100 sample sets were simulated, followed by averaging
corresponding data. Here, one sample set refers to the set of parameters sampled at each site. (a) Effect of nonideal transmission of barriers in
between the qubits. 	 for the barriers is chosen from a distribution with μ = 0. (b) Effect of uncertainty in the exchange interaction of flying
and static qubits. The distribution from which 
’s were sampled had a mean of 0.0001. (c) Effect of nonideal distances between successive
pairs of qubits. The parameters kd and kd0 were respectively sampled from distributions with μ = π and π/2, and each set was adjusted
uniformly to have a constant sum (explained in the main text).

IV. NONIDEALITIES IN DESIGN

There are a number of design considerations in this archi-
tecture similar to those discussed in [48]. We have assumed
a 100% polarization for the reservoirs, which is seldom the
case. However, it is not a primary requirement for the system
to work, only that weaker polarization would incur more error
in the evolution, as can be seen from Fig. 7 for three qubits,
when undesired states outside the desired subspace states start
sharing the superposition. Consider an example of preparing
a W8 state from a W2 state. If we use reservoirs that are 30%
polarized (achievable in silicon at low temperatures [52]), we
can obtain a fidelity of 99.38% with about 28 000 electrons as
opposed to a fidelity of 99.77% with about 13 000 electrons
obtainable with reservoirs that are 100% polarized. Thus, it
is possible to obtain states with good fidelities at the cost
of more electrons. Another point is that the values of vari-
ous parameters were optimized assuming 100% polarization.
Optimization with 30% polarization can give us parameters
which require fewer electrons.

The barrier gates (shaded light green in Fig. 2) are sup-
posed to be completely transmitting while entangling the
qubits (preparing the W n state); that is, these gates can be
described by spin-independent δ function barriers with 	 = 0
[see Eq. (B4)]. We modeled the nonideality in the gates by
assuming that the 	 value of each gate is chosen randomly
from a normal distribution with mean μ = 0 and variance σ .
For a given value of σ we chose 100 random samples and
numerically obtained the fidelity in each case. The average
fidelity as a function of σ is shown in Fig. 5(a). The average
number of electrons required is also shown as it is an impor-
tant parameter. It can be seen that even for σ = 10, we can
get a fidelity of better than 99%. Comparing this to the 	 =
103 value of the partially transmitting gate, σ = 10 would
correspond to 1% variation. To assess the effect of variability
in Heisenberg coupling 
 of flying qubits with the individual
static qubits, we assumed that different 
 are sampled from
a normal distribution with mean μ = 10−4 and variance σ .

The average fidelity and number of electrons required for 100
samples are shown in Fig. 5(b). It can be seen from Fig. 5(b)
that we can achieve a fidelity of > 99% with σ/μ = 3%. In
addition, the scheme requires us to shut off the channel from
the reservoir. It typically takes about 104 electrons to prepare
a W state. Experimentally, control over precise stopping can
be challenging. For the above example we checked that we
can easily tolerate ±100 injected electrons from the exact
amount required in both evolution and phase-correction steps
with a negligible loss in fidelity. This corresponds to about 1%
variation in the number of electrons. Passage of 104 electrons
corresponds to passing a current of 160 nA for 10 ns [48]. A
1% variation then corresponds to ±100 ps in the pulse width.

Variabilities in physical design can also affect the perfor-
mance of our algorithm in this architecture. For example,
the separation between the qubits may not be uniform when
the design is realized. We can similarly assess its impact
in reference to the example above of W8 state preparation.
We chose values of parameters kd and kd0 from a normal
distribution with mean μ = π for kd and mean μ = π/2 for
kd0. The variance σ was chosen such that σ/μ is the same
for both kd and kd0. We imposed an additional constraint in
the simulations that the sum of all local kd and kd0 values
in the channel equals the corresponding sum in the ideal case.
Figure 5(c) shows the variation of average fidelity and number
of electrons as a function of σ/μ. For average fidelity > 99%,
a variability of 5% can be tolerated. The imposition of the
constraint here can be interpreted as fixing the channel length
(the distance between the perfectly reflecting barrier and the
partial barrier shaded burnt umber in Fig. 2) for a given value
of k. It turns out that the above sum plays an important role
in the state preparation in this architecture. In practice, one
can satisfy this constraint by choosing a suitable value of k so
that the k and channel-length product matches the ideal sum.
This constraint seems to be relevant only for the entangling
evolution part of the scheme. Indeed, that is true, and this part
of the state preparation is majorly responsible for the drop in
fidelity if only errors due to variability are considered. (The
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numbers reported above are inclusive of the variability due
to kd0 in the phase-correction step.) If we do not impose the
above constraint in the simulation, to get a fidelity of better
than 99%, variation of 0.01% in σ/μ can be tolerated.

Note that we have considered monochromatic particles
(electrons with single k values) to entangle static qubits. The
value of Jeff and its sign is sensitive to the choice of k. The
evolution can become inefficient due to the thermal average
over wave vectors. One way to address this is to operate the
system at low temperatures where only wave vectors near
the Fermi surface are relevant. Another way in which high
selectivity of k may be achieved is through use of additional
resonant-tunneling barriers next to reservoirs. This will allow
only electrons with wave vectors close to the desired k value
to enter or exit the channel.

The flying qubit should not lose coherence during the mul-
tiple reflections during the W state preparation. This places a
limit on the length of the channel and hence on the number
of static qubits. However, large spin-coherence lengths have
been obtained experimentally; for example, a spin-coherence
length of 10 μm in Si at 85 K was reported in [53]. Use of low
temperatures would enable a further increase in the number of
static qubits in the channel.

V. TOWARDS COMPACT ARCHITECTURE

Geometrically, there are two essential requirements for
the architecture for this proposal. First, a random qubit must
be uniquely accessible to perform single-qubit manipulation.
Second, it must allow n random qubits to be arranged in a
one-dimensional fashion so that electrons from reservoirs can
interact only successively for the multiqubit entanglement we
have described above.

From Eq. (B5) in Appendix B it can be seen that the
evolution dynamics is unaffected if the choice of d and d0

is periodic with π/k. This enables us to stretch the one-
dimensional arrangement of static qubits, as shown in Fig. 2,
and create a more optimal arrangement of static qubits.
Consider a meshed network of vertical and horizontal spin-
coherent semiconductor channels where a planar lattice of the
static qubits is embedded in the columns of the network, as
shown in Fig. 6. Here, we can uniquely access individual
qubits through each column. To get n qubits in a line, we
just need to “needle” out a way through the channels as
if the lattice were a two-dimensional “fabric.” This would
thus enable multiqubit entanglement. An example is shown
in Fig. 6. Three target qubits to be entangled are shown as red
spheres. The path that would be opened for electrons to flow
is shown in transparent green. To perform an entangling evo-
lution, electrons are injected from the reservoir connected to
a vertical column containing the partial barrier shown in pink.
Single-qubit operations would be performed similarly, but
the transport would be restricted to only individual columns
(columns would be isolated; barriers can be raised so that no
electrons are allowed to leak horizontally from the column
containing the target qubit).

Each intersection i of horizontal and vertical channels is
provided with six barrier gates Gi,k̂ , where k̂ = ±x,±y,±z
is the orientation of the face of the gate facing outward from
the node. The potential of each gate is assumed to be fully

FIG. 6. Schematic of the proposed architecture. Static qubits
(red) embedded in the columns of a spin-coherent channel (bright
yellow) grid. Hard barriers Gi,k̂ (dark turquoise) guide the electrons
along a path (transparent and green) shown for three-qubit entangle-
ment. The partial barrier which is also a part for implementing the
scheme is colored pink. The distance between a qubit and the gates
facing it in each column is d0, while the distance of the farther gates
is roughly d/2. The Manhattan distance between any two nodes on
a horizontal level is an integer multiple of π/k. This ensures any
two qubits are separated effectively by a distance d up to certain
tolerances governed by optimization of parameters.

controllable such that the gate can serve as a hard barrier or
a partial one or be completely open to the flow of electrons.
Hard barriers can be used for isolation of qubits when not
operated and can redirect the flow of flying carriers between
the horizontal and vertical channels and can be used for
perfect refection (R0 in Fig. 2) necessary to implement the
proposed scheme. The gates are required to be open while
the flow of electrons is guided through an intersectional node.
Flying electrons can be supplied from desired spin-polarized
reservoirs connected to the vertical columns. The model we
have used is a one-dimensional model, where right-angle
bends in the path of the electron do not matter. In a realistic
design, we need to consider at least a two-dimensional model,
where right-angle bends would affect the propagation of elec-
trons. Such design optimization is beyond the scope of the
present paper.

Note that this entire procedure can also be used to generate
a pure superposition of all one-cold entangled states if we use
down-spin reservoirs in which the evolution would happen in
a one-cold-encoded subspace. This can be equivalently seen
by interchanging the roles of zeros and ones. The architecture
may also be utilized for preparation of generalized Dicke
states and will be taken up in a future work.

VI. CONCLUSION

In summary we have presented a scheme to generate the Wn

state in systems with all-to-all exchange coupling between the
constituent spins. We have shown that a single-qubit sharing
scheme works only up to four qubits and have suggested
an improvement to start from another W state of smaller
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cardinality, thereby outlining a procedure to generate a Wn

state in O(log n) stages. In the improved procedure only the
one-hot-encoded subspace is utilized, so physical systems
which are equivalent in just this subspace also can be utilized
in this scheme. We have shown that spin-torque quantum
computing architecture based on static- and flying-qubit in-
teractions is one such avenue where it can be engineered; that
is, the evolution operator can be made to emulate the evolution
by an all-to-all coupling Hamiltonian in a reduced subspace.
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APPENDIX A: DERIVATION OF COEFFICIENTS a and b

In Sec. II of the main text, we give an expression for the
evolved state in terms of coefficients a and b [Eq. (4)]. Let’s
look at it in detail here.

To simplify the calculations, we write the Hamiltonian as
H = 2J1n, where 1n denotes an n × n all-ones matrix. We
can do this by adjusting the diagonal terms which contribute
no more than global phases to evolved states. We can note that
the Wn state is an eigenfunction of H with eigenvalue 2Jn and
all other n − 1 eigenvalues are zero. Let us denote these states
by |ψ1〉 , |ψ2〉 , . . . , |ψn−1〉 and state Wn by |ψn〉. We start with
initial state at t = 0, |φ(0)〉 = |ui〉 = |00 · · · 1i · · · 0〉, which
can be written in the above basis of eigenfunctions of H as∑

j

c j |ψ j〉, with c j = 〈ψ j |ui〉. The evolved state can thus be

written as

|φ(t )〉 =
∑

j

c j exp(−iE jt ) |ψ j〉

= exp(−iEnt )cn |ψn〉 +
∑
j �=n

c j |ψ j〉

= 1√
n

[exp(−iEnt ) − 1] |ψn〉 + |ui〉 ,

where we have utilized the fact that cn = 〈ψn|ui〉 = 1√
n
.

Our aim is to find the coefficients of vectors of the com-
putational basis describing |φ(t )〉. With the form obtained
above we can easily obtain the coefficients as 〈u j |φ(t )〉 =

1√
n
[exp(−iEnt ) − 1] 〈u j |ψn〉 + 〈u j |ui〉, which can be sim-

plified as 1
n [exp(−i2Jnt ) − 1] + δi j . Note b = 〈u j �=i|ψ (t )〉.

Thus,

b = 1

n
exp(−iJnt )[exp(−iJnt ) − exp(iJnt )]

= −2i

n
exp(−iJnt ) sin(Jnt ),

and similarly,

a = 〈ui|ψ (t )〉

= exp(−iJnt )

[
exp(iJnt ) − 2i

n
sin(Jnt )

]
.

Neglecting the common phase factor of exp(−iJnt ), the ex-
pressions obtained for a and b match the expressions given in
Eq. (4) in the main text.

APPENDIX B: OBTAINING REFLECTION MATRIX RB

In reference to Fig. 2 in the main text, the interaction be-
tween the flying and jth static qubit at location x j is governed
by the exchange Hamiltonian

H = J0σ f · σ jδ(x − x j ), (B1)

where σ f and σ j denote corresponding Pauli operators and
J0 is the exchange strength. The transmission and reflection
corresponding to this spin-dependent δ scatterer can be written
as t j and r j = t j − I, with

t j = [I + i
σ f · σ j]
−1, (B2)

where 
 = J0/h̄v, v is the velocity of injected electrons in the
channel, and I is an identity matrix of dimension 2n+1 × 2n+1.
A cascade of the jth scatterer from the ( j − 1)th scatterer
modifies its reflection as

Rj = r j + e2ikd j t j (I − e2ikd j R j−1r j )
−1Rj−1t j, (B3)

where k is the wave vector of the injected electrons and dj is
the distance of the jth scatterer from the ( j − 1)th scatterer.

These interactions are quite weak but can be enhanced with
proper placement of static impurities and barrier gates which
facilitate formation of standing waves and thereby stronger
interaction. These barrier gates have spin-independent trans-
mission

tB = 1

(1 + i	)
I (B4)

and reflection given by rB = tB − I. The hard barrier (R0) on
the leftmost side is characterized by rB = −I. The overall
reflection matrix RB for the cascade of n such scatterers and
barrier gates (see Fig. 2) can be obtained using Eq. (B3) as

RB = rB + e2ikd0tB(I − e2ikd0 RnrB)−1r̂ntB. (B5)

On the other hand, for single-qubit rotations, the reflection
matrix can be obtained by substituting j = 1 in Eq. (B3),
where d1, being the distance of the qubit “scatterer” from the
“perfectly reflecting scatterer” (hard barrier), is d0. Rewriting
the matrix for single-qubit rotations for clarity. Since there are
no partially reflecting barriers involved, 	 = 0 implies tB = I
and hence there is no modification to R1 as far as single-qubit
rotations are concerned according to Eq. (B5). Therefore we
write R1 for single qubit rotations for clarity as

RB|single qubit = r + e2ikd0t (I − e2ikd j R0r)−1R0t . (B6)

Here, we have omitted the subscripts for the r and t matrices
which correspond to the target qubit in rotation. Like before,
R0 is taken to be −I which corresponds to a perfectly reflect-
ing barrier.
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FIG. 7. RB for three qubits in the channel. Nonzero elements
of the overall reflection matrix RB are colored red, while the zero
elements are colored blue independent of the parameters. The Kraus
operators M0 and M1 are partitions of the full RB, highlighted in
yellow and green. The terms relevant to the evolution are α and
β as labeled, while γ , γ1, and γ2 give undesired superpositions in
evolution.

APPENDIX C: CHOICE OF SYSTEM PARAMETERS AND
DESIGN TRADE-OFF

To illustrate the scheme we have used reservoirs that inject
only |0〉 polarized electrons, in which case the relevant Kraus
operators for this evolution in the subspace of n qubits, Mi, j

K =
〈K, i|RB |0, j〉, are essentially the following partitions of the
overall reflection matrix RB if described in computational
basis Bn+1:

M0 = RB(1 : 2n, 1 : 2n), (C1a)

M1 = RB(2n + 1 : 2n+1, 1 : 2n), (C1b)

satisfying M†
0 M0 + M†

1 M1 = I2n . The first set of indices indi-
cates the rows, while the second corresponds to the columns
of the matrix description. The evolution of Eq. (6) can be
rephrased as

ρs[m + 1] = M0ρs[m]M†
0 + M1ρs[m]M†

1 . (C2)

The elements of matrices M0 and M1 depend on the
values of four parameters, kd , kd0, 	, and 
 (since d j al-
ways appears together with k, we club them). We need to
choose these values such that the evolution of static qubits
given by Eq. (C2) can be approximated by unitary evolution
corresponding to the Hamiltonian in Eq. (3). For this, we
analyze the system with three static qubits in the channel.
The optimized values of the parameters obtained are then
used for all cases. Irrespective of the specific values of the
aforementioned parameters, the operator RB takes the form
shown in Fig. 7. We can identify the aforementioned Kraus

( , ) = (1,1e-07) ( , ) = (1,0.0001) ( , ) = (1,0.1)

( , ) = (1e+03,1e-07) ( , ) = (1e+03,0.0001) ( , ) = (1e+03,0.1)

( , ) = (1e+06,1e-07) ( , ) = (1e+06,0.0001) ( , ) = (1e+06,0.1)
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0

FIG. 8. P3 as a function of kd and kd0 for different values of
(	,
) about (1000, 0.0001). Good choices of kd and kd0 occur
around a negative sloped line about (π, π/2).

operators in the overall reflection matrix. Considering the
one-hot-encoded subspace of M0 operator, we see that it can
emulate the desired unitary, provided |β|2 + 2|α|2 = 1. The
blocks of a block-diagonal unitary operator are also unitary.
Thus, if we look for a parameter space where M†

0 M0 ≈ I2n or
M†

1 M1 ≈ O2n , the system would be evolved nearly unitarily by
M0 according to Eq. (C2).

It is important to note that the off-diagonal term, α, of M0

in its one-hot-encoded subspace is responsible for distributing
the amplitude of an excited qubit among other qubits. So we
should also try to maximize |α| when looking for the optimal
space in addition to trying to make M†

1 M1 ≈ O2n . We define
a figure of merit (P), which we seek to minimize over all the
parameters, as follows:

Pn = log10

(‖M1‖F

|α|
)

, (C3)

‖M1‖F is the Frobenius norm of M1 and n is the number of
qubits in the channel.

Figure 8 shows the variation of P3 as a function of kd and
kd0. A global minimum in this space occurs at (kd, kd0) =
(π, π/2). P3 does not change much as long as we remain in
the negative-slope region about the stated coordinate. Also, it
gets affected only when we change (	,
) by orders of mag-
nitude. So it is quite robust against the choice of interaction
strength parameters. Similarly, Fig. 9 shows the variation of
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FIG. 10. Quantum circuit for generation of the W3 state.

P3 with 	 and 
 corresponding to tolerances in the choices
of (kd, kd0) about (π, π/2). There is no common region of
choices of 	 and 
 among different plots, implying P3 is
very sensitive to the choice of (kd, kd0). This indicates that
given a geometry, i.e., a choice of (d, d0), only electrons with
a certain wave vector can cause desired rotations which will be
provided by the spin reservoirs connected to the channel. Our
system implements single-qubit rotations in the way discussed
in [48] for phase correction, as discussed previously, which
requires either 
 or kd0 to be small. This is contrary to the
observation from Fig. 8, where a general decreasing trend
for P3 is observed with increasing 
. This implies a design
trade-off in the choice of parameters. Also, these parameters
can affect the overall speed of the system in terms of the
total number of electrons required, and further optimization
can be done. We choose (kd, kd0) = (π, π/2) and (	,
) =
(1000, 0.0001), which are good enough parameters for the
purpose of demonstration.

As an example, let’s look at how one can prepare the W3

state using the scheme discussed in the main text in the setting
of spin-torque quantum computing architecture. Consider the
quantum circuit shown in Fig. 10. Assume an initial state
|000〉 for the three qubits in the channel. Performing a rotation
with the y-polarized reservoir connected only to the first qubit
as prescribed in [48], we prepare a |100〉 state. After that we let
open the +z-polarized reservoir injecting electrons in state |0〉,
commonly connected to the spin-chain system that enables
an entangling evolution of the system governed by Eq. (6).
Variation of diagonal components of the system’s density
matrix expressed in B3

1 with the number of electrons while
in this phase is shown in Fig. 11. We turn off the coupling
to the reservoirs when the three curves intersect at a point to
stop further evolution. The state of the system at this stage is
actually W 3. All diagonal components are nearly equal, and
ideally, their product equals 1/27. As far as simulations are
concerned, we stop at the point when the product of diagonal
entries reaches a maximum. Now, for the phase-correction
step we perform a single-qubit manipulation of the first qubit
like before but with z-polarized spins. This final evolution
eventually leads to a W3 state, after which we close the gates.
To assess the quality of the W3 state obtained, we use fidelity,
which determines the closeness of two states. In the scheme
described above we stop the phase-correction step when the
fidelity between the evolving state and an ideal Wn state
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FIG. 11. Three-qubit evolution. Evolution of diagonal entries
(left axis) and their product (right axis) of the system’s density matrix
represented in B3

1. The vertical line (black) marks the point when
the product reaches the maximum, supposedly 1/27, in this case
indicating the creation of the W 3 state. The horizontal line (black)
has an ordinate equal to 1/3 and indicates that the evolved desired
density-matrix components intersect when close to ideal value 1/3.

reaches a maximum. For the three-qubit case we obtain a
fidelity of ∼99.9%. The simulated density matrix components
of the state obtained after the entangling evolution and phase
correction steps are shown in Fig. 12

FIG. 12. Density-matrix components. (a) and (c) Real and
(b) and (d) imaginary parts of the obtained density matrix before
and after phase correction, respectively. The blue translucent and
slightly thicker bars correspond to the density matrix of the desired
W3 state. There is a good match between the obtained and expected
density matrices. The blue bars sheath the bars of the real part of the
obtained density matrix after phase correction with negligible error
in the imaginary part, as also reflected by the obtained fidelity of
99.9%.
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